Another Sample ES 250 Second Midterm Exam

1. This circuit has two inputs, v_{s} and i_{s}, and one output i_{0}. The output is related to the inputs by the equation

$$
i_{\mathrm{o}}=a i_{\mathrm{s}}+b v_{\mathrm{s}}
$$

Given the following two facts:

The output is $i_{0}=0.45 \mathrm{~A}$ when the inputs are $i_{\mathrm{s}}=0.25 \mathrm{~A}$ and $v_{\mathrm{s}}=15 \mathrm{~V}$.
and

$$
\text { The output is } i_{0}=0.30 \mathrm{~A} \text { when the inputs are } i_{\mathrm{s}}=0.50 \mathrm{~A} \text { and } v_{\mathrm{s}}=0 \mathrm{~V} \text {. }
$$

Determine the following:
The values of the constants a and b are $a=\ldots \quad 0.6 _$and $b=\ldots 0.02 _\mathrm{A} / \mathrm{V}$.

The values of the resistances are $R_{1}=$ \qquad 30 \qquad Ω and $R_{2}=$ \qquad Ω.

From the $1^{\text {st }}$ fact:

$$
0.45=a(0.25)+b(15)
$$

From the 2nd fact:

$$
0.30=a(0.50)+b(0) \Rightarrow a=\frac{0.30}{0.50}=0.60
$$

Substituting gives $0.45=(0.60)(0.25)+b(15) \Rightarrow b=\frac{0.45-(0.60)(0.25)}{15}=0.02$
Next, consider the circuit:

$$
a i_{\mathrm{s}}=i_{\mathrm{o} 1}=\left.i_{\mathrm{o}}\right|_{v_{\mathrm{s}}=0}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) i_{\mathrm{s}}
$$

so

$$
0.60=\frac{R_{1}}{R_{1}+R_{2}} \Rightarrow 2 R_{1}=3 R_{2}
$$

and
so

$$
b v_{\mathrm{s}}=i_{\mathrm{o} 2}=\left.i_{\mathrm{o}}\right|_{i_{\mathrm{s}}=0}=\frac{v_{\mathrm{s}}}{R_{1}+R_{2}}
$$

$$
0.02=\frac{1}{R_{1}+R_{2}} \Rightarrow R_{1}+R_{2}=\frac{1}{0.02}=50 \Omega
$$

Solving these equations gives $R_{1}=30 \Omega$ and $R_{2}=20 \Omega$.
2. Fill in the blanks in the following statements:

When $R=9 \Omega$ then $v_{\mathrm{R}}=$ \qquad 3 \qquad V.

When $R=$ \qquad 27 \qquad Ω then $v_{\mathrm{R}}=5.4 \mathrm{~V}$.

When $R=$ \qquad 12 Ω then $i_{\mathrm{R}}=300 \mathrm{~mA}$.

Reduce this circuit using source transformations and equivalent resistance:

Now $v_{\mathrm{R}}=\left(\frac{R}{R+18}\right) 9$ and $i_{\mathrm{R}}=\frac{9}{R+18}$ so the questions can be easily answered.
3. Determine the values of the node voltages $v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}$ and v_{o} :

$$
\begin{gathered}
v_{\mathrm{a}}=_2.75 _\mathrm{V}, v_{\mathrm{b}}=_2.8125 _\mathrm{V}, \\
v_{\mathrm{c}}=_2.25 _\mathrm{V} \text {, and } v_{\mathrm{o}}=\underline{2} .50 _\mathrm{V} .
\end{gathered}
$$

Due to the properties of the ideal op amp, $v_{\mathrm{a}}=2.75 \mathrm{~V}$ and $v_{\mathrm{c}}=2.25 \mathrm{~V}$. The node equation at node c is

$$
\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{10 \times 10^{3}}=\frac{v_{\mathrm{c}}}{40 \times 10^{3}} \Rightarrow v_{\mathrm{b}}=\frac{5}{4} v_{\mathrm{c}}=2.8125 \mathrm{~V}
$$

The node equation at node c is

$$
\frac{v_{\mathrm{o}}-v_{\mathrm{a}}}{40 \times 10^{3}}=\frac{v_{\mathrm{a}}-v_{\mathrm{b}}}{10 \times 10^{3}} \Rightarrow v_{\mathrm{o}}=5 v_{\mathrm{a}}-4 v_{\mathrm{b}}=2.5 \mathrm{~V}
$$

4.

The input to this circuit is the voltage, v_{s}. The output is the voltage v_{o}. The voltage v_{b} is used to adjust the relationship between the input and output. Determine values of R_{4} and v_{b} that cause the circuit input and output have the relationship specified by the graph

$$
v_{\mathrm{b}}=
$$

\qquad 4 \qquad V and $R_{4}=$ \qquad 55 \qquad $\mathrm{k} \Omega$.
(a) Label the node voltages as shown. The node equations are

$$
\frac{v_{\mathrm{s}}-v_{\mathrm{a}}}{R_{1}}+\frac{v_{\mathrm{b}}-v_{\mathrm{a}}}{R_{2}}=\frac{v_{\mathrm{a}}}{R_{3}}
$$

and

$$
\frac{v_{\mathrm{a}}}{R_{5}}=\frac{v_{\mathrm{o}}-v_{\mathrm{a}}}{R_{4}} \Rightarrow v_{\mathrm{a}}=\left(\frac{R_{5}}{R_{4}+R_{5}}\right) v_{\mathrm{o}}
$$

Solving these equations gives

So

$$
\begin{aligned}
& \frac{v_{\mathrm{s}}}{R_{1}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) v_{\mathrm{a}}-\frac{v_{\mathrm{b}}}{R_{2}}=\left(\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{1} R_{2} R_{3}} \times \frac{R_{5}}{R_{4}+R_{5}}\right) v_{\mathrm{o}}-\frac{v_{\mathrm{b}}}{R_{2}} \\
& v_{\mathrm{o}}=\left(\frac{R_{2} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \times \frac{R_{4}+R_{5}}{R_{5}}\right) v_{\mathrm{s}}+\frac{R_{1} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \times \frac{R_{4}+R_{5}}{R_{5}} \times v_{\mathrm{b}}
\end{aligned}
$$

When $R_{1}=R_{2}=R_{3}=10 \mathrm{k} \Omega: \quad v_{\mathrm{o}}=\left(\frac{R_{4}+R_{5}}{3 R_{5}}\right) v_{\mathrm{s}}+\frac{R_{4}+R_{5}}{3 R_{5}} \times v_{\mathrm{b}}$
So

$$
a=\frac{R_{4}+R_{5}}{3 R_{5}} \text { and } b=\frac{R_{4}+R_{5}}{3 R_{5}} \times v_{\mathrm{b}}
$$

(b) The equation of the straight line is

$$
v_{\mathrm{o}}=\frac{5}{4} v_{\mathrm{s}}+5
$$

We require

$$
\frac{R_{4}+R_{5}}{3 R_{5}}=\frac{5}{4}
$$

When $R_{5}=20 \mathrm{k} \Omega$ then $R_{4}=55 \mathrm{k} \Omega$. Next we require

$$
\begin{gathered}
5=\frac{R_{4}+R_{5}}{3 R_{5}} \times v_{\mathrm{b}}=\frac{5}{4} v_{\mathrm{b}} \\
v_{\mathrm{b}}=4 \mathrm{~V}
\end{gathered}
$$

i.e.
5. The input to this circuit is the voltage: $v(t)=4 e^{-20 t} \mathrm{~V}$ for $t>0$

The output is the current: $i(t)=-1.2 e^{-20 t}-1.5 \mathrm{~A}$ for $t>0$

The initial condition is $i_{\mathrm{L}}(0)=-3.5 \mathrm{~A}$. Determine the values of the resistance and inductance:

Solution: Apply KCL at either node to get

$$
i(t)=\frac{v(t)}{R}+i_{\mathrm{L}}(t)=\frac{v(t)}{R}+\left[\frac{1}{L} \int_{0}^{t} v(\tau) d \tau+i(0)\right]
$$

