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Infinite Clusters in Percolation Models 
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The qualitative nature of infinite clusters in percolation models is investigated. 
The results, which apply to both independent and correlated percolation in any 
dimension, concern the number and density of infinite clusters, the size of their 
external surface, the value of their (total) surface-to-volume ratio, and the 
fluctuations in their density. In particular it is shown that No, the number of 
distinct infinite clusters, is either 0, 1, or oe and the case N O = oe (which might 
occur in sufficiently high dimension) is analyzed. 

KEY WORDS: Percolation; infinite clusters; cluster density; surface-to- 
volume ratio. 

1. INTRODUCTION AND RESULTS 

In this paper, we present results concerning the number and nature of 
infinite clusters which are applicable to a large class of percolation models. 
Our analysis is based primarily on ergodic theory and measure theory. In 
order to give a precise statement of the results and a complete presentation 
of the proofs, we use a rather formal mathematical style in this paper. For 
an alternate description (without proofs) from a more physical point of 
view, see Ref. 1. In this section, we describe the class of models considered, 
give some basic definitions, and state our results; the proofs are presented 
in Section 2. We only treat properties of the infinite clusters; rigorous 
results concerning properties of large finite clusters are discussed in Refs. 2 
and 3. 

For ease of exposition, we restrict attention in this paper to site 
percolation in the simple d-dimensional cubic lattice with nearest-neighbor 

1 Mathematics Department, University of Arizona, Tucson, Arizona 85721, U.S.A. Alfred P. 
Sloan Research Fellow, Research supported in part by National Science Foundation grant 
No. MCS 77-20683 and by the U.S.-Israel Binational Science Foundation. 

2 Department of Physics, Technion, Haifa, Israel. Research supported in part by the U.S.-  
Israel Binational Science Foundation. 

613 
0022-4715/81 / 1100-0613503.00/0 �9 1981 Plenum Publishing Corporation 



614 Newman and Sehulman 

bonds; our results, however, apply (with simple modifications) to rather 
general lattices and to bond percolation. The models we consider may be 
defined by a lattice of (site occupation) random variables, (Xk:k E ~_u}, 
where each X k either takes the value 1 (corresponding to site k occupied) or 
the value 0 (corresponding to site k not occupied). Such a model may 
equivalently be defined by the joint distribution P of (Xk} which is a 
probability measure on the configuration space, 

a={O, 1}z~={to=(~og:k~Zd): each wk = 0 or 1 } 

(with the standard definition of measurable sets); we assume (without loss 
of generality) that ( s  is the underlying probability space with Xk(~o ) 

09 k . 

Example 1. In classical independent percolation of parameter p ~ [0, 
1], the X~'s are independent identically distributed random variables and P 
is the infinite product measure: 

e = I I  [P'~("-',~ - l) + (1 -e),S(,,.,k)] (1) 
k E E  d 

Example 2. In correlated percolation, the Xk's are dependent ran- 
dom variables. A class of examples can be obtained by starting with an 
infinite volume spin-l /2 (i.e., _ 1 valued) Ising model {o k :k  E Z d} and 
defining X k = (1 + ok)/2. For example, with inverse temperature fl and 
Hamiltonian 

~/((ok)) = - Ehoj- E E J ( k  -j)ojo~ 
j j k 

P is formally proportional to 

e x p [ -  flH((2~0 k - 1))] I-I [6(~ % - 1)+  6(~0g)] 
k 

The Xg's will be dependent if J ~ 0 and fl E (0, oo). 
For any j E Z d we consider the shift operator Tj which acts either on 

configurations ~ E f~, events (i.e., measurable sets) W c s measures P on 
s or random variables X on f~ according to 

( r j%=,%_j ,  r j w =  ( ~ : ~  w )  

(rje)(w) = e(v_+w), (rjx)(0~) = x ( r_ /~ )  

For each k E ~d and ~ = 0 or 1 we consider the measures P~ on ~2 k = 
(0, 1} ~\{~), defined so that for U c f~k, 

e~(u )  = P ( U •  (,~ = ,~)) (2) 

Pk is the conditional distribution of (Xj : j v ~ k) conditioned on Xk = v/. 
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Throughout this paper, we assume the following three hypotheses on P 
(or equivalently on (X~ }): 

Hypothesis A. P is translation invariant; i.e., for any j E Z d, TjP 
= e .  

Hypothesis B. P is translation ergodic; i.e., if j v ~ 0 and W is an 
event such that Tj W = W, then P (W)  = 0 or 1. 

Hypothesis C. For any k, P~ k and P ;  are equivalent measures; i.e., if 
U c ~2k, ~/= 0 or 1, and P~(U)  v ~ O, then P ; - ~ ( U )  v ~ O. 

