AE 429 - Aircraft Performance and
Flight Mechanics

Steady Flight

Aerodynamic efficiency

e Lift/drag ratio is a measure of aerodynamic
efficiency
- It indicates the ability to produce lift without generating

excessive drag L/D L
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Aerodynamic efficiency

Parasite and induced drag
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Aerodynamic efficiency

In level flight, D = thrust required Ty
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Figure 5.4  Thrust requlred curve for the Gulfstream IV at the condifions for Example 5.1, illustrating
the regions of valocdy instability and stability, and the direction of decreasmg angle of
attack with increasing velocity. Alfitude = 30,000 ft; W = 73,000 b
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Figure 5.6 () The mechanism of velocity instability. (b) The mechanism of velocity stability. (¢} Maximum Ty occurs ot
‘maximum lft4o-drog rafio, point 2. Points 1, 2, and 3 comespond to points 1, 2, and 3, respectivel, in Fig. 5.7.
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Important parameters: Thrust to Weight ratio Tg/W
Wing loading W/S,
Polar drag (Cpgand K)




Aerodynamic efficiency

e Relationship of Cp, and Cp, for L/D

max
2
T,=C S+——
R q..S7meAR
e Differentiating with respectto q.:  d7;, _ C.S— w? _
dg. 7 ¢>SmeAR
, w? KW?
e Solvingfor C,, C, = =
g PO " T 2§71 AR T RS>
e And observing that w? W ’ e
s> \q.5) "
Thus, at max L/D C?
= L —
Do 1eAR Di

| 16

V&I Dymax Ve

(© 14

Figure 5.6 (u) The mechanism of velocity instability. (b) The mechanism of velocity stability. (¢} Maximum Tg occurs ot
imumm lif-fo-drog rafio,
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Fiqure 5.8 Variation of L/D with velocity for the Gulfsiream IV at
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Figure 5.7 Schematic of the variation of lift-to-drag rotio
for a given airplane as a function of angle of
attack. Points 1, 3, and 3 correspond to points
1,2, and 3, respectively, in Fig. 5.6¢.




Equation (5.12) can be used to find the flight velocities for 2 a given value of Tg.
Writing Eq. (5.12) in terms of the dynamic Pressure goo = 3P0 V2 and noting that
D = Ty, we obtain
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Tr = 4oSCpo+ — (——) {5.13]
goo \ S
Multiplying Eq. (5.13) by g, and rearranging, we have
w\? '
qgoSCD'()——qooTR-i-KS (-3‘—) =0 [5.14]

Note that, being a quadratic equation in g, Eq. (5.14) yields two roots, that is, two
solutions for geo. Solving Eq. (5.14) for g by using the quadratic formula results in

Tp [T} — 45Cp oK (W/S)? :
oo = e ! [5.15]
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By replacing qo With 300, V2, Eq. (5.15) becomes

_ Tr/S £/(Tr/S)* — ACp oK (W/S)
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[5.16]
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The parameter Tx/S appears in Eq. (5.16); analogous to the wing loading W/S, the
quantity Tr/S is Soffietimes called the thrust loading. However, in the hierarchy of
parameters important to airplane perfoﬁnanﬁ’?‘?‘is not quite as fundamental as
the wing loading W /S or the thrust-to-weight ratio T/ W (as will be discussed in the

g

next section). Indeed, Tr/S iﬁﬁ‘ﬁTﬁ“ﬁ”&‘ﬁmﬁinaﬁoh’of "Tz/W and W/ via
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Substituting Eq. (5.17) into (5.16) andtakmgtbhe square root, we have our final
“expression for velocity:
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At a given T larger than the minimum valve,
there are two corresponding velocities, the low
velocity V5 and the high velocity V1.

Figure 5.9

When the discriminant in Eq. (5.18) equals zero, then only one solution for V,
is obtained. This corresponds to point 3 in Fig. 5.9, namely, the point of minimum
Tk. That is, in Eq. (5.18) when :

Tr

2
(W) —4CppK =0 [5.19]

then the velocity obtained from Eq. (5.18)is
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The value of (Tg/ W) is given by Eq. (5.19) as
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Substituting Eq. (5.21) into Eq. (5.20), we have
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InEq. (5.22), by stating that V7)., = V(1/D),.,» We are recalling that the velocity for
minimum Ty is also the velocity for maximum L/D, as shown in Fig. 5.6. Indeed,
since Tr = D and L = W for steady, level flight, Eq. (5.21) can be written as

(2) = /4CpoK [s.z:'x]"
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Since the minimum value of D/L is the reciprocal of the maximum value of L/D,
then Eq. (5.23) becomes

or
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Effect of weight on T,

e Drag
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Effect of altitude on T,
e Multiplying the drag equation by p/p
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Thrust Available

e Thrust required is dictated by the airframe
- Shape (airfoil, planform, fuselage, empennage)
- Size (surface area, frontal area, airfoil)
- Configuration (clean, gear down, flaps down)
e Thrust available is dictated by the powerplant (engine type,
prop)
- Reciprocating engine-propeller combination
- Turbojet
- Turboprop (turgine engine and propeller)
- Turbofan
— Ducted propeller
- Rocket

Thrust Available

e Accelerating a mass of air gives T,

- Propeller operates on a large volume of air and imparts
a small change in velocity

- A turbojet operates on a smaller mass of air and imparts
a larger change in velocity

Turbojet

Reciprocating
Engine-Propeller




Thrust Available

e T,and Tjcurve intersections give V.,
- This statement is true for only a single altitude, since T,
and Ty are both altitude dependent
- T, goes down as altitude increases

T ANDT

CL Max Range for reciprocating engine/propeller airplanes
C Max Endurance for jet-propelled airplanes
D max
Cz/z
CD —y Max Endurance for reciprocating engine/propeller
max
Ci/z

CD r—y Max Range for jet-propelled airplanes




Aerodynamic Relations Associated with Maximum C;/Cp,

C321Cp, and C;*1Cy
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