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A centerpiece of dynamical systems is comparison by an equivalence relationship called topological
conjugacy. We present details of how a method to produce conjugacy functions based on a func-
tional fixed point iteration scheme can be generalized to compare dynamical systems that are not
conjugate. When applied to nonconjugate dynamical systems, we show that the fixed-point iteration
scheme still has a limit point, which is a function we now call a “commuter”—a nonhomeomorphic
change of coordinates translating between dissimilar systems. This translation is natural to the
concepts of dynamical systems in that it matches the systems within the language of their orbit
structures, meaning that orbits must be matched to orbits by some commuter function. We introduce
methods to compare nonequivalent systems by quantifying how much the commuter function fails
to be a homeomorphism, an approach that gives more respect to the dynamics than the traditional
comparisons based on normed linear spaces, such as L2. Our discussion addresses a fundamental
issue—how does one make principled statements of the degree to which a “toy model” might be
representative of a more complicated system? © 2008 American Institute of Physics.
�DOI: 10.1063/1.2837397�

A primary interest of this work will be to develop prin-
ciples and methods to compare dynamical systems when
they are not necessarily equivalent (in the sense of conju-
gacy), but in a manner that respects the behavioral im-
plications of conjugacy. That is, we extend a centerpiece
notion in dynamical systems whose equivalence relation-
ship called topological conjugacy can either judge two
systems as the same, or not the same, a boolean answer.
To this end, we detail methods to produce conjugacy
functions based on a functional fixed-point iteration
scheme. We then show how this same fixed-point iteration
can be generalized to compare dynamical systems that
are not conjugate. When applied to nonconjugate dy-
namical systems, we show that the fixed-point iteration
scheme still has a limit point, which is a function we now
call a “commuter”—a nonhomeomorphic change of coor-
dinates translating between dissimilar systems. This
translation is natural to the concepts of dynamical sys-
tems in that it matches the systems within the language of
their orbit structures, meaning, in some sense, that orbits
must be matched to orbits by some commuter function.
We introduce methods to compare nonequivalent systems
by quantifying how much the commuter function fails to
be a homeomorphism, an approach that gives more re-
spect to the dynamics than the traditional comparisons
based on normed linear spaces, such as L2. We coin the
phrase “defect,” between two systems embedded in mea-
sure spaces, to describe relative measured failures of the
commuter to be a homeomorphism. Our discussion ad-
dresses a fundamental issue—how does one make prin-

cipled statements of the degree to which a “toy model”
might be representative of a more complicated system.

I. INTRODUCTION

The complex oscillations we see in the physical world
around us have been a subject of intense study in practically
every branch of science and engineering, as documented in
many textbooks,1 review articles,2 and popular literature.3

Since the beginnings of the field of dynamical systems by
Henri Poincaré,4 characterizing a dynamical system has fo-
cused on examining the topological and geometric features
of orbits, rather than focusing on the empirical details of the
solution of the dynamical system with respect to a specific
coordinate system. One seeks to understand coordinate-
independent properties, such as the periodic orbit structure,
the count, and stability of periodic orbits. The question of
whether two systems are dynamically the same has evolved
into the modern notion of deciding if there is a conjugacy
between them.5–9

Since modeling is fundamental in science, we may ask,
“What do we mean by a model?” We would answer that a
model of the “true” system �physical perhaps� is a simpler
system �perhaps of ordinary differential equations �ODEs�,
for example� that is “descriptive” of some aspects of the
original system. A model should be a system that is somehow
easier to analyze. Although the model is only representative
of the true system, it might have been constructed with first
principles in mind and may teach us about the mechanisms
of the true system. Given these notions, we tend to speak of
a “toy model”—a dynamical system that is much “like” the
“real” system. These subjective evaluations are assertions
that the model is satisfactory, but fail to distinguish excellent
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models from mediocre ones. For this reason, we assert that
quantifying the quality of a model is an essential problem in
science. A primary interest of this work will be to develop
principles and methods to compare dynamical systems when
they are not necessarily equivalent �in the sense of conju-
gacy�, but in a manner that respects the behavioral implica-
tions of conjugacy.