In the independent percolation of Example 1, Hypothesis A is immedi- 
ate, Hypothesis B is known to be valid (see, e.g., Ref. 4, Theorem 1.2), and 
Hypothesis C follows (for p v a 0, 1) from the simple fact that 

p- ' e~ '  = (1 - p ) - l P  ~ = I I  [pS(~j - l) + (1 - e)6(~j)] (3) 
j ~ k  

In the Ising model percolation of Example 2, Hypotheses A and B will be 
valid if (ak) represents a translation-invariant pure phase. Hypothesis C 
(for fl :~ 0, oo) is equivalent to assuming that the energy shift due to a single 
spin flip is finite since 

d P ~ / d P ~  = 1;aj, j 4 = k )  - H{a~ = O ; a / , j ~ k ) )  1 (4) 

where the left-hand side of (4) denotes the Radon-Nikodym derivative, so 
that we have 0 < dP~/dP  ~ < co (which yields Hypothesis C) if 

f l l2h + 2 ~ [ J ( k - j )  + J ( j -  k)]ojl  < oo 
j@k 

which is the case if ~j]J(j)] < oo. Hypothesis C is equivalent to the 
following reformulation, which can be more convenient in certain situa- 
tions: 

Hypothesis C'. For any k, 

O < E ( X k l { X j : j v a k ) ) < l  (w.p.o.) 

where w.p.o, means "with probability one." 

Given a particular configuration o~ E ~2, we say that i is connected to j 
if i and j are both occupied and there is a nearest-neighbor path of 
occupied sites leading from i to j ;  i.e., if there is some finite sequence 
io, i I . . . . .  i n E Z a with i 0 = i, i n = j ,  ][6. - t)_ll ] = 1 f o r j  = 1 . . . . .  n (where 
II �9 l[ denotes Euclidean distance) and X i = 1 f o r j  = 0, 1 . . . . .  n. We define 
C(j),  the cluster belonging to j ,  as C(j )  = ( i : i  IS connected to j ) ;  note that 
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C(j)  = O i f j  is not occupied. A set C c Y a is called a cluster if C = C(j )  
for some j and is called an infinite cluster if in addition I C[ = oo where I" I 
denotes cardinality. The percolation probability is O = P(IC(k)I = ~ )  
(which is independent of k). We define for any F c Z a its lower density, 
D(F)  and upper density D(F)  as 

D ( F )  = liminf I F - N  R~I D ( F )  = lim sup IF N R,I 
n - - )  or  Fl d ' n ~ c~  n d 

where 

R,, = { j  = ( j ,  . . . . .  ja) E Za: - n / 2  < h < n/2,  l = 1 . . . . .  d} (5) 

F is said to have a density D(F)  if D(F)  = D ( F )  = D(F) .  We denote by H 
the set of all clusters C and define 

H o = {C E H :  ICI = m}, N0--IHol 
(6) 

F 0=  ( j E T / a : j E C  for some C E H 0 )  

H 0 is the set of infinite clusters, N O the number of infinite clusters, and F 0 
the union of infinite clusters. 

N O is a random variable, and for each k = 0, 1 ,2 , . .  o or oo there are 
of course many configurations r with N0(~o ) = k. The following theorem 
shows, independently of the particular model, that except for k = 0, t, ~ ,  
these configurations have probability zero of occurring; in particular one 
has either (depending on d and the parameters of the model) no infinite 
clusters (w.p.o.), or a single infinite cluster (w.p.o.), or infinitely many 
distinct infinite clusters (w.p.o.). (Note that the theorem refers to clusters of 
occupied sites only; a single infinite cluster of occupied sites may coexist 
with a single infinite cluster of unoccupied sites.) The impossibility of 
N O > 1 for d = 2 was shown in Refs. 5 and 6 and there have appeared 
heuristic arguments (see, for example, Ref. 7) which attempt to extend this 
result to general d. It seems, however, that the possibility that N O = oo or 
that zero-density infinite clusters might exist (see Theorem 2 below) has not 
been previously discussed in the literature. The following theorem also 
shows that there are no infinite clusters if O = 0 (which is believed to be the 
case when p = Pc = inf{p : p > 0) in independent percolation). 

Theorem 1. Exactly one of the following three events has probability 
1: (i) N O = 0; (ii) N O = 1; (iii) N O = oo. If N O v a 0 (w.p.o.), then p > 0 and 
D(Fo) = p (w.p.o.). 

