ES 250 2nd Midterm Exam - Fall 2013

Name \qquad k2 \qquad Student \# \qquad

1. The switch in this circuit closes at time $t=0$. Let $v(0)$ denote the capacitor voltage when the switch is open and the circuit is at steady state. Similarly, let $v(\infty)$ denote the steady state capacitor voltage when the switch is closed.

Determine the values of $v(0)$ and $v(\infty)$:

$$
v(0)=-9 _\mathrm{V} \text { and } v(\infty)=\ldots 22.5 _\mathrm{V} .
$$

2.

The values of the node voltages v_{1}, v_{2} and v_{o}, are $v_{1}=80 \mathrm{mV}, v_{2}=-320 \mathrm{mV}$ and $v_{\mathrm{o}}=-960 \mathrm{mV}$.
Determine the value of the resistances R_{1}, R_{2} and R_{3} :

$$
R_{1}=\ldots \quad 32 _\mathrm{k} \Omega, \quad R_{2}=\ldots 60 _\mathrm{k} \Omega \text { and } R_{3}=\ldots 18 _\quad \mathrm{k} \Omega .
$$

3. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, R_{t}, and of the open-circuit voltage, $V_{\text {oc }}$.

$$
R_{\mathrm{t}}=_40 _\Omega \text { and } V_{\mathrm{oc}}=_-14 \quad \mathrm{~V}
$$

4. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, R_{t}, and of the open-circuit voltage, $V_{\text {oc }}$.

$$
R_{\mathrm{t}}=_18.75 _\Omega \text { and } V_{\mathrm{oc}}=_135 _\mathrm{V}
$$

5. Given that $0 \leq R \leq \infty$ in this circuit, and given these two observations:

When $R=0$ then $i=1.5 \mathrm{~A}$.
When $R=\infty$ then $v=24 \mathrm{~V}$.
Fill in the blanks in the following statements:

a) When $R=$ \qquad 48 \qquad Ω then $v=18 \mathrm{~V}$.
b) When $R=$ \qquad 44 \qquad Ω then $i=0.4 \mathrm{~A}$.
6. Here are 4 separate dc circuits. Because they are dc circuits, the capacitors in these circuits act like open circuits and the inductors act like short circuits. Determine the values of i_{1}, v_{2}, v_{3} and i_{4}.

7.

The equivalent circuit on the right is obtained from the original circuit on the left using source transformations and equivalent resistances. (The lower case letters a and b identify the nodes of the capacitor in both the original and equivalent circuits.) Determine the values of $R_{\mathrm{a}}, V_{\mathrm{a}}, R_{\mathrm{b}}$ and I_{b} in the equivalent circuit:

$$
R_{\mathrm{a}},=_18 _\Omega, \quad V_{\mathrm{a}}=_-52 _\mathrm{V}, \quad R_{\mathrm{b}}=_9 _\Omega \text { and } I_{\mathrm{b}}=_8 __\mathrm{A} .
$$

8. a) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is open:
$\tau=$ \qquad 1.6 \qquad s and $v(\infty)=$ \qquad 24 \qquad V
b) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is closed:
$\tau=$ \qquad s and $v(\infty)=$ \qquad 28.8 \qquad V
9. The input to this circuit is the current: $i(t)=5+2 e^{-7 t}$ A for $t>0$

The output is the voltage: $v(t)=40-68 e^{-7 t} \mathrm{~V}$ for $t>0$
Determine the values of the resistance and inductance:

$$
R=\quad 8 \quad \Omega \text { and } L=_6 \quad \mathrm{H} .
$$

10. The input to this circuit is the voltage v_{s}. The output is the voltage v_{o}. The output is related to the input by the equation $v_{\mathrm{o}}=m v_{\mathrm{s}}+b$ where m and b are constants. The values of m and b are:

$$
m=\ldots-5 _\mathrm{V} / \mathrm{V} \text { and } b=\ldots 9 _\mathrm{V} .
$$

11. This circuit is at steady state before the switch closes. The capacitor voltage can be represented as

$$
v(t)=A+B e^{-a t} \mathrm{~V} \text { for } t>0
$$

Determine the values of the real constants A, B and a :

$A=$ \qquad $\mathrm{V}, B=$ \qquad 14.4 \qquad V and $a=$ \qquad 25 1/s.

Element Equations

$$
\text { Capacitor: } \quad C \neq \begin{array}{cc}
i(t) \downarrow(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau \\
v(t) & i(t)=C \frac{d v(t)}{d t}
\end{array}
$$

Inductor:

$$
\begin{array}{rc}
i(t) \downarrow\left\{\begin{array}{lc}
+ & i(t)=\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau \\
& L\left\{\begin{array}{c}
\\
\\
-
\end{array}\right. \\
- & v(t)=L \frac{d i(t)}{d t}
\end{array}\right.
\end{array}
$$

First-Order Circuits

| FIRST-ORDER CIRCUIT CONTAINING A
 CAPACITOR |
| :---: | :---: |
| Op amps,
 resistors,
 and
 sources |
| Replace the circuit consisting of op amps, resistors, |
| and sources by its Thévenin equivalent circuit: |

The capacitor voltage is:

$$
v(t)=V_{\mathrm{oc}}+\left(v(0)-V_{\mathrm{oc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=R_{\mathrm{t}} C
$$

and the initial condition, $v(0)$, is the capacitor voltage at time $t=0$.

First-Order Circuit containing an INDUCTOR

Replace the circuit consisting of op amps, resistors, and sources by its Norton equivalent circuit:

The inductor current is

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=\frac{L}{R_{\mathrm{t}}}
$$

and the initial condition, $i(0)$, is the inductor current at time $t=0$.