A standard approach to quantifying model accuracy is to
measure how “close” the model is to the original system,
where “close” depends on what aspects of the system we are
trying to model. In many cases, prediction is our modeling
goal, such as when forecasting the weather. The quality of
prediction is grounded in standard numerical analysis on Ba-
nach spaces: the “goodness” of short-term predictions is
based on measurement of residual error. However, in dy-
namical systems, a model’s quality is typically not based on
such error analysis. Continuing, for the sake of example, in
the field of meteorology, we cite a famous historical example
to highlight this long recognized issue. Consider Lorenz’s
1965 paper about his 28-variable ODE model of the
weather.10 The model consists of Galerkin’s projection of a
two-level geostrophic model for fluid flow in the atmosphere.
About the matter of choice of parameter values that are ini-
tially free in the model, the tuning of which led to dramati-
cally different dynamic behavior due to a plethora of pos-
sible bifurcations, Lorenz says, “Our first choice of constants
lead to periodic variations. Subsequent choices yielded ir-
regular….” He relied on his expert knowledge as a meteo-
rologist concerning what “reminded” him of oscillations of
realistic weather. Even by the time of his 1998 paper on a
40-variable model,11 we quote, “Regardless of how well or
how poorly the equation of the model resemble those of the
atmosphere, it is essential to know, before proceeding with
our experiments, how closely the model resembles the atmo-
sphere in its behavior.” Therefore, we summarize that even

today, as this central step of modeling moves across the sci-
ences, we in the applied dynamical systems community still
tend to choose the “best model� from a model class in an
intuitive manner. Our research here intends to address this
issue of quantifying the quality in a mathematically grounded
manner.

A. Comparing dynamical systems: On conjugacy
and nonhomeomorphic commuters

Given two dynamical systems, g1 :X→X, and g2 :Y →Y,
the fundamental departure from a typical measurement of
approximation between the two dynamical systems is that we
do not directly compare g1 and g2 under an embedding in a
Banach space �e.g., measuring, say, �g1−g2�L2� because such
measurements pay no regard to the central equivalence rela-
tionship in dynamical systems, namely conjugacy. Two sys-
tems are conjugate if there is a homeomorphism h :X→Y
between the underlying phase space �h must be 1-1, onto,
continuous, and h−1 must be continuous�, and h must com-
mute the mappings at each point x�X. This is not only the
fundamental equivalence relationship of the field, it reflects
the practical notion that h is an “exact” change of coordi-
nates so that the mappings behave exactly the same in either
coordinate system. See in Fig. 1 our new quadweb represen-
tation of a commuter and Appendix A for further description.

We give the name “commuter” to any function f :X→Y
that satisfies the commuting relationship,

f � g1 = g2 � f , �1�

and note that a commuter will be a conjugacy only if it is a
homeomorphism. The commuter provides a matching be-
tween trajectories for g1 and g2; over- and/or under-
representations are reflected as 1-1 and onto problems in f ,
while trajectories that permit matching only for finite time

FIG. 1. �Color� Conjugacy and commuter, shown as quadwebs. �Left� Quadwebs allow visualization of the commutative relationship of Eq. �1�. The lower
right panel shows a symmetric full shift tent map, g1 acting on space X= �0,1�. The upper right panel shows a graph of the conjugacy function, f , which maps
X= �0,1� on the horizontal to Y = �0,1� on the vertical. The upper left panel shows a skew tent map g2 acting on Y = �0,1�, where we have oriented the graph
by rotating the figure counterclockwise so that y= f�x� lies in the domain of this graph. Similarly, the lower left is another copy of f , oriented to allow points
x in the range of g1 to map to points y in the range of g2. The rectangles illustrate that the maps actually satisfy Eq. �1�, f �g1=g2 � f . In this example, the
conjugacy is strictly increasing, yet its derivative is 0 almost everywhere, a Lebesgue singular function. In Appendix B, we discuss this singular property.
�Right� The two maps shown are obviously not conjugate, as there are a different number of humps; g1 requires a subshift of 2-symbols �2�, and g2 requires
a subshift �4� of 4-symbols. So any f that satisfies Eq. �1� cannot be a homeomorphism. The “solution” f , found by fixed point iteration, we call a “commuter,”
since it solves f �g1=g2 � f . We see that as a function f : �0,1�→ �0,1�, the commuter fails each of the properties of continuity, one-one-ness, onto-ness, and f−1

