Example:

Represent this circuit by a second order differential equation.

Solution:

Use KCL to write

$$
i(t)=\frac{v(t)}{R_{2}}+C \frac{d}{d t} v(t)
$$

where $C \frac{d}{d t} v(t)$ is the current directed downward in the capacitor and $\frac{v(t)}{R_{2}}$ is the current directed downward in R_{2}. Use KVL to write

$$
v_{\mathrm{s}}=R_{1} i(t)+L \frac{d}{d t} i(t)+v(t)
$$

where $L \frac{d}{d t} i(t)$ is the voltage across the inductor and $R_{1} i(t)$ is the voltage across R_{1}. Substitute to get

$$
\begin{aligned}
v_{\mathrm{s}} & =\frac{R_{1}}{R_{2}} v(t)+R_{1} C \frac{d}{d t} v(t)+\frac{L}{R_{2}} \frac{d}{d t} v(t)+C L \frac{d^{2}}{d t^{2}} v(t)+v(t) \\
& =C L \frac{d^{2}}{d t^{2}} v(t)+\left(R_{1} C+\frac{1}{R_{2} C}\right) \frac{d}{d t} v(t)+\frac{R_{1}+R_{2}}{R_{2} C L} v(t)
\end{aligned}
$$

Finally,

$$
\frac{v_{\mathrm{s}}}{C L}=\frac{d^{2}}{d t^{2}} v(t)+\left(\frac{R_{1}}{L}+\frac{1}{R_{2} C}\right) \frac{d}{d t} v(t)+\frac{R_{1}+R_{2}}{R_{2} C L} v(t)
$$

Example:

Represent this circuit by a second order differential equation.

Solution:

Use KVL to get

$$
R_{2} i(t)+L \frac{d}{d t} i(t)=v(t)
$$

where $L \frac{d}{d t} i(t)$ is the voltage across the inductor and $R_{2} i(t)$ is the voltage across R_{2}. Use KCL and KVL to get

$$
v_{\mathrm{s}}=R_{1}\left(i(t)+C \frac{d}{d t} v(t)\right)+v(t)
$$

where $C \frac{d}{d t} v(t)$ is the current directed downward in the capacitor and $i(t)+C \frac{d}{d t} v(t)$ is the current directed to the left in R_{1}. Substitute to get

$$
\begin{aligned}
v_{\mathrm{s}} & =R_{1} v(t)+R_{1} C R_{2} \frac{d}{d t} i(t)+R_{1} C \frac{d^{2}}{d t^{2}} i(t)+R_{2} i(t)+L \frac{d}{d t} i(t) \\
& =R_{1} C L \frac{d^{2}}{d t^{2}} i(t)+\left(R_{1} R_{2}+L\right) \frac{d}{d t} i(t)+\left(R_{1}+R_{2}\right) i(t)
\end{aligned}
$$

Finally

$$
\frac{v_{\mathrm{s}}}{R_{1} C L}=\frac{d^{2}}{d t^{2}} i(t)+\left(\frac{R_{2}}{L}+\frac{1}{R_{1} C}\right) \frac{d}{d t} i(t)+\frac{R_{1}+R_{2}}{R_{1} C L} i(t)
$$

Example:

The input to the circuit this is the voltage of the voltage source, $v_{\mathrm{s}}(t)$. The output is the voltage $v_{2}(t)$.

Derive the second order differential equation that shows how the output of this circuit is related to the input.

Solution:

KCL gives

$$
\frac{v_{\mathrm{s}}(t)-v_{1}(t)}{R_{1}}=C_{1} \frac{d}{d t} v_{1}(t) \quad \Rightarrow \quad v_{\mathrm{s}}(t)=R_{1} C_{1} \frac{d}{d t} v_{1}(t)+v_{1}(t)
$$

and

$$
\frac{v_{1}(t)-v_{2}(t)}{R_{2}}=C_{2} \frac{d}{d t} v_{2}(t) \quad \Rightarrow \quad v_{1}(t)=R_{2} C_{2} \frac{d}{d t} v_{2}(t)+v_{2}(t)
$$

Substituting gives

$$
v_{\mathrm{s}}(t)=R_{1} C_{1} \frac{d}{d t}\left[R_{2} C_{2} \frac{d}{d t} v_{2}(t)+v_{2}(t)\right]+R_{2} C_{2} \frac{d}{d t} v_{2}(t)+v_{2}(t)
$$

so

$$
\frac{1}{R_{1} R_{2} C_{1} C_{2}} v_{\mathrm{s}}(t)=\frac{d^{2}}{d t^{2}} v_{2}(t)+\left(\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{2}}\right) v_{2}(t)+\frac{1}{R_{1} R_{2} C_{1} C_{2}} v_{2}(t)
$$