The next theorem further analyzes the N o = ~ case into several 
disjoint possibilities. It shows that the appearance of zero-density (or at 
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least zero-lower-density) clusters is a necessity. We define the following: 

n 1 = { C  E H 0 : D ( C )  exists and D ( C )  > 0} 

/ / 2 =  {C  E H o : D ( C ) = 0 ) ,  (7) 

H 3 = { C ~ H o : D ( C ) = 0  and D ( C ) > 0 )  

Clusters in the class H]  will be called dense; in the class H 2, f i lamentary;  in 
the class H 3, rough. For  l = 1,2, 3, we define, in ana logy with (6), 

N t = I H I [ ,  FI = { j E Za : j ~ C f o r s o m e  C ~ Ht } 

T h e o r e m  2. Assume N O = oe (w.p.o). It  follows that  H 0 = H~ U 
H 2 U H 3 (w.p.o.) and  N O = N I + N 2 + N 3 (w.p.o.); in par t icular  exactly 
one of the following four  events has probabi l i ty  1: (i) N 2 = oo and  N l = N 3 
= 0; (ii) N 2 = o0, N l = 1, and  N 3 = 0; (iii) N 3 = oo and  N 1 = N 2 = 0; (iv) 
N 2 = N 3 = oo and  N 1 = 0. For  each l = 1, 2, 3 there is a cons tant  Pt > 0 
such that  D(Ft) = Pt (w.p.o.); 01 + 02 + 03 = p and  if N t ~ 0 (w.p.o.), then 
p l > 0 .  

Remark.  We suspect  that  cases (iii) and  (iv) of Theo rem 2 do not  
occur  (at least not  in physically interesting models)  but  that  cases (i) and  
(ii) do occur  in sufficiently high dimension.  If  this happened  in independent  
percolat ion,  then the usual critical point,  p = P c -  in f{p  :p  > 0}, should 
correspond to the transit ion f rom No = 0 to case (i) of Theo rem 2, while 
other  critical points  should exist corresponding first to the transit ion f rom 
case (i) to case (ii) and  then f rom case (ii) to N 0 = 1. Our  next theorem 
suggests some of the p h e n o m e n a  associated with zero-densi ty infinite 
clusters. I t  would be of considerable interest to obta in  either a r igorous 
proof  or numerical  evidence for the existence of f i lamentary  clusters. 

The  distance f rom j E ?7 d to F c Z d is def ined in the usual way as 

3,( j ,F)  = i n f ( l l k - j [ I  : k  E F )  

The  set of "c lose-encounter  sites" between (distinct) infinite clusters of 
types l and  m (1, rn = 0, 1, 2, 3) is defined as 

A I  m = { j ~ ~d: 3 C  1 E H z, C 2 ~ Hm with C1 ~ C2 

such that  3'(j ,  C1) = 3'(j ,  C2) = 1 } (8) 

These are vacan t  sites, which, if occupied,  would connect  two (or more)  
previously distinct infinite clusters (of specified type). To  formal ly  define 
the dual not ion of "cut t ing sites" which belong to an infinite cluster and,  if 
vacated,  would disconnect  that  cluster into two (or more)  distinct infinite 
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clusters of specified type, we first define for j E zd, to �9 f~, the "j-vacated" 
configuration, to[j], as 

(to[j])e = ( tok,o, k=jk 4=j 

We then define, for l = O, 1,2, 3, Ht[j] as 

(H , [ j ] )@)  = Hz(to[j]) (9) 

and the set of cutting sites, for l,m = O, 1,2,3, 

Bzm = ( j  �9 Za: ::IC, �9 H,[j] ,C 2 �9 Hm[j] with 

C iv a C  2, such that (C, U C 2 ) � 9  (10) 

The next theorem shows that whenever distinct infinite clusters of type l 
and m occur, then there is a positive density of both close-encounter and 
cutting sites. In the case of independent percolation, these two densities are 
related to each other in a simple way (see Theorem 5 below). 

T h e o r e m  3. Choose l,m �9 {0, 1,2,3}. Alto  = 0 = Blm unless 

N ,~O,  N,,, va O, and N , + N . , = ~  (w.p.o.) ( l l )  

If (11) is valid, then there are constant arm > O, film > 0 such that D(&,.) 
= a l to  (w.p.o.) and D(Bzm ) = f i l m  (w.p.o.). 

We define the external surface OeF of a set F c 7 / a s  3eF = {j �9 F c : 
y ( j ,F)}  = 1 and there exists an infinite sequence of distinct points Jo, 

j l , . . .  ~ Fc with J0 = J  and I I J ~ + l - - j m l l  = 1 for all m}; i.e., the external 
surface of F consists of nearest neighbors of F which are "connected to oo" 
through points outside of F. The following theorem implies that clusters of 
positive density have either no external surface or else a large one in the 
sense that the asymptotic surface-to-volume ratio is bounded away from 
zero. There are other possible definitions of external surface, but the same 
result would apply to most of them. For a review of numerical results 
concerning the external surface of large finite clusters, see Ref. 8, Sec. 4.1.2. 

Theorem 4. For l =  0, 1,2,3, if P(~eF l g= O ) >  0, then there is a 
constant 1,/> 0 such that D(aeF+) = v+ (w.p.o.). 

Remark. Given to �9 f~, let to* be defined by (to*)~ = 1 -  to~. It is 
easily verified that if Fl(to)=~ 0 (w.p.o.) and Fo(r ) ~ 0  (w.p.o.) then 
0e(Fl(to)) v a 0 (w.p.o.). It follows that in independent percolation, if for a 
given d, Pc -- inf{p : p > 0) < 1/2, then there is a nonempty external sur- 
face to F 0 (w.p.o.) for Pe < P < 1 - Pc. It can also be shown in independent 
percolation that if there exists an infinite cluster of positive density (w.p.o.) 
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for a certain p and dimension d, then there exists an infinite positive- 
density cluster for the same p and dimension d + I; since for d = 2 and 
P > Pc (2) there is a single infinite cluster (Refs. 5 and 6), it follows that if d 
is sufficiently large so that pc(d ) < 1 -pc(2),  then there will be an interval 
pc(2) < p < 1 - p c ( d )  in which there is an infinite positive-density cluster 
with a nonempty external surface. 

One may also define the (total) surface 0F of F c 77 a as 

OF= {j  E F C : 7 ( j , F )  =1}  

It follows from Hypothesis C that OF t is nonempty (w.p.o.) if F 1 is 
nonempty (w.p.o,) and an analog of Theorem 4 applies to give a well- 
defined density to OF t . What is more surprising, perhaps, is that in the case 
of independent percolation (see Example 1 above), the asymptotic surface- 
to-volume ratio D(OFt)/D(Ft) has (at least for l = 0, 1) the explicit value 
(1 -p) /p .  This value was first obtained by nonrigorous arguments in Ref. 
9 and independently by numerical methods in Ref. 10. A rigorous proof 
was recently obtained (for each C E H0) by Klein and Shamir; (~1) their 
result motivated us to search for a simpler proof (based on a kind of 
duality), which led to the next theorem. In it, we generalize the result to an 
analogous result about the ratio of the density, of close encounter sites to 
that of cutting sites [see equations (8) and (10) for the appropriate defini- 
tions]. We also find that in the case of dependent percolation models 
satisfying the inequalities of Fortuin, Kastelyn and Ginibre (FKG) (~2) (see 
below), the equation D(OFI)/D(Ft) = P(X  o = O) /P(X o = 1) is replaced by 
an inequality, which, in the case of the Ising models of Example 2, bounds 
the surface-to-volume ratio in terms of the magnetization. A brief discus- 
sion of numerical results concerning the surface-to-volume ratio in Ising 
models is given in Ref. 10. Numerical results concerning the critical point 
in independent percolation are given in Refs. 13 and 14. 

A finite family of random variables Y1 . . . . .  Ym is said to satisfy the 
F K G  inequalities, if for any real functions f l ,  f2 on R m which are coordi- 
nate-wise increasing and such that ~-~fj(Y1 . . . . .  Ym) has E ( f ~ ) <  oo 
( j  = 1,2), it follows that 

Cov(g~, f2) ~ E(j~j~) - E ( ~ ) E ( ~ )  > 0 

An infinite family is said to satisfy the F K G  inequalities if every finite 
subfamily does. The percolation model of Example 1 satisfies the F K G  
inequalities (5) as does that of Example 2 providing J(k)  > 0 Vk. (12) 

Theorem 5. In the case of independent percolation, let (F,F*) 
=(F0,  OF0) or (FI, OF 0 or (Btm,Aim) (for l,m =0,1,2 ,3) ,  and assume 
F ~  Q (w.p.o.); then D(F) > 0, D(F*) > 0, and 

D ( F * ) / D ( F )  = (1 - p ) / p  = P ( X  o = O ) / P ( X  o = 1) (12) 
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If {X k : k ~ Z d) satisfies the F K G  inequalities, then for (F.F*)  = (F  o, 
OFo) or (F  l, OF 0 we have 

O ( F * ) / D ( F )  < P ( X  o = O ) / P ( X  o= 1) (13) 

For each i ~ g a, define the cube R~ of side length n centered near ni as 

R i =  { j E g d : j = n i + k  for some k ~ R n }  = R , ~ + n i  

where R. is defined in (5), and define 

Z~,, = IF, A Ri[ - E(IF, n R~I ) = IF, n RAI- o,n a (14) 

The fact that D (Ft) = Pl is equivalent to 

Vi, ZL, l n d - ~ o  (w.p.o.) (15) 

The next theorem generalizes this by considering infinite cluster density 
fluctuations and states that under certain conditions these are of strength 
n -d/2 and normally distributed as are the density fluctuations in a gas or 
liquid (away from the critical point). Note that the result only applies for 
l = 0 or 1 and implies that for l = 0, 1, the random variables {/~/: i E 7 d} 
defined by 

�9 {1 if i E F  I (16) 
/~/= 0 otherwise 

behave on a macroscopic scale as though they were independent with mean 
Pt and some positive variance V t. 

