Solution:

Apply KCL to the node at which the current source and the $40 \Omega, 48 \Omega$ and 80Ω resistors are connected together.

EQN 1:

$$
i_{2}+i_{5}=0.5+i_{4}
$$

Apply KCL to the node at which the 48Ω and 32Ω resistors are connected together.
EQN 2: $\quad i_{5}=i_{6}$
Apply KVL to the loop consisting of the voltage source and the 40Ω and 80Ω resistors.
EQN 3:

$$
12=v_{2}+v_{4}
$$

Apply KVL to the loop consisting of the $48 \Omega, 32 \Omega$ and 80Ω resistors.

$$
\text { EQN 4: } \quad v_{4}+v_{5}+v_{6}=0
$$

Apply Ohm's law to the resistors.

$$
\text { Ohm's law: } \quad v_{2}=40 i_{2}, v_{4}=80 i_{4}, v_{5}=48 i_{5}, v_{6}=32 i_{6}
$$

Use the Ohm's law equations to eliminate the variables representing resistor voltages from the KVL equations.

$$
\text { EQN } 5 \text { (from EQN 3): } \quad 12=40 i_{2}+80 i_{4}
$$

EQN 6 (from EQN 4): $\quad 80 i_{4}+48 i_{5}+32 i_{6}=0$

Use EQN 2 to eliminate i_{6} from EQN 6.

$$
\text { EQN 7: } \quad 80 i_{4}+48 i_{5}+32 i_{5}=0 \Rightarrow 80 i_{4}+80 i_{5}=0 \Rightarrow i_{4}=-i_{5}
$$

Use EQN 7 to eliminate i_{5} from EQN 1.

EQN 8: $\quad i_{2}-i_{4}=0.5+i_{4} \quad \Rightarrow \quad i_{2}=0.5+2 i_{4}$
Use EQN 8 to eliminate i_{4} from EQN 5. Solve the resulting equation to determine the value of i_{2}.

$$
\text { EQN 9: } 12=40 i_{2}+80\left(\frac{i_{2}-0.5}{2}\right)=80 i_{2}-20 \Rightarrow i_{2}=\frac{12+20}{80}=0.4 \mathrm{~A}
$$

Determine the values of the rest of the resistor voltages and currents.

$$
\begin{gathered}
i_{4}=\frac{i_{2}-0.5}{2}=\frac{0.4-0.5}{2}=-0.05 \mathrm{~A}, \quad i_{6}=i_{5}=-i_{4}=0.05 \mathrm{~A}, \\
v_{2}=40 i_{2}=40(0.4)=1.6 \mathrm{~V}, \quad v_{4}=80 i_{4}=80(-0.05)=-4 \mathrm{~V}, \\
v_{5}=48 i_{5}=48(0.05)=2.4 \mathrm{~V} \text { and } v_{6}=32 i_{6}=32(0.05)=1.6 \mathrm{~V}
\end{gathered}
$$

MATLAB Solution:

Consecutive equations:

The above algebra shows that this circuit can be represented by these equations:

$$
\begin{gathered}
12=80 i_{2}-20, \quad i_{4}=\frac{i_{2}-0.5}{2}, \\
i_{6}=i_{5}=-i_{4}, \\
v_{2}=40 i_{2}, \quad v_{4}=80 i_{4}, \\
v_{5}=48 i_{5} \text { and } \quad v_{6}=32 i_{6}
\end{gathered}
$$

These equations can be solved consecutively using MATLAB.

Simultaneous Equations

We can avoid some algebra if we are willing to solve simultaneous equations.

After applying Kirchhoff's laws and then using the Ohm's law equations to eliminate the variables representing resistor voltages we have

$$
i_{2}+i_{5}=0.5+i_{4}, \quad i_{5}=i_{6}, \quad 12=40 i_{2}+80 i_{4}
$$

and

$$
80 i_{4}+48 i_{5}+32 i_{6}=0
$$

This set of 4 simultaneous equations in i_{2}, i_{4}, i_{5} and i_{6} can be written as a single matrix equation.

$$
\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
40 & 80 & 0 & 0 \\
0 & 80 & 48 & 32
\end{array}\right]\left[\begin{array}{l}
i_{2} \\
i_{4} \\
i_{5} \\
i_{6}
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0 \\
12 \\
0
\end{array}\right]
$$

This matrix equation can be solved using MATLAB.