fails to exist at certain points �apparently a Cantor set�. See Appendix A for further description of Quadwebs.
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are related to discontinuities in f . Our fundamental approach
is that we suggest to develop measures of commuters f to
quantify “how much” the f may fail to be a homeomorphism.
Such measures quantify the dissimilarity of g1 and g2 in a
manner that respects the fundamental philosophy of dynami-
cal systems.

B. Examples of commuters of “close” dynamical
systems

Our primary interest is in comparing dynamical systems
with methods that respect the notion of conjugacy. We will
use the commuter to indicate how well the systems are
matched �from a dynamical perspective� by observing the
deviation from homeomorphism. These examples are indica-
tive goal problems, selected to allow for a clear presentation
in the one-dimensional setting. The eventual goal of our
work will be to extend this approach to compare multivariate
systems, including diffeomorphisms and flows. Although the
examples and constructions of this paper focuses on one-
dimensional examples, the measure theoretic definitions of
defect are meant to generalize naturally.

Example Problem: Modeling a noisy logistic map. It is
well known that the logistic map g1�x�=rx�1−x� is conjugate
to the tent map g2�x�=a�1−2�x−1 /2�� for parameter values
r=4 and a=2. The conjugacy h�x�=1 /2�1−cos��x�� pro-
vides perhaps the most studied example in the pedagogy of
dynamical systems for teaching conjugacy. If r is perturbed
even slightly, the maps fails to be a conjugate. Now consider
a system with a much stronger perturbation, like a noisy
version of the logistic map, which is obviously not conjugate
to the tent map. The commuter shown in Fig. 2 �right� is not
a homeomorphism, since it fails at least one-one-ness, which
we see immediately upon inspection. The commuter gives
the orbit equivalence between the two maps and is the key to
understanding the quality of a model. One could argue that
the tent map shown is a good candidate to model this “noisy
logistic map” because although it simplifies the small-scale
dynamics, it captures the main features of the large-scale
orbit structure. We quantify this argument by measuring the
defect of f using techniques described in Sec. V.

Example Problem: Logistic map with “just a little” extra
dynamics. In Fig. 3, we see a map with two humps, which is
clearly not conjugate to any one hump map such as the tent
map. However, in some sense, the dynamics are “mostly”
very similar to those of the tent map. Inspection of the orbit
equivalence through the commuter function in Fig. 3 �right�
clearly shows the failure of f to be a homeomorphism due to
the failure of all four of the properties of continuity both
ways, one-one-ness, and onto-ness. In a measured sense that
we call “homeomorphic defect” defined in Sec. V, the failure
is not large. We will conclude that a large fraction of the
dynamics of g1 “mostly” match most of the dynamics of g2,
suggesting that the model with one hump is reasonable.
More details of this example are in the figure caption to
Fig. 3.

C. Some background

In the above examples, the “models” �g2’s� were chosen
such that the commuter had a small homeomorphic defect.
An alternative, traditional method is to consider relative en-
tropies between the systems. For the noisy logistic map in
Fig. 2 �which is semiconjugate to a shift map embedded in a
symbol space of many symbols�, selecting a model to mini-
mize the entropy difference would mean that we would
choose a very steep and high tent map. In an experimental
situation, depending on our ability to resolve the spatial fine
scales of the thin humps, the noisy map will appear more like
the original logistic map of hT=ln�2� than like a map of
higher entropy, and we might prefer that a simplifying model
should reflect this lower entropy. We sometimes refer to
well-modeled systems as being “almost conjugate.” There is
a notion of almost conjugacy already in the symbolic dynam-
ics literature,7,12 through “orbit equivalence,” used to com-
pare two shift spaces, which relies on the existence of a
factor map between the two shift spaces. Although the term
“defect” has been used to describe the degree to which such
a factor map fails to be injective,13 we define homeomorphic
defect using an entirely different construct for use in a very
different setting—where systems are not equivalent. Ergodic