T h e o r e m  6. Assume that ( X k : k  ~ Z d} satisfies the F K G  inequali- 
ties. For l = 0 or 1, suppose Hz v ~ 0 (w.p.o.), and define Ki(i ) on Z d by 

K l ( i - j ) = C o v ( l ~ / , t ~ / ) = P ( i , j  both belong to Ht )  - p 2 (17) 

Kt(i) > 0 and Kt(0 ) = Pt - O 2 > 0. If 

V, ~ ~] K,(i) < ~ (18) 
i E Z  d 

then (2~n = Z~n/Vll/2nd/2:i ~ 7] d) tend to independent standard normal 
random variables as n o  oo in the sense that for any N and distinct 
i l , . . . , i ~ v E Z  d a n d a n y a  1< b 1 . . . . .  a N <  b N, 

P(al  < Zti'~ < b l , ' '  . , aN  < Z~,~ < b N ) ~  (27r) %xp( )dz 
"= aj J 

(19) 

Remark.  An analog of Theorem 6 applies to the density fluctuations 
of F t k0 a F  l (l = 0 or 1); this result when combined with Theorem 6 itself 
gives some information on the fluctuations in surface-to-volume ratio of F 0 
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and F 1. For a discussion of such fluctuations in large finite clusters, see Ref. 
8, Sec. 4, and for results on infinite clusters, see Ref. 11. 

Our final result concerns how the various cases of Theorems 1 and 2 
are related to the asymptotic behavior as I[il] ~ oo of the quantity G(i) 
defined as 

G(i - j )  = P(i is connected to j )  (20) 

Note that i is not connected t o j  unless i a n d j  are both occupied. We also 
define 

Q, = n -a ~ G(j) (21) 
j ~ R n  

Theorem 7. If 

liminf ~ G ( j ) = 0  (22) 
n-->oo j E O R .  

then H o = 0 (w.p.o.); if 

2 
j E Z  a 

then Ho = H2 (w.p.o.); if 

Iljll-(a-')G(j) < oo (23) 

lim inf Q~ = 0 (24) 
n--> oo 

then H I = 0 (w.p.o.). If H o = H 2 (w.p.o.), then 

lira Qn = 0 
n--> oo 

If H~ 4 = 0 (w.p.o.), then 

lira Qn= (ol)2> 0 
n - - > ~  

Remark. 

(25) 

(26) 

One can use G(j) to define a "mean effective dimension," 

6 = s u p ( 6 ' :  l imn  -~" ~ G(j)= m l (27) 
n--'* oo j G R,, 1 

If one defines for a particular infinite cluster C its effective dimension 

_6(C) = sup(6 '  : l imn-a ' lC N R,I = m} (28) 

then it can be shown that 

VC E H0,_8(C ) < 8 (w.p.o.) (29) 

It would be interesting to obtain some nontrivial estimates on 6 and 6_(C). 
For more discussion of effective and fractal dimension in percolation and 
elsewhere, see Refs. 14, 15, and 16. 
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2. PROOFS 

The proofs of Theorems 1-5 are based on the following two proposi- 
tions together with so,he geometric arguments. The first proposition, which 
follows from Hypotheses A and B, is a standard fact of ergodic the- 
ory.(17,1s) 

Proposition 8. Suppose X E L1(s then 

lira n -a ~,, TjX= E(X) (w.p.o.) (30) 
n ~  oo j ~ Rn 

The next proposition follows from Hypothesis C and is the key to most 
of our results; it says that by altering configurations at a fixed finite 
number of sites, one cannot reduce the probability of an event from a 
positive value to zero. Its validity in the independent percolation of Exam- 
ple 1 (forp ~ 0, 1) follows from the facts [see Eq. (3)] that each alteration at 
a single site introduces a factor of [(1-p)/p]+-~, and [ ( I - p ) / p ] + "  is 
nonzero for finite n. Similarly, in the percolation of Example 2, each 
alteration at a single site introduces the (random) factor given in Eq. (4) (or 
its inverse) which is related to the Ising model energy; the validity of the 
next proposition for Example 2 is thus based on the fact that only a finite 
energy change is induced by spin flips in a finite volume. 

For a region V c 7# and a measurable transformation q) : s ~ f~, we 
say that q5 is V-local if (qs(~0)) k = r k for all ~0 E f~ and all k E VC; we say q5 
is local if q5 is V-local for some finite V. Note that the value of (~5(o~)) k for 
k ~ V may depend on ~0j's for a l l j  E 7# (includingj ~ W). 

