What is a Thevenin Equivalent Circuit?

Figure 1 shows a circuit that has been separated into two parts, Circuit A and Circuit B. These parts are connected at a single pair of terminals.

Figure 1. Two circuits connected at a pair of terminals.
We'd like to understand the interaction between these two circuits. Circuit A and Circuit B share two things: the current, i, and the voltage, v. It seems reasonable to ask

1. Are i and v related to each other? If so, how?
2. Does Circuit B affect i and v ? How?
3. Suppose we knew i and v. What would they tell us about Circuit A?

To start our investigation, let's simply the problem by considering the case where Circuit B is a single resistor:

Figure 2. Circuit B is a resistor.
Let's go to the laboratory and take some data:

R, Ω	1	2	3	4	5	6	8	10	15
$i, \mathrm{~A}$	0.476	0.455	0.435	0.417	0.400	0.385	0.357	0.333	0.286
$\nu, \mathrm{~V}$	0.476	0.909	1.304	1.667	2.000	2.308	2.857	3.333	4.286

R, Ω	20	25	30	40	50	100			
$i, \mathrm{~A}$	0.250	0.222	0.200	0.167	0.143	0.083			
$v, \mathrm{~V}$	5.000	5.556	6.000	6.667	7.143	8.333			

(This data was obtained by computer simulation using PSpice [] rather than laboratory measurements. The circuit labeled "Circuit A2" in Figure 10 was used as Circuit A.)

Maybe a picture will help us to see a pattern in this data. Figure 3 shows a graph of v as a function of i.

Figure 3. A graph of the data.
The data points all lie on a segment of a straight line. That line segment connects two data points that we did not measure, the points on the axes. The point on the i axis corresponds to $v=0$. To cause $v=0$, we set $R=0$ in Figure 2. Similarly, the point on the v axis corresponds to $i=0$ and R $=\infty$.

$$
i_{\mathrm{sc}}=\text { the current when } R=0 \quad \text { (a short circuit) }
$$

and

$$
v_{\mathrm{oc}}=\text { the voltage when } R=\infty \quad \text { (an open circuit) }
$$

We go back into the lab and measure $i_{\text {sc }}$ and v_{oc}. Figure 4 illustrates the procedure for making those measurements. For this particular choice of Circuit A, we find $v_{\text {oc }}=10 \mathrm{~V}$ and $i_{\mathrm{sc}}=0.5 \mathrm{~A}$. Figure 5 shows the graph of v versus i, updated to show the new data.

Figure 4. The laboratory procedure for measuring i_{sc} and v_{oc}.

Figure 5. The graph of the data after measuring i_{sc} and v_{oc}.

The equation of the straight line in Figure 5is

$$
v=m i+b
$$

where

$$
b=v_{\mathrm{oc}} \text { and } m=-\frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}}
$$

That is

$$
v=\left(-\frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}}\right) i+v_{\mathrm{oc}}=(-20) i+10
$$

Of course we can calculate the slope and intercept, hence i_{sc} and v_{oc}, from the coordinates of any two points on the line. For example, $v=2 \mathrm{~V}$ when $i=0.4 \mathrm{~A}$ and $v=5 \mathrm{~V}$ when $i=0.25 \mathrm{~A}$, so

$$
m=\frac{2-5}{0.4-0.25}=\frac{-3}{0.15}=-20
$$

Thus

$$
v=-20 i+b
$$

Next, using $v=2 \mathrm{~V}$ when $i=0.4 \mathrm{~A}$

$$
2=(-20) 0.4+b \Rightarrow b=10
$$

As before,

$$
v=-20 i+10
$$

To summarize:

1. The plot of v versus i in Figure 1 is a straight line. Of course, the plot of v versus i in Ohm's law is also a straight line. Figure 6 shows these two straight lines when $R=6 \Omega$.

Figure 6. Another plot.
2. The intercepts of that straight line are i_{sc} and v_{oc}, the short circuit current and the open circuit voltage.
3. We can calculate i_{sc} and v_{oc} in either of two ways
a. Replace Circuit B with a resistor. Measure v and i. Change the resistance of the resistor. Measure v and i again. Do some arithmetic.
b. Measure i_{sc} and v_{oc} as shown in Figure 4.

Replacing Circuit B by a single resistor worked quite well. Let's see try something different. Consider replacing Circuit A in Figure 1 with a simple circuit as shown in Figure 7.

Figure 7.
Kirchhoff’s voltage law gives

$$
R_{\mathrm{t}} i+v-V_{\mathrm{s}}=0 \Rightarrow v=-R_{\mathrm{t}} i+V_{\mathrm{s}}
$$

This is the equation of the straight line shown in Figure 8.

Figure 8. KVL for the circuit in Figure 7.
The plot in Figure 7 looks like the plot shown in Figure 3 with $v_{\mathrm{oc}}=V_{\mathrm{s}}$ and $i_{\mathrm{sc}}=\frac{V_{\mathrm{s}}}{R_{\mathrm{t}}}$. Figure 9 shows ...

Figure 9.

The only characteristics of Circuit A that are important to Circuit B are i_{sc} and v_{oc}. For example, Circuits A1 and A2 shown in Figure 10 both have $i_{\mathrm{sc}}=0.6 \mathrm{~A}$ and $v_{\mathrm{oc}}=12 \mathrm{~V}$ so Circuit B would not be able to distinguish between these circuits.

Figure 10. Two circuit with the same values of i_{sc} and v_{oc}.

