What is a Thevenin Equivalent Circuit?

Figure 1 shows a circuit that has been separated into two parts, Circuit A and Circuit B. These parts are connected at a single pair of terminals.

Figure 1. Two circuits connected at a pair of terminals.

We'd like to understand the interaction between these two circuits. Circuit A and Circuit B share two things: the current, *i*, and the voltage, *v*. It seems reasonable to ask

- 1. Are *i* and *v* related to each other? If so, how?
- 2. Does Circuit B affect *i* and *v*? How?
- 3. Suppose we knew *i* and *v*. What would they tell us about Circuit A?

To start our investigation, let's simply the problem by considering the case where Circuit B is a single resistor:

Figure 2. Circuit B is a resistor.

Let's go to the laboratory and take some data:

R, Ω	1	2	3	4	5	6	8	10	15
<i>i</i> , A	0.476	0.455	0.435	0.417	0.400	0.385	0.357	0.333	0.286
<i>v</i> , V	0.476	0.909	1.304	1.667	2.000	2.308	2.857	3.333	4.286

<i>R</i> , Ω	20	25	30	40	50	100		
i, A	0.250	0.222	0.200	0.167	0.143	0.083		
<i>v</i> , V	5.000	5.556	6.000	6.667	7.143	8.333		

(This data was obtained by computer simulation using PSpice [] rather than laboratory measurements. The circuit labeled "Circuit A2" in Figure 10 was used as Circuit A.)

Maybe a picture will help us to see a pattern in this data. Figure 3 shows a graph of v as a function of i.

Figure 3. A graph of the data.

The data points all lie on a segment of a straight line. That line segment connects two data points that we did not measure, the points on the axes. The point on the *i* axis corresponds to v = 0. To cause v = 0, we set R = 0 in Figure 2. Similarly, the point on the *v* axis corresponds to i = 0 and $R = \infty$.

 $i_{\rm sc}$ = the current when R = 0 (a short circuit)

and

 $v_{\rm oc}$ = the voltage when $R = \infty$ (an open circuit)

We go back into the lab and measure i_{sc} and v_{oc} . Figure 4 illustrates the procedure for making those measurements. For this particular choice of Circuit A, we find $v_{oc} = 10$ V and $i_{sc} = 0.5$ A. Figure 5 shows the graph of v versus *i*, updated to show the new data.

Figure 4. The laboratory procedure for measuring i_{sc} and v_{oc} .

Figure 5. The graph of the data after measuring $i_{\rm sc}$ and $v_{\rm oc}$.

The equation of the straight line in Figure 5is

$$v = mi + b$$

where

$$b = v_{\text{oc}}$$
 and $m = -\frac{v_{\text{oc}}}{i_{\text{sc}}}$

That is

$$v = \left(-\frac{v_{\rm oc}}{i_{\rm sc}}\right)i + v_{\rm oc} = (-20)i + 10$$

Of course we can calculate the slope and intercept, hence i_{sc} and v_{oc} , from the coordinates of any two points on the line. For example, v = 2 V when i = 0.4 A and v = 5 V when i = 0.25 A, so

$$m = \frac{2-5}{0.4 - 0.25} = \frac{-3}{0.15} = -20$$

v = -20i + b

Thus

Next, using v = 2 V when i = 0.4 A

$$2 = (-20)0.4 + b \implies b = 10$$
$$v = -20i + 10$$

To summarize:

As before,

1. The plot of *v* versus *i* in Figure 1 is a straight line. Of course, the plot of *v* versus *i* in Ohm's law is also a straight line. Figure 6 shows these two straight lines when $R = 6 \Omega$.

Figure 6. Another plot.

- 2. The intercepts of that straight line are i_{sc} and v_{oc} , the short circuit current and the open circuit voltage.
- 3. We can calculate i_{sc} and v_{oc} in either of two ways

- a. Replace Circuit B with a resistor. Measure *v* and *i*. Change the resistance of the resistor. Measure *v* and *i* again. Do some arithmetic.
- b. Measure i_{sc} and v_{oc} as shown in Figure 4.

Replacing Circuit B by a single resistor worked quite well. Let's see try something different. Consider replacing Circuit A in Figure 1 with a simple circuit as shown in Figure 7.

Figure 7.

Kirchhoff's voltage law gives

$$R_{t}i + v - V_{s} = 0 \implies v = -R_{t}i + V_{s}$$

This is the equation of the straight line shown in Figure 8.

Figure 8. KVL for the circuit in Figure 7.

The plot in Figure 7 looks like the plot shown in Figure 3 with $v_{oc} = V_s$ and $i_{sc} = \frac{V_s}{R_t}$. Figure 9 shows ...

Figure 9.

The only characteristics of Circuit A that are important to Circuit B are i_{sc} and v_{oc} . For example, Circuits A1 and A2 shown in Figure 10 both have $i_{sc} = 0.6$ A and $v_{oc} = 12$ V so Circuit B would not be able to distinguish between these circuits.

Figure 10. Two circuit with the same values of i_{sc} and v_{oc} .