ES 250 First Midterm Practice Exam 2

1.

2.

The current in the $20-\Omega$ resistor is $i_{\mathrm{a}}=$ \qquad A.

The voltage across the $10-\Omega$ resistor is $v_{\mathrm{b}}=$ \qquad V.

The (independent) voltage source current is $i_{\mathrm{c}}=$ \qquad A.

3.

The Ohmmeter measures equivalent resistance.
a. To cause $R_{\text {eq }}=12 \Omega$, choose $R=$ \qquad Ω.
b. If $R=14 \Omega$ then $R_{\text {eq }}=$ \qquad Ω.
4.

Consider this combination of resistors. Let R_{p} denote the equivalent resistance.

(a) Suppose $40 \Omega \leq R \leq 400 \Omega$. Determine the corresponding range of values of R_{p} :
\qquad

$$
\Omega \leq R_{\mathrm{p}} \leq
$$

\qquad Ω
(b) Suppose instead $R=0$ (a short circuit). Then $R_{\mathrm{p}}=$ \qquad Ω
(c) Suppose instead $R=\infty$ (an open circuit). Then $R_{\mathrm{p}}=$ \qquad Ω
(d) Suppose instead the equivalent resistance is $R_{\mathrm{p}}=80 \Omega$. Then $R=$ \qquad Ω
5.

Here's a single circuit drawn in four parts for convenience. The four parts are connected by the dependent sources. Given that $i_{1}=0.8 \mathrm{~A}$, determine the values of R_{1}, v_{2}, v_{3}, and i_{4}.
$R_{1}=$ \qquad $\Omega, \nu_{2}=$ \qquad $\mathrm{V}, v_{3}=$ \qquad V and $i_{4}=$ \qquad A.
6.

Encircled numbers are node numbers. The corresponding node voltages are:

$$
v_{1}=12 \mathrm{~V}, v_{2}=10.5 \mathrm{~V} \text { and } v_{3}=6 \mathrm{~V}
$$ A/A.

The value of the gain of the CCCS is $k=$ \qquad
The resistance of the resistor at the top of the circuit is $R=$ \qquad Ω. (Round to an integer.)

The power supplied by the independent (0.1 A) current source is \qquad W.
7.

Let i_{1}, i_{2} and i_{3} denote the mesh currents in meshes 1, 2 and 3, respectively.

Determine the values of these mesh currents:
$i_{1}=$ \qquad A and $i_{2}=$ \qquad A

Determine the value of the resistance R :

$$
R=\square \Omega
$$