That is

$$
\begin{aligned}
-1.2 e^{-20 t}-1.5=\frac{4 e^{-20 t}}{R}+\frac{1}{L} \int_{0}^{t} 4 e^{-20 \tau} d \tau-3.5 & =\frac{4 e^{-20 t}}{R}+\frac{4}{L(-20)}\left(e^{-20 t}-1\right)-3.5 \\
& =\left(\frac{4}{R}-\frac{1}{5 L}\right) e^{-20 t}+\frac{1}{5 L}-3.5
\end{aligned}
$$

Equating coefficients gives

$$
-1.5=\frac{1}{5 L}-3.5 \Rightarrow L=0.1 \mathrm{H}
$$

And

$$
-1.2=\frac{4}{R}-\frac{1}{5 L}=\frac{4}{R}-\frac{1}{5(0.1)}=\frac{4}{R}-2 \Rightarrow R=5 \Omega
$$

6. The initial inductor current is $i(0)=$ 25 mA .

Determine the values of the inductor current at $2,3,6$ and 9 seconds:
$i(2)=\ldots-15 _\ldots \mathrm{mA}$,
$i(3)=$ \qquad -55 \qquad mA ,
$i(6)=$ \qquad mA ,
$i(9)=$ \qquad 65 \qquad mA .

$$
i(t)=\frac{1}{100} \int_{0}^{t} 0 d t+0.025=0.025 \quad \text { for } \quad 0<t<1
$$

so $i(1)=0.025 \mathrm{~A}$

$$
i(t)=\frac{1}{100} \int_{1}^{t}-4 d \tau+0.025=\frac{-4(t-1)}{100} \quad \text { for } \quad 1<t<3
$$

so $i(2)=-0.015 \mathrm{~A}$, and $i(3)=-0.055 \mathrm{~A}$

$$
i(t)=\frac{1}{100} \int_{3}^{t} 2 d \tau-0.055=\frac{2(t-3)}{100}-0.055 \quad \text { for } \quad 3<t<9
$$

so $i(9)=0.065 \mathrm{~A}$

$$
i(t)=\frac{1}{100} \int_{9}^{t} 0 d \tau+0.065=0.065 \quad \text { for } \quad t>9
$$

7.

a. When $C=10 \mathrm{~F}$ then $C_{\mathrm{eq}}=\ldots 25 _$F.
b. When $C=$ \qquad F then $C_{\text {eq }}=8 \mathrm{~F}$.

$$
C_{\text {eq }}=C+\frac{C \times C}{C+C}+C=\frac{5}{2} C
$$

8. This circuit has reached steady state before the switch opens at time $t=0$. Determine the values of $i_{\mathrm{L}}(t), v_{\mathrm{C}}(t)$ and $v_{\mathrm{R}}(t)$ immediately before the switch opens:

$$
i_{\mathrm{L}}(0-)=_1 _\mathrm{A}, v_{\mathrm{C}}(0-)=
$$

and

$$
v_{\mathrm{R}}(0-)=_-5 \quad \mathrm{~V}
$$

Determine the value of $v_{\mathrm{R}}(t)$ immediately after the switch opens:

$$
v_{\mathrm{R}}(0+)=_-4 _\quad \mathrm{V}
$$

Solution: Because

- This circuit has reached steady state before the switch opens at time $t=0$.
- The only source is a constant voltage source.

At $t=0$-, the capacitor acts like an open circuit and the inductor acts like a short circuit. From the circuit

$$
\begin{gathered}
i_{1}(0-)=\frac{25}{4+(20 \| 80)}=\frac{25}{4+16}=1.25 \mathrm{~A} \\
i_{\mathrm{L}}(0-)=\left(\frac{80}{20+80}\right) i_{1}(0-)=1 \mathrm{~A}, v_{\mathrm{C}}(0-)=20 i_{\mathrm{L}}(0-)=20 \mathrm{~V}
\end{gathered}
$$

and

$$
v_{\mathrm{R}}(0-)=-4 i_{1}(0-)=-5 \mathrm{~V}
$$

The capacitor voltage and inductor current don't change instantaneously so

$$
v_{\mathrm{C}}(0+)=v_{\mathrm{C}}(0-)=20 \mathrm{~V} \text { and } i_{\mathrm{L}}(0+)=i_{\mathrm{L}}(0-)=1 \mathrm{~A}
$$

Apply KCL at the top node to see that

$$
i_{1}(0+)=i_{\mathrm{L}}(0+)=1 \mathrm{~A}
$$

From Ohm's law

$$
v_{\mathrm{R}}(0+)=-4 i_{1}(0+)=-4 \mathrm{~V}
$$

(Notice that the resistor voltage did change instantaneously.)
9. After time $t=0$, a given circuit is represented by this circuit diagram.
a. Suppose that the inductor current is

$$
i(t)=21.6+28.4 e^{-4 t} \mathrm{~mA} \quad \text { for } t \geq 0
$$

Determine the values of R_{1} and $R_{3}: \quad R_{1}=$ \qquad 6 \qquad Ω and $R_{3}=$ \qquad 40 \qquad Ω.
b. Suppose instead that $R_{1}=16 \Omega, R_{3}=20 \Omega$, the initial condition is $i(0)=10 \mathrm{~mA}$, and the inductor current is $i(t)=A-B e^{-a t}$ for $t \geq 0$. Determine the values of the constants A, B, and a :

$$
A=_\quad 28.8 _\mathrm{mA}, \quad B=_-18.8 _\mathrm{mA} \text { and } a=__5 _\mathrm{s} .
$$

Solution:

The inductor current is given by $i(t)=i_{\mathrm{sc}}+\left(i(0)-i_{\mathrm{sc}}\right) e^{-a t} \quad$ for $t \geq 0$ where $a=\frac{1}{\tau}=\frac{R_{\mathrm{t}}}{L}$.
a. Comparing this to the given equation gives $21.6=i_{\mathrm{sc}}=\frac{R_{1}}{R_{1}+4}(36) \Rightarrow R_{1}=6 \Omega$ and $4=\frac{R_{\mathrm{t}}}{2} \Rightarrow R_{\mathrm{t}}=8 \Omega$. Next $8=R_{\mathrm{t}}=\left(R_{1}+4\right)\left\|R_{3}=10\right\| R_{3} \quad \Rightarrow \quad R_{3}=40 \Omega$.
b. $R_{\mathrm{t}}=(16+4) \| 20=10 \Omega$ so $a=\frac{1}{\tau}=\frac{10}{2}=5$ s. also $i_{\mathrm{sc}}=\frac{16}{16+4}(36)=28.8 \mathrm{~mA}$. Then $i(t)=i_{\mathrm{sc}}+\left(i(0)-i_{\mathrm{sc}}\right) e^{-a t}=28.8+(10-28.8) e^{-5 t}=28.2-18.8 e^{-5 t}$.
10. a) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is open:
$\tau=$ \qquad s and $v(\infty)=$ \qquad V
b) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is closed:

$\tau=_2.25 _\mathrm{s}$ and $v(\infty)=_12 __\mathrm{V}$

Solution:

a.) When the switch is open we have

After replacing series and parallel resistors by equivalent resistors, the part of the circuit connected to the capacitor is a Thevenin equivalent circuit with $R_{\mathrm{t}}=33.33 \Omega$. The time constant is $\tau=R_{\mathrm{t}} C=33.33(0.090)=3 \mathrm{~s}$.

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 33.33Ω resistor and KVL gives $v(\infty)=24 \mathrm{~V}$.
b.) When the switch is closed we have

This circuit can be redrawn as

Now we find the Thevenin equivalent of the part of the circuit connected to the capacitor:

So $R_{\mathrm{t}}=25 \Omega$ and

$$
\tau=R_{\mathrm{t}} C=25(0.090)=2.25 \mathrm{~s}
$$

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 25Ω resistor and KVL gives $v(\infty)=12 \mathrm{~V}$.

