AE 429 - Aircraft Performance and Flight Mechanics

Steady Flight

Aerodynamic efficiency

- Lift/drag ratio is a measure of aerodynamic efficiency
- It indicates the ability to produce lift without generating

excessive drag	
MAX L/D	VEHICLE
$0.3-0.4$	GEMINI
$\mathbf{1 2 . 8}$	T-38
$\mathbf{2 6}$	SAILPLANE

- Character of drag

$$
\begin{gathered}
C_{L}=\frac{2 L}{\rho V^{2} S}=\frac{2 W}{\rho V^{2} S} ; C_{D}=C_{D_{0}}+\frac{C_{L}^{2}}{\pi e A R}=C_{D_{0}}+K C_{L}^{2}=C_{D_{0}}+\frac{4 W^{2}}{\rho^{2} V^{4} S^{2} \pi e A R} \\
D=\frac{1}{2} \rho V^{2} S C_{D_{0}}+\frac{2 W^{2}}{\rho V^{2} S \pi e A R}=\frac{1}{2} \rho V^{2} S C_{D_{0}}+\frac{1}{2} \rho V^{2} S K C_{L}^{2} \\
\text { Zero lift drag Drag due to lift }
\end{gathered}
$$

Aerodynamic efficiency

Parasite and induced drag

Aerodynamic efficiency

In level flight, $D=$ thrust required T_{R}

$\stackrel{\substack{\mathrm{r}}}{\substack{\mathrm{N}}}$
 the drag and to keep the airplane going.
To maintain certain speed and altitude, enough thrust must be ne
\qquad

Drag $=\mathrm{T}_{\mathrm{R}}$

$D=q S C_{D}=\frac{1}{2} \rho V^{2} S\left[C_{D_{0}}+K C_{L}^{2}\right]=\frac{1}{2} \rho V^{2} S\left[C_{D_{0}}+\frac{4 K W^{2}}{\left(\rho V^{2} S\right)^{2}}\right]$
Since for L=W $\quad C_{L}=\frac{2 W}{\left(\rho V^{2} S\right)}$

$$
\begin{aligned}
D & =\frac{1}{2} \rho V^{2} S C_{D_{0}}+\frac{2 S K}{\rho V^{2}}\left(\frac{W}{S}\right)^{2} \quad=\mathrm{f}(\mathrm{~h}, \mathrm{~V}, \mathrm{~W}) \\
K & =\frac{1}{e \pi A R}
\end{aligned}
$$

Important parameters: Thrust to Weight ratio T_{R} / W
Wing loading W/S,
Polar drag ($\mathrm{C}_{\mathrm{D} 0}$ and K)

Aerodynamic efficiency

- Relationship of $C_{D_{0}}$ and $C_{D_{i}}$ for $L / D_{\max }$

$$
T_{R}=C_{D_{0}} q_{\infty} S+\frac{W^{2}}{q_{\infty} S \pi e A R}
$$

- Differentiating with respect to $q_{\infty}: \frac{d T_{R}}{d q_{\infty}}=C_{D_{0}} S-\frac{W^{2}}{q_{\infty}^{2} S \pi e A R}=0$
- Solving for $C_{D_{0}} C_{D_{0}}=\frac{W^{2}}{q_{\infty}^{2} S^{2} \pi e A R}=\frac{K W^{2}}{q_{\infty}^{2} S^{2}}$
- And observing that

$$
\frac{W^{2}}{q_{\infty}^{2} S^{2}}=\left(\frac{W}{q_{\infty} S}\right)^{2}=C_{L}^{2}
$$

- Thus, at max L/D

$$
C_{D_{0}}=\frac{C_{L}^{2}}{\pi e A R}=C_{D_{i}}
$$

Figure 5.7 Schematic of the variation of lift-to-drag ratio
for a given airplane as a function of angle of attack. Points 1, 3, and 3 correspond to points 1, 2, and 3, respectively, in Fig. 5.6c.

