
The Wheatstone Bridge

The Wheatstone Bridge consists of a dc voltage source, four resistors and a detector. The detector is a type of ammeter called a galvanometer.

The galvanometer is used to detect the condition $i_g = 0$. When the circuit satisfies the condition $i_g = 0$ we say that "the bridge is balanced".

Because the galvanometer is a type of ammeter, $v_g = 0$. (It's always true that $v_g = 0$, whether the bridge is balanced or not. When the bridge is balanced it is also true that $i_g = 0$.) Apply KVL to the top mesh of the bridge to get

$$R_{2}i_{2} - v_{g} - R_{1}i_{1} = 0 \implies R_{1}i_{1} = R_{2}i_{2}$$
(1)

Apply KVL to the bottom mesh of the bridge to get

$$v_{\rm g} + R_{\rm m} i_{\rm m} - R_{\rm 3} i_{\rm 3} = 0 \quad \Rightarrow \quad R_{\rm 3} i_{\rm 3} = R_{\rm m} i_{\rm m} \tag{2}$$

When the bridge is balanced $i_g = 0$. Apply KCL to node b of the balanced bridge to get

$$i_1 = i_g + i_3 = 0 \quad \Rightarrow \quad i_1 = i_3 \tag{3}$$

Apply KCL to node c of the balanced bridge to get

$$i_2 + i_g = i_m \implies i_2 = i_m \tag{4}$$

Using equations 3 and 4 to substitute for the currents in equation 2 gives

$$R_3 i_1 = R_{\rm m} i_2 \tag{5}$$

1

Dividing equation 5 by equation 1 gives

$$\frac{R_3}{R_1} = \frac{R_{\rm m}}{R_2} \tag{6}$$

Now and solving for $R_{\rm m}$ we get

$$R_{\rm m} = \frac{R_2}{R_1} R_3 \tag{6}$$

Typically, R_1 and R_2 are fixed resistors and R_3 is a variable resistor. R_m is the resistance that is being measured. R_3 is adjusted until the detector indicates that the bridge is balanced. Then the value of R_m is determined using equation 6.

Example

Consider using a Wheatstone bridge having $R_1 = 200 \Omega$ and $R_2 = 2000 \Omega$ to measure a resistance R_m . The bridge is balanced by adjusting R_3 until $R_3 = 250 \Omega$. What is the value of R_m ?

Solution

From equation 6

$$R_{\rm m} = \frac{R_2}{R_1} R_3 = \frac{2000}{200} 250 = 2500 \ \Omega$$

Example

Consider using a Wheatstone bridge having $R_1 = 200 \Omega$ and $R_2 = 2000 \Omega$ to measure a resistance, R_m , of a temperature sensor. Suppose the resistance of the temperature sensor, R_m , in Ω , is related to the temperature *T*, in °C, by the equation

$$R_{\rm m} = 1500 + 25T$$

The bridge is balanced by adjusting R_3 until $R_3 = 250 \Omega$. What is the value of the temperature?

Solution

From equation 6

$$R_{\rm m} = \frac{R_2}{R_1} R_3 = \frac{2000}{200} 250 = 2500 \ \Omega$$

Next, the temperature in °C is given by

$$T = \frac{R_{\rm m} - 1500}{25} = \frac{2500 - 1500}{25} = \frac{1000}{25} = 40 \,\,^{\circ}\text{C}$$

Example

Consider using a Wheatstone bridge having $R_1 = 200 \Omega$ and $R_2 = 2000 \Omega$ to measure a resistance, R_m , of a temperature sensor. Suppose the resistance of the temperature sensor, R_m , in Ω , is related to the temperature *T*, in °C, by the equation

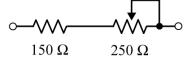
$$R_{\rm m} = 1500 + 25T$$

The temperature is expected to vary over the range 0 to 100 °C. Over what range must R_3 vary in order for the bridge to measure temperature over the range 0 to 100 °C?

Solution:

Solve equation 6 for R_3 :

$$R_3 = \frac{R_1}{R_2} R_{\rm m} \tag{7}$$


When T = 0 °C, $R_{\rm m} = 1500 \ \Omega$ and

$$R_3 = \frac{R_1}{R_2} R_{\rm m} = \frac{200}{2000} 1500 = 150 \ \Omega$$

When $T = 100 \,^{\circ}\text{C}$, $R_{\text{m}} = 1500 + 25(100) = 4000 \,\Omega$ and

$$R_3 = \frac{R_1}{R_2} R_{\rm m} = \frac{200}{2000} 4000 = 400 \ \Omega$$

 R_3 could be implemented as a 150 Ω resistor in series with a 250 Ω potentiometer:

