Example:

This circuit is equivalent to a single capacitor having capacitance $C_{\text {eq }}=8 \mathrm{~F}$. Determine the value of the capacitance C

Solution:

The 16 F capacitor is in series with a parallel combination of 4 F and 12 F capacitors. The capacitance of the equivalent capacitor is

$$
\frac{16(4+12)}{16+(4+12)}=8 \mathrm{~F}
$$

The 30 F capacitor is in parallel with a short circuit, which is equivalent to a short circuit. After making these simplifications, we have

Then

$$
8=C_{\mathrm{eq}}=\frac{10(12+C+8)}{10+(12+C+8)} \Rightarrow C=20 \mathrm{~F}
$$

Example:

This circuit contains 7 capacitors each having capacitance C. The voltage source voltage is given by

$$
v(t)=4 \cos (3 t) \mathrm{V}
$$

Find the current $i(t)$ when $C=1 \mathrm{~F}$.

Solution:

Replacing series and parallel capacitors by equivalent capacitors, the circuit can be reduced as follows:

Then

$$
i(t)=\frac{8 C}{21} \frac{d}{d t} v(t)=\frac{8 C}{21} \frac{d}{d t} 4 \cos (3 t)=\frac{8 \times 1}{21}[-12 \sin (3 t)]=-\frac{32}{7} \sin (3 t) \mathrm{V}
$$