Equation (5.12) can be used to find the flight velocities for a given value of T_{R}. Writing Eq. (5.12) in terms of the dynamic pressure $q_{\infty}=\frac{1}{2} \rho_{\infty} V_{\infty}^{2}$ and noting that $D=T_{R}$, we obtain

$$
\begin{equation*}
T_{R}=q_{\infty} S C_{D, 0}+\frac{K S}{q_{\infty}}\left(\frac{W}{S}\right)^{2} \tag{5.13}
\end{equation*}
$$

Multiplying Eq. (5.13) by q_{∞}, and rearranging, we have

$$
\begin{equation*}
q_{\infty}^{2} S C_{D, 0}-q_{\infty} T_{R}+K S\left(\frac{W}{S}\right)^{2}=0 \tag{5.14}
\end{equation*}
$$

Note that, being a quadratic equation in q_{∞}, Eq. (5.14) yields two roots, that is, two solutions for q_{∞}. Solving Eq. (5.14) for q_{∞} by using the quadratic formula results in

$$
\begin{align*}
q_{\infty} & =\frac{T_{R} \pm \sqrt{T_{R}^{2}-4 S^{2} C_{D, 0} K(W / S)^{2}}}{2 S C_{D, 0}} \tag{5.15}\\
& =\frac{T_{R} / S \pm \sqrt{\left(T_{R} / S\right)^{2}-4 C_{D, 0} K(W / S)^{2}}}{2 C_{D, 0}}
\end{align*}
$$

By replacing q_{∞} with $\frac{1}{2} \rho_{\infty} V_{\infty}^{2}$, Eq. (5.15) becomes

$$
\begin{equation*}
V_{\infty}^{2}=\frac{T_{R} / S \pm \sqrt{\left(T_{R} / S\right)^{2}-4 C_{D, 0} K(W / S)^{2}}}{\rho_{\infty} C_{D, 0}} \tag{5.16}
\end{equation*}
$$

The parameter T_{R} / S appears in Eq. (5.16); analogous to the wing loading W / S, the quantity T_{R} / S is sometimes called the thrust loading. However, in the hierarchy of parameters important to airplane performance, T_{R} / S is not quite as fundamental as the wing loading \mathcal{W} / S or the thrust-to-weight ratio T_{R} / W (as will be discussed in the next section). Indeed, T_{R} / S is simply a combination of T_{R} / W and W / S via

$$
\begin{equation*}
\frac{T_{R}}{S}=\frac{T_{R}}{W} \frac{W}{S} \tag{5.17}
\end{equation*}
$$

Substituting Eq. (5.17) into (5.16) and taking the square root, we have our final expression for velocity:

$$
V_{\infty}=\left[\frac{\left(T_{R} / W\right)(W / S) \pm(W / S) \sqrt{\left(T_{R} / W\right)^{2}-4 C_{D, 0} K}}{\rho_{\infty} C_{D, 0}}\right]^{1 / 2}
$$

Figure 5.9 At a given T_{R} larger than the minimum value, there are two corresponding velocities, the low there are two corresponding velocines,

When the discriminant in Eq. (5.18) equals zero, then only one solution for V_{∞} is obtained. This corresponds to point 3 in Fig. 5.9, namely, the point of minimum T_{R}. That is, in Eq. (5.18) when

$$
\left(\frac{T_{R}}{W}\right)^{2}-4 C_{D, 0} K=0
$$

then the velocity obtained from Eq. (5.18) is

$$
V_{\left(T_{R}\right)_{\min }}=\left[\frac{1}{\rho_{\infty} C_{D, 0}}\left(\frac{T_{R}}{W}\right)_{\min } \frac{W}{S}\right]^{1 / 2}
$$

The value of $\left(T_{R} / W\right)_{\min }$ is given by Eq. (5.19) as

$$
\left(\frac{T_{R}}{W}\right)_{\min }^{2}=4 C_{D, 0} K
$$

or

$$
\left(\frac{T_{R}}{W}\right)_{\min }=\sqrt{4 C_{D, 0} K}
$$

Substituting Eq. (5.21) into Eq. (5.20), we have

$$
V_{\left(T_{R}\right)_{\text {min }}}=\left(\frac{\sqrt{4 C_{D, 0} K}}{\rho_{\infty} C_{D, 0}} \frac{W}{S}\right)^{1 / 2}
$$

or

$$
V_{\left(T_{R}\right)_{\min }}=V_{(L / D)_{\max }}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{K}{C_{D, 0}}} \frac{W}{S}\right)^{1 / 2}
$$

In Eq. (5.22), by stating that $V_{\left(T_{R}\right)_{\text {min }}}=V_{(L / D)_{\text {max }}}$, we are recalling that the velocity for minimum T_{R} is also the velocity for maximum L / D, as shown in Fig. 5.6. Indeed, since $T_{R}=D$ and $L=W$ for steady, level flight, Eq. (5.21) can be written as

$$
\left(\frac{D}{L}\right)_{\min }=\sqrt{4 C_{D, 0} K}
$$

Since the minimum value of D / L is the reciprocal of the maximum value of L / D, then Eq. (5.23) becomes

$$
\left(\frac{L}{D}\right)_{\max }=\frac{1}{\sqrt{4 C_{D, 0} K}}
$$

Effect of weight on T_{R}

- Drag
$D=\frac{C_{D_{0}} \rho V^{2} S}{2}+\frac{2 W^{2}}{\rho V^{2} S \pi e A R}$
- Increasing aircraft
weight by Δw
$D=\frac{C_{D_{0}} \rho V^{2} S}{2}+\frac{2(W+\Delta W)^{2}}{\rho V^{2} S \pi e A R}$
- Then
$D=\frac{C_{D_{0}} \rho V^{2} S}{2}+\frac{2 W^{2}}{\rho V^{2} S \pi e A R}$
$+\frac{2\left(2 W \Delta W+\Delta W^{2}\right)}{\rho V^{2} S \pi e A R}$

Effect of altitude on T_{R}

- Multiplying the drag equation by ρ / ρ
$D=\frac{C_{D_{0}} \rho_{0} V^{2} S}{2}+\frac{2 W^{2}}{\rho_{0} V^{2} S \pi e A R}$
- Does not change $\mathrm{T}_{\mathrm{R} \text { min }}$
- Minimum drag occurs at a higher V_{∞}
- T_{R} curve opens up and shifts to the right

Thrust Available

- Thrust required is dictated by the airframe
- Shape (airfoil, planform, fuselage, empennage)
- Size (surface area, frontal area, airfoil)
- Configuration (clean, gear down, flaps down)
- Thrust available is dictated by the powerplant (engine type, prop)
- Reciprocating engine-propeller combination
- Turbojet
- Turboprop (turgine engine and propeller)
- Turbofan
- Ducted propeller
- Rocket

Thrust Available

- Accelerating a mass of air gives T_{A}
- Propeller operates on a large volume of air and imparts a small change in velocity
- A turbojet operates on a smaller mass of air and imparts a larger change in velocity

Thrust Available

- T_{A} and T_{R} curve intersections give $V_{\text {max }}$
- This statement is true for only a single altitude, since T_{A} and T_{R} are both altitude dependent
- T_{A} goes down as altitude increases

Importance of the Ratios $C_{L} / C_{D}, C_{L}^{3 / 2} / C_{D}, C_{L}^{1 / 2} / C_{D}$
$\left.\frac{C_{L}}{C_{D}}\right|_{\max } \leftrightarrows \begin{aligned} & \text { Max Range for reciprocating engine/propeller airplanes }\end{aligned}$
$\left.\frac{C_{L}^{3 / 2}}{C_{D}}\right|_{\max } ^{\| M \text { Max Endurance for reciprocating engine/propeller }}$
$\left.\frac{C_{L}^{1 / 2}}{C_{D}}\right|_{\max } \leadsto$ Max Range for jet-propelled airplanes

Aerodynamic Relations Associated with Maximum C_{L} / C_{D}, $C_{L}^{3 / 2} / C_{D}$, and $C_{L}^{1 / 2} / C_{D}$

$$
\begin{aligned}
& \frac{L}{D}=\frac{C_{L}}{C_{D}}=\frac{C_{L}}{C_{D, 0}+K C_{L}^{2}} \\
& \frac{d\left(\dot{C}_{L} / C_{D}\right)}{d C_{L}}=0 \Rightarrow C_{D, 0}=K C_{L}^{2}
\end{aligned}
$$

$$
\left(\frac{L}{D}\right)_{\max }=\left(\frac{C_{L}}{C_{D}}\right)_{\max }=\sqrt{\frac{1}{4 C_{D, 0} K}}
$$

$$
L=W=\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S C_{L}
$$

$$
V_{L L /)_{\text {axx }}}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{K}{C_{D, 0}} \frac{W}{S}}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \frac{C_{L}^{3 / 2}}{C_{D}}=\frac{C_{L}^{3 / 2}}{C_{D, 0}+K C_{L}^{2}} \\
& \frac{d\left(C_{L}^{3 / 2} / C_{D}\right)}{d C_{L}}=0 \Rightarrow C_{D, 0}=\frac{1}{3} K C_{L}^{2} \\
& \left(\frac{C_{L}^{3 / 2}}{C_{D}}\right)_{\max }=\frac{1}{4}\left(\frac{3}{K C_{D, 0}^{1 / 3}}\right)^{3 / 4} \\
& V_{\left(C_{L}^{3 / 2} / C_{D}\right)_{\max }}=\left(\frac{2}{\rho_{\infty}} \sqrt{\left.\frac{K}{3 C_{D, 0}} \frac{W}{S}\right)^{1 / 2}}\right. \\
& V_{\left(C_{L}^{3 / 2} / C_{D_{\text {max }}}\right.}=\left(\frac{1}{3}\right)^{1 / 4} V_{(L / D)_{\max }}
\end{aligned}
$$

Aerodynamic Relations Associated with Maximum C_{L} / C_{D},

 $C_{L}^{3 / 2} / C_{D}$, and $C_{L}^{1 / 2} / C_{D}$

Figure 5.11 Variation of $C_{L}^{3 / 2} / C_{D}, C_{L} / C_{D}$, and $C_{L}^{1 / 2} / C_{D}$ versus velocity for the Gulfstream IV at the conditions set in Example 5.1. Altitude $=30,000 \mathrm{ft}$,
$\mathrm{W}=73,000 \mathrm{lb}$.

$$
\begin{aligned}
& \left(C_{L}^{1 / \dot{2}} / C_{D}\right)_{\max } \Rightarrow C_{D, 0}=3 K C_{L}^{2} \\
& \left(\frac{C_{1}^{1 / 2}}{C_{D}}\right)_{\max }=\frac{3}{4}\left(\frac{1}{3 K C_{D, 0}^{3}}\right)^{1 / 4} \\
& V_{\left(C_{1}^{2} / C_{D}\right)}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{3 K}{C_{D, 0}} \frac{W}{S}}\right)^{1 / 2} \\
& V_{\left(C_{L}^{1 / 2} / C_{D}\right)_{\text {max }}}=3^{1 / 4} V_{(L / D)_{\text {max }}} \\
& V_{\left(C_{L}^{3 / /} / C_{D}\right)_{\text {max }}}<V_{\left(C_{L} / C_{D}\right)_{\text {max }}}<V_{\left(C_{L}^{12} / C_{D}\right)_{\text {max }}}
\end{aligned}
$$