FIG. 2. �Color� Modeling a noisy logistic map. �Left� A “noisy” logistic
map g1 �blue� is obviously near the full logistic map 4x�1−x�, in both any
Lp��0,1��, p�1, as well as in the sup-norm, but not in the C1��0,1�� norm,
as the map was constructed with slope �g1��x��=10 everywhere that it exists.
The green circles graph a tent map g2 �with vertical extension� which is our
“best” model within the family of symmetric tent maps. �Right� The result-
ing commuter f between g1 and this tent map g2 is reminiscent of the
homeomorphism h�x�=1 /2�1−cos��x�� between the full logistic map and
the full tent map. Whereas h is a diffeomorphism, f is not even a homeo-
morphism, though our visual impression is that we would not need to move
the points �on the graph of f� very far to achieve a homeomorphism.

FIG. 3. �Color� �Left� Logistic map with “just a little” extra dynamics.
These maps are not as far from conjugacy as appearances might indicate,
and they are obviously not close in any Lp or Cr norm. That g1 has two
humps, and g2 has one hump, which suggests that subshifts of �4 and �2,
respectively, are required to represent the dynamics. In fact, g1 behaves as if
it is almost conjugate to a trapezoid map �Ref. 37�, also known as a gap-map
�Ref. 38�, since it does not take a large perturbation to replace the extra
humps of x� �0.25,0.5�, with a horizontal line segment. �Right� Note the
nonmonotonicity in the commuter, indicating that g1 has dynamics that are
not matched by g2. In the sense of defect, the tent map shown is the best
dynamical match to the blue map; even though we can see clearly that there
are closer tent maps in an L2 sense, they are not dynamically closer.
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theory provides other metrics on equivalence classes of dy-
namical systems, based on notions such as Kakutani equiva-
lence or metric isomorphism.14 Our work is complementary
to that work, but it is somewhat different in that we can
directly compare two maps �even when they are not shift
maps� and explicitly construct the commuter function—the
realization of the factor map. Our goal is to provide a mea-
sure between equivalence classes based on topological con-
jugacy. Quantifying the similarity between two dynamical
systems directly through measuring a change of coordinates
between them is a departure from general literature, and the
only paper we find remotely in the same vein is that of Yuan–
Yorke et al.,15 whereas the methods and scope were quite
different. We believe the idea is natural and general.

II. ON CONSTRUCTION OF COMMUTERS

In this section, we use the tent map as an easy setting to
introduce how the commuter, or would be conjugacy, can be
explicitly constructed by a fixed-point iteration scheme. In
this simple setting, we will rigorously prove several aspects
of the existence and convergence of the fixed-point iteration.
In subsequent sections, we will see that for more compli-
cated problems, the methods seem to work numerically well
beyond our sufficient theorems. In subsequent sections, we
will introduce the commuter’s role in measuring homeomor-
phic defect.

While here we propose to use commuters between dy-
namical systems in a unique way as part of developing our
defect measure, for the construction step, we should point to
the line of work dating to Schub in 1969,16 and further stud-
ied, for example, in Ref. 17 and reviewed in the popular
textbook by de Melo and van Strien.18 These are related to
our Lemmas 1–3. In particular, see Theorem II 2.1 in Ref.
18. Therein, endomorphisms, including general conjugacies,
are constructed using methods based on the contraction map-
ping principle related to what we describe in Sec. II. Gener-
alization for the multivariate expanding case can be found in
Ref. 16. A major difference between our work and that of
Shub is our interest in comparing arbitrary domains between
the maps, which has required that we develop an extended
inverse ĝ2i

−1 in Eq. �30� when defining our contraction opera-
tors, Cg1

g2.

A. A conjugacy between tent maps

Consider the family of skew tent maps S�x� defined on
�0, 1�, with the following restrictions:

• S�0�=0 and S�1�=0.
• The peak of the tent occurs at S���=�, with 0���1.
• To ensure that the map is locally expanding, we require

max��,1 − �� � � � 1. �2�

Define this family S, where the family is parametrized
by � and �, the coordinates of the peak of the tent. Denote a
specific member of this family as S�,�, where the coordinates
of the peak of that tent are at �� ,��. Within this family of
skew tents, consider the subset of maps that are symmetric

about x=1 /2. We denote this subfamily as T, where T�S.
An arbitrary member T��T is defined by T�ªS1/2,�.

First, we note the following lemma regarding the exis-
tence of a conjugacy:

Lemma 1. Let Sa,b be a particular member of S. Then
there exists a �0 such that Sa,b is conjugate to T�0

�T.
Sketch of Proof: Kneading sequences need to be

matched, and we know that there is a value of �0 that
matches the kneading sequences and hence symbolic dynam-
ics by a so-called intermediate value theorem of kneading
sequences, which can be found in either Misiurewicz and
Visinescu20 or Collet and Eckmann.21 Although matching
symbolic dynamics is not enough to prove that the maps are
conjugate, it is necessary. Similarly, the fact that both maps
are strictly monotone is enough to guarantee that monotone
laps map to monotone laps, from which it can be shown that
there is a match between any two points with the same sym-
bolic itineraries. The match of symbolic dynamics does guar-
antee a match between the eventually periodic points. Be-
cause both maps are assumed to be everywhere expanding,
the matching can be extended to the entire interval, with h
and h−1 continuous. �

The remainder of this section is constructed under the
presumption that we have chosen a particular value for a and
b, and though they are arbitrary, they remain fixed. The map
S�Sa,b will be used to symbolize this arbitrary but fixed
map. To find the conjugacy whose existence is indicated by
Lemma 1, we need to solve the functional equation

S � h�x� = h � T�x� . �3�

In particular, one must find an h that not only satisfies Eq. �3�
but is also a homeomorphism. In general, there is no direct
technique to find such an h. Instead, we propose an indirect
solution approach: we create a fixed-point iteration scheme
that converges to a solution. The rest of this section describes
the development of that iterative scheme, which we decom-
pose into three components:

• Creating a contraction mapping that generates solutions to
the commutative diagram.

• Explaining why the result of that contraction yields a con-
jugacy h when S and T are conjugate �or, equivalently,
when �=�0, with �0 known�.

• Describing an iterative technique to find �0 when a and b
are given, but the required conjugacy parameter value
�from Lemma 1� is not known.

B. A contraction mapping from the commutative
relationship

On the interval �0,1 /2�, the explicit form for the sym-
metric tent map is T�x�=2�0x. Substituting into Eq. �3� gives

S � h�x� = h�2�0x� . �4�

To write an explicit description of S, we note that the interval
�0,1 /2� describes the domain of the left part of the tent map
T. Because we are identifying the conjugacy between these
two maps �which preserves the kneading sequence�, we con-
clude that h�0,1 /2�= �0,a� because �0,a� is the domain of
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the left part of the S map. On that interval, S�u�=b /au, and
substitution into Eq. �4� gives

b

a
h�x� = h�2�0x� . �5�

Similar logic applied to the interval �1 /2,1� gives

b

1 − a
�1 − h�x�� = h�2�0�1 − x�� . �6�

Therefore, the conjugacy function h�x� must satisfy the func-
tional equation,

h�x� = �
a

b
h�2�0x� 0 � x � 1/2

1 −
1 − a

b
h�2�0�1 − x�� 1/2 � x � 1.	 �7�

�see Fig 4 for a graphical representation of this relationship�.
Since a conjugacy should map turning points to turning

points, we note that

h�1/2� = a . �8�

Additionally, evaluating Eq. �7� at x=1 /2, we have

h�1/2� = a =
a

b
h��0� , �9�

yielding that

h��0� = b . �10�

Using Eq. �7� as a guide, we now create an operator
whose fixed point will satisfy the commutative diagram. We
consider the space B��0,1� ,R�, the set of all bounded func-
tions from �0, 1� to the real numbers, which is a Banach
space, with norm given by

�f� � �f�	 ª sup
x��0,1�

�f�x�� . �11�

Then we form the closed subset F�B��0,1� ,R�, defined by

F = 
f �f:�0,1� → �0,1�� , �12�

the set of functions from �0, 1� to �0, 1�. Then given �a ,b�
satisfying max�a ,1−a��b�1, we define a one-parameter
family of operators M� :F→F for 1 /2���1,

M�f�x� ª �
a

b
f�2�x� 0 � x � 1/2

1 −
1 − a

b
f�2��1 − x�� 1/2 � x � 1.	 �13�

The constraints on the parameters a ,b and � are required to
ensure that F is mapped into itself, but they also cause the
operator to be a contraction.

Lemma 2. M� is a uniform contraction on F, where the
contraction is with respect to � · �	.

Proof. Define


 = max�a

b
,
1 − a

b

 . �14�

Then 0�
�1. We compute

�M�f1 − M�f2�	 = sup
x

�M�f1�x� − M�f2�x�� . �15�

We decompose this problem into the two cases x�1 /2 and
x�1 /2. For the first case,

sup
0�x�1/2

�M�f1�x� − M�f2�x��

= sup
0�x�1/2

�a

b
�f1�2�x� − f2�2�x���

�
a

b
sup

0�y�1
�f1�y� − f2�y�� � 
�f1 − f2� .

Similarly

sup
1/2�x�1

�M�f1�x� − M�f2�x��

= sup
1/2�x�1

�1 − a

b
�f1�2�x� − f2�2�x���

�
1 − a

b
sup

0�y�1
�f1�y� − f2�y�� � 
�f1 − f2� .

So M� is a contraction, with contraction constant 
. Because

 does not depend on �, the contraction is uniform. �

With this groundwork in place, we establish the exis-
tence of a fixed point of the operator.

Lemma 3. There is a unique f��F satisfying

M�f� = f�. �16�

Moreover, for an arbitrary f0�F, if we define the sequence
of functions

fn+1 = M�fn, �17�

this sequence will converge to f�:

f� ª lim
n→	

fn. �18�

Proof. The lemma is a direct application of the Banach-
Caccioppoli Contraction Mapping Principle,22 and we simply
need to verify that we satisfy the hypothesis of the theorem.
Since B��0,1� ,R� is a Banach space, with F a closed subset,
and M� :F→F, the theorem applies, and the conclusions are
immediate. �

Remark: For any chosen �, by construction, the fixed

FIG. 4. �Color online� Satisfying the functional equation. Equation �7� can
be viewed as a process: take h�x� �panel 1� and make a copy, shrunken by
a /b in the vertical and by 2�0 in the horizontal �panel 2�. Take a second
copy, scaled the same horizontally, but vertically scaled by �1−a� /b. Rotate
this copy by 180 degrees and place it in the upper right portion of the unit
square �panel 3�. Then truncate the left copy to the interval �0,1 /2� and the
right copy to �1 /2,1�. The result �panel 4� should return the original h�x�.
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point f� will satisfy the requirements of the commutative
diagram, at least over some portion of its domain �see Ap-
pendix A for more detail�. The question remains as to
whether it is a conjugacy function between the two maps S
and T�. If the two maps are conjugate, which we know is
possible by Lemma 1 by choosing the parameter to be �
=�0, then it is straightforward to check that the f�0

produced
by the fixed-point iteration scheme is that conjugacy func-
tion, and we call it h�x�= f�0

�x�. It is important to note for
much of the following development that even if the two
maps S and T� are not conjugate and so no conjugacy func-
tion h�x� exists, the fixed-point iteration still produces a
function f� satisfying the commutative diagram. However, it
cannot be a homeomorphism.

C. The search for �0: A problem
of parameter estimation

Suppose we are given a chaotic map from the family S.
�In other words, �a ,b� are fixed.� By Lemma 1, we know that
there is a �0 such that map T�0

is conjugate to S. In this
section, we give a short explanation of how we find that
conjugate map.

