

P1

Node equations:

$$\frac{v_{\rm a} - v_{\rm 2}}{R_{\rm 5}} = \frac{v_{\rm 2}}{R_{\rm 6}} \quad \Rightarrow \quad v_{\rm a} = \left(\frac{R_{\rm 5} + R_{\rm 6}}{R_{\rm 6}}\right) v_{\rm 2}$$

$$\frac{v_{o} - v_{1}}{R_{3}} = \frac{v_{1} - v_{a}}{R_{4}} \quad \Rightarrow \quad v_{o} = \left(1 + \frac{R_{3}}{R_{4}}\right) v_{1} - \left(\frac{R_{3}}{R_{4}}\right) v_{a}$$

Substituting for v_a gives

$$v_{o} = \left(1 + \frac{R_{3}}{R_{4}}\right) v_{1} - \left(\frac{R_{3}}{R_{4}}\right) \left(\frac{R_{5} + R_{6}}{R_{6}}\right) v_{2}$$

P2

Writing node equations:

$$\frac{v_s}{R} + \frac{v_1}{R} = 0 \qquad \Rightarrow \qquad v_1 = -v_s$$

$$\frac{v_1}{R} + \frac{v_1}{R} + \frac{v_1 - v_2}{R} = 0 \qquad \Rightarrow \qquad v_2 = 3v_1 = -3v_s$$

$$\frac{v_2 - v_1}{R} + \frac{v_2}{R} + \frac{v_2 - v_0}{R} = 0 \qquad \Rightarrow \qquad v_0 = 3v_2 - v_1 = -8v_s$$

P3

The input to this circuit is the voltage source voltage v_s . The output is the node voltage v_o . The output is related to the input by the equation $v_o = m i_s + b$ where m and b are constants. Determine the values of m and b.

P4

The values of the node voltages v_1 , v_2 and v_0 in this circuit are $v_1 = 6.25$ V, $v_2 = 3.75$ V and $v_0 = -15$ V. Determine the value of the resistances R_1 , R_2 and R_3 :

