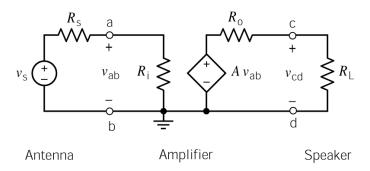
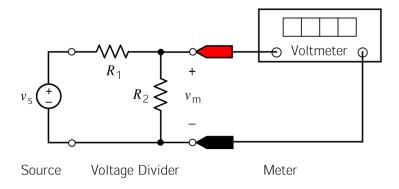
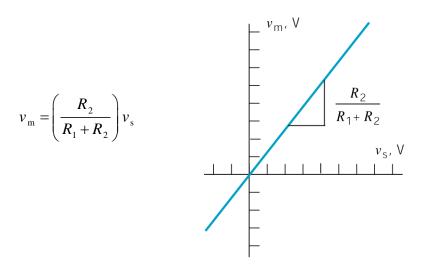

Introduction to Signal Processing

A **signal** is a voltage or current to which we attach a meaning. For example, consider a voltage, v_0 , that is proportional to temperature:



A voltage $v_0 = 1.5 \text{ V} = 1500 \text{ mV}$ indicates a temperature $T = \frac{1500}{50} = 30 \text{ °C}$.


An **interface circuit**, sometimes called an IO circuit, is a circuit that connects two other circuits:


The source provides a signal, i.e. a current or voltage. The load receives a signal. The interface circuit converts the signal provided by the source into the signal required by the load. Here's a familiar example, perhaps taken from a cell phone:

Consider using a voltage divider as an interface circuit:

We see that

Consequently:

- $v_{\rm m}$ is proportional to $v_{\rm s}$. The constant of proportionality is called the **gain** of the voltage divider.
- The gain of the voltage divider is determined by specifying the values of R_1 and R_2 .
- $\bullet \quad 0 \le gain = \frac{R_2}{R_1 + R_2} \le 1$