Proposition 9. If ~5 is local and W is any event, then 

P(W) > 0 implies P(rb(W)) > 0 (31) 

Proof. Let V be a finite set such that q5 is V-local and let S = 
{0,1 } v. For each s ~ S, define xI' s : s ~ s by 

{o&, k E V ~ 
('It'~~ s k, k ~ V (32) 

Then defining for each t, s E S, Wts = W n ,I't(s ) n qb-1(,t, (s so that 

w =  U w,,, U U 
t ,s ~ S t ,s r S t ,s u_ S 

we note that for some t,s,P(Wt~ ) > 0 and it then suffices to show that 
P(~/~(Wt,)) > 0. F o r j  E Z d and ( = 0 or 1, define qj,~ by 

('I"J"W)k----- { ~%'E, k=jk --/=j (33) 
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then 

j j E v : + ~ 9  

and (by induction) it suffices to show that  for e a c h j  and  any  U c s  = (0, 
1)~d\{J}, 

P ( U •  implies P ( U x ( ~ j = s j } ) > O  (34) 

but  this is the content  of Hypothes is  C [see Eq. (2)]. �9 

Proof of Theorem 1. The r a n d o m  variable  N O and the events 
{N O = k} are invar iant  under  any  shift Tj; therefore by  Hypothes is  B there 
is some k o -- 0, 1,2 . . . . .  or oo such that  P(N o -- ko) = 1. Suppose k 0 ~ 0, 
I, or oo; we wish to obta in  a contradict ion.  Let  W n be the event  that  
N O = k o and  each one of the k 0 infinite clusters has nonzero intersection 
with the cube R,;  then P(W~)-->P(N o = k o ) =  1 and  so for  some m, 
P(Wm) > 0. Let  V = R m and define ,t,~ as in (32) with ~ = 1 Vj ~ Rm; ~ is 
the t ransformat ion  which makes  all sites in R m occupied and  leaves all 
o ther  sites unchanged .  By Proposi t ion 9, P(~(Wm)  ) > 0, but  clearly 
q~(Wm) C {N O = 1 ), thus P(N o = 1) > 0, which contradicts  the supposi t ion 
that  k 0 ~ 0, 1 or oo. To  prove  the second half  of the theorem, we first note  
that  if p - -  P([ C(k)[ = ~ )  - -  P(k ~ F0) = 0; then 

\ j E Z  j ~ Z  d 

and so P(F o = O) = 1 = P(N o = 0). Final ly d e f i n i n g / ~  as in (16) we have  
by  Proposi t ion 8 that  

D(Fo) =li~rn~ n-a E Tjl 1~ E(I  ~~ = P(O E Fo) = p (w.p.o.)  (35) 
jERn 

which completes  the proof.  �9 

Proof of Theorem 2. We assume throughout  that  N o = oo (w.p.o.). 
Let  -ffl = ( C  E H o : D ( C )  > 0) and  Nl = [/71] and  suppose that  P(N1 = 0) 
:/: 1; then by  ergodicity, as in the proof  of Theo rem 1, there is some 
/~ = 1,2 . . . . .  or oo such that  P(-N1 = k-)= 1. W e  wish to rule out the 
possibility tha t /~  > 1. Let  Y = s u p ( D ( C )  : C ~ H0);  then again  by  ergodic- 
ity 3 D  1 > 0 so that  P(__Y = Dl)  = 1 and  i f / ~ >  1, then the event  

U = ( 3 C  1, C 2 ~ H o with C l 4= C 2 SO that  D(C1)  + D(C2)  > D1) 

has probabi l i ty  1. Let U. be the event  

U. = ( 3  C 1, C 2 E H o with C 1 @ C 2 and C l A R.  :/: 0,  C z N R.  v a O, 

so that  D(C1)  + D(C2)  > D1) 
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then P(U,)--> P(U) and so for some m, P(U,,,)> 0. As in the proof of 
Theorem 1, we consider 't~ defined by (32) with V = R m and ~ = 1 
Vj E Rm, and conclude by Proposition 9 that P('t's(Um))> 0, but each 
co E 't'~(Ur~) has an infinite cluster containing C~ U C 2 O R,, which has 
lower density greater than DI; thus P ( Y >  D 0 > 0, which contradicts 
P(..Y= D1)= I and proves that /~= 1. Letting ffz = {j E Ea:j ~ C for 
some C ~ H 1 ), we have as in the proof of the second par t  of Theorem 1 
that 3~l > 0 such that D(ffl) -- 01 (w.p.o.), but since N 1 = 1 (w.p.o.) this 
means that the single C ~ H~ itself has D(C)= }~ and thus HL = H~, 
0~ = Ol, etc. We are now in the situation where a single cluster has positive 
density, 01, and all other clusters have zero lower density. To rule out the 
possibility that any other cluster has positive upper density, we note that 
otherwise, for some m, the event 

U.~ --- {::1C1 =/= C2 with D(C1) = PI,D(C2) > 0, 

C~ A Rm -~ O, C2 n Rm =/= O) 

would have positive probability. But then, as before, P ( ~ ( U ~ ) )  > 0, and 
'/~(/-~m) C ( 3 C  ~ H0:D(C ) > 0,/9(C) > p~} C (D(f f0  > P~}, which con- 
tradicts the fact that D(F 0 --- Pt. We have thus proven that if (with positive 
probability) there is any infinite cluster with positive lower density, we must 
actually be in case (ii) of Theorem 2 (w.p.o.). 

In order to prove that cases (i), (iii), (iv) exhaust the alternatives, we 
assume that H l = 0 (w.p.o.) and show that for l = 2, 3 either N t --- 0 (w.p.o.) 
or NI = m (w.p.o.). This is not difficult since the proof of Theorem 1 
already shows that we need only rule out the case NL__= 1 (w.p_.o.); but if 
Nt = 1 (w.p.o.) then as in the proof above concerning N 1 and F1; it would 
follow that D(Fr) = Ot > 0 and thus the single infinite cluster C in Ht would 
actually have density D(C) = Pt > 0, which contradicts the definition of Hr 
for l = 2, 3. This completes the proof of the first part of the theorem; the 
last part is then proved exactly as was the last part of Theorem 1. I 

Proof of  Theorem 3. We define xt,j,~ as in (33) and note that 
�9 o,1(0 ~ At,,} = {0 ~ BI,,) and ~o,o{0 ~ B/,,) = {0 ~ AI,,). Since P(At, . 
4= O)>  0 if and only if %, ~ P (0 ~ Az,,} > 0 and similarly for Bt,~ and 
fit,,, and since clearly P(At~ =/= 0 ) =  0 if (11) is not valid, we see first by 
Proposition 9 that also P(BIm v ~ 121) = 0 if (11) is not valid, and second by 
Proposition 8 that it suffices to assume (11) and conclude that P(At,,, ~ 0) 
> 0 in order to complete the proof of the entire theorem; this we proceed 
to do. 

Assuming (11) we have, for some n, that the event 

W n ==- (3C  1 E HI, C 2 ~ H m with C l :~ C 2 and 

C, n R, ~ O, C~ n R. v~ O} (36) 
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has positive probability. We will define an Rn-local transformation �9 such 
that O(Wn) c (3j ~ Aim (q R~} C (Aim v ~ 0),  which will imply by Proposi- 
tion 9 that P (AI, . v a 0} > 0 as desired. We first choose for each i, j E ~Rn 
---- ( j  E R~ : 7(j ,R~) = 1} a subset R~J c R, such that 

(a) /J R~ \{ i , j }  c 
(b) 3 a nearest-neighbor path in R~J which contains and connects i 

a n d j  
(c) 3k  ~ R~ ) so that (b) is false if R~ j is replaced by R~J\(k). 

Note that if i = j  we may take R~J = (i) and if 1[i- j l l  = 1 we may take 
R~J = { i, j ) .  We next choose an ordering a:-~R n ---> (1, . . . , [0Rn] ). We then 
define �9 1 = 't' s as in (32) with V = R, and sj = 0 Vj ~ R, and we define 

{o~ if ~0~ Wn 
(ID((O) = O2(O1(60)) if tO e W n 

where 02 is defined for ~0 ~ Ol(W.) as follows: Let ( i , j )= (i(~0),j(~o)) be 
the i , j  ~-OR. with the smallest value (lexicographically) of the ordering 
(ai, aj) such that 3C 1 ~ HI, C 2 E H m with C 1 ~ C 2 such that T(i, C1) = l, 
~,(j, C2)= l; such an (i,j) exists by the definitions of W. and �9 1. We then 
define 02 = 't's analogously to (32) but with V = R~ and 

s,= s,(o~)= { ~ ifotherwiselER~(~)'J(~ 

For ~ ~ Ol(Wn), O2(~0 ) has a cutting point which is just the k of part (c) of 
the definition of R ij given above. Thus O2(O1(W~) ) c {Arm r R~ 4= O) as 
desired and since �9 is R~-local, the proof is complete. [] 

Proof of Theorem 4. Theorem 4 follows from Proposition 8 as in 
the proof of the last part of Theorem 1. [] 

F'root of Theorem 5. Using Proposition 8 as in the proof of the last 
part of Theorem 1, we see that it suffices in the first part of the theorem to 
show 

e(Xo = o)/ e(Xo = l) = P(O F*)/ P(O F) 

or equivalently 

P(O ~ F) = P(O ~ (F U F*)). P(X  o = 1) (37) 

and in the second part of the theorem to show that 

P(O e F) > P(O e (F U F*)). P (X  o = l) (38) 

Now, by Theorem 2, we may replace (F  l, OF1) in (37) and (38) by (F  1, OF1) 
without affecting probabilities, where ff~ = (i : i E C for some C E H 0 with 
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D(C) > 0). If we define for o~ E s w[j] and w(j> by 

(c~ ( O, k = j  (~<J>)k= 1 ,  

then the following duality is satisfied: 

~ o E { 0 E F } ~ o [ 0 ]  ~ ( 0 E F * } ,  

It then follows that 

kC=j 

k = j  

wz(0 F*}= <0>e(0zF) 

( 0 ~ F }  = { 0 E F U F * }  N {X0= 1}, 

{ 0 ~ F * } =  { 0 ~ F U F * }  A (X o=0}  

and also that for some 

(39) 

U C f l 0 = { 0 , 1 }  ~\(~ { O E F U F * } = U X { o ~ o = O o r l  ) (40) 

From (40) and the definition of independent percolation [see Eq. (1)], we 
see that in the first part of the theorem C 0 E F U F*} and (X 0 = 1} are 
independent events and thus (37) follows as desired. In the second part of 
the theorem; we note that for (F,F*)= (Fo, OFo) or (FI, OP1) the random 
variable 

1 if 0 E F U F *  
Y= 0 if 0 ~ F U F *  

is an increasing function of the basic occupation variables, (Xy}, and thus if 
the FKG inequalities are valid, 

Cov( Y, Xo) -- E(YXo) - E(Y)E(Xo)  > 0 (41) 

But E(Xo)= P(Xo= 1), E ( Y ) =  P ( 0 E  F U F*), and by (39), E(YXo) 
= P(0 E F), which yields (38) and completes the proof. �9 

Proof of Theorem 6. Define/~0-i =/~0i [as in (16)] and 

~{ = { 01 ifotherwisei ~ C for some C E H 0 with D ( C )  > 0 (42) 

Now by Theorem 2, #/=/z/(w.p.o.)  and so we have from (14) 

Ztln-- ~] [ # / -  E ( # / ) ]  (w.p.o.) (43) 
y~R~ 

For l = 0, 1 the ~/'s (but not the/~('s) are increasing functions of the basic 
occupation variables, (X~), and thus they also satisfy the FKG inequalities 
[which immediately implies kt(i) >> 0]. Moreover { # / : i  ~ Z d ) is translation 
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invariant, and by (18) it is assumed that 

v, - E Cov(  ~ < (44) 
i@Z d 

The theorem now follows from the general results of Ref. 19. �9 

The following standard proposition will be used in the proof of 
Theorem 7. We write W, i.o. to denote the event that Wn occurs for 
infinitely many n and we write W, a.f.o, to denote that W~ occurs for all 
but finitely many n. 

Proposition 10. Let W. be a sequence of events and Y. a sequence 
of random variables; then 

P(  W, ) < or implies P(  W, i.o. ) = 0 
n = l  

E(IY,[ ) < ~ implies Y , ~ 0  (w.p.o.) 
n = l  

(45) 

and 

liminfP(Wn) = 0 implies P(W,, a.f.o.) = 0 

l im~fE( [  Y~[) = 0 implies lirninflY~[ -- 0 (w.p.o.) 
(46) 

Proof. Equation (45) for W. is just the Borel-Cantelli lemma. Now 
by Tchebyshev's inequality, for any e > 0, ~P( lY. I />  e )<  e - l~E( lY. I ) ,  
and thus letting W. = (I Y,,[ < e}, we have P(I Yn[ >/e i .o.)= 0. Thus for 
each m, P(limsup[Y.I < 1/m)= 1, and letting m--> ov we have P(lim[ Y.[ 
= 0 ) =  1. To obtain (46) from (45) simply choose an appropriate subse- 
quence. �9 

Proof of Theorem 7. Since 

P(0 is connected to 0R,)  < ~ G(j) (47) 
jEaRn 

we have from (45) that if (22) is valid then P(0 connected to OR, a.f.o.) = 0 
and thus Po=  P(IC(0)! = ~ ) =  e(0 connected to 8R~ V n ) = 0 ,  so by 
Theorem 1 H 0 = O (w.p.o.). Now let 

Yn = IC(0) fq Rn[/na= n-d ~ Xj (48) 
j@R~ 

where Xj is the indicator function of the event, {0 is connected to j},  so that 
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E(Xj) = G(j)  and E ( Y . ) =  E(I Y . [ ) =  Q.. If (23) is valid, then (for d > 1), 

n n j E R n  k ~ Z  n : R . ~ k  / 

<. ~ O(l lkl l -<d-'))a(k)  < ~ (49) 
k E~_ d 

and so by (45) D(C(O)) -- lira Yn = 0 (w.p.o.)  which  implies 01 = 03 = 9 and 
so P0 = 02 and H 0 = H 2 (w.p.o.).  Similarly, if (24) is valid, then lira 
infE(I  Y , I ) =  0 and so by (41) l iminf  I Ynl = D ( C ( 0 ) ) =  0 (w.p.o.),  so Pl = 0 
and H 1 = 0 (w.p.o.). On  the other hand,  if H 0 = H 2 (w.p.o.),  then lira Y~ 
= 0 (w.p.o.)  and since 0 ~< Yn < 1, we have  by dominated  convergence  that 
Q~ = E(Yn)  ~ 0 as desired. If H l 4: O, then we are in case (ii) of  T h e o r e m  1 

or 2 and so D(C(O)) ~ lira Y~ = 0 .  e ( 0  ~ He) + 01 " e ( 0  ~ Hi )  = (p~)2 so 
by dominated  convergence  Q~ = E(Y~)--->(O1) 2 as desi;ed. This  completes  
the proof.  [] 
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