When ���0, the maps Sa,b and T� are not conjugate, and
while the existence of f� as the fixed point of a contraction is
guaranteed by Lemma 3, f� fails to be a homeomorphism.
We find that for ���0, f� is monotone increasing, but not
continuous and not onto �0, 1�. The largest “gap” is at x
=1 /2. Because f� satisfies a recursive formulation �which
creates a self-similar structure�, a scaled version of this de-
fect appears at all x coordinates associated with the kneading
sequence of T. We define


̂��� ª lim
x→�1/2�−

f��x� − a �19�

as a way of measuring this “signed defect,” with 
̂����0
when ���0 �see Fig 5�. We discuss measuring homeomor-
phism defects and easier to compute suitable surrogates in
Sec. V.

As a short explanation for the gaps, we note that since

hT�T�� � hT�T�0
� = hT�Sa,b� , �20�

the only way that we match equivalent orbits under the T and
S dynamics is to restrict the domain of S. In other words,
there must be orbits of S that cannot be represented by T, and
the “gaps” indicate those initial conditions in S whose trajec-

tories do not have a matching trajectory under T.
In the case ���0, the entropy mismatch is in the other

direction, with

hT�T�� � hT�T�0
� = hT�S� . �21�

There are now orbits in T that cannot be represented in S.
Consequently, the commuting function f� must “remove” an
appropriate amount of entropy from the T dynamics by map-
ping multiple points in the domain to single points in the
range, so f� is not 1-1. Numerically, we observe similar dis-
continuities at x=1 /2 �repeated in accordance with the
kneading sequence�. We use the same measuring function


̂��� as defined in Eq. �19�, but we note that 
̂����0 when
���0.

Despite any limitations of numerical approximations of


̂���, we know analytically that


̂��0� = 0. �22�

Consequently, we can apply typical scalar root finding algo-
rithms �bisection, or secant algorithms, for example� to ap-
proximate �0.

III. CONSTRUCTING THE CONTRACTION MAPPING
FOR GENERAL TRANSFORMATIONS

In this section, we consider more general classes of dy-
namical systems than the tent maps examined in Sec. II A.
Our goal is to develop a methodology that will allow us to
“solve” the commutative diagram. Our primary tool will be
the construction of an appropriate operator whose fixed point
yields a solution to the commutative diagram. We call this
operator the commutation operator. Our approach to defining
the operator will be to generalize the technique of Sec. II A,
which constructed a contraction operator to solve the appro-
priate functional equation. We explain our method in two
parts, first by showing the construction process when the
dynamical systems are conjugate, and then we show how to
adapt that method to the case in which the maps are not
conjugate. For this general case, we do not prove that the
commutation operator is a contraction, but on all numerical
examples we have tested, it has converged to an approximate
solution.

A. Constructing the commutation operator
for conjugate maps

Here we must solve the commuting Eq. �1�, f �g1=g2 � f ,
for a general one-dimensional g1 and g2. To phrase this equa-
tion as a fixed-point problem, we would like to solve for f on
the right-hand side, but because we are interested in the case
in which g2 generates chaotic dynamics, it will not be invert-
ible. As we did with the tent maps, we tackle this problem by
providing a piecewise definition for the operator, where on
each piece we use a restricted subset of Y to define the g2

−1.
Note that an extended version of g2

−1 must be defined, which
we will call ĝ2

−1 in order to well define the contraction.
In this subsection, we assume that g1 and g2 are conju-

gate. Therefore, there is a homeomorphism h that satisfies
the commutative diagram, and this h is called a conjugacy. It

FIG. 5. �Color� Resolving �0. Fixing a=0.25 and b=0.9, we graph f� for
�=0.72 �red� and �=0.73 �blue�. The zoomed panel �right� illustrates that


̂�0.72��0 �the red curve jumps up at x=0.5� while 
̂�0.73��0 �the blue
curve jumps down�.
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is our goal to have h be a fixed point of our constructed
operator. We demand that h map monotone segments of the
graph of g1 onto monotone segments of g2. To simplify the
explanation, we assume that X and Y are compact intervals.
Let x= 
x0 ,x1 , . . . ,xn�, with X��x0 ,xn�, and g1 monotone on
each interval �xi−1 ,xi�, for i=1, . . . ,n. This notation results in
a natural decomposition of X into a union of disjoint sub-
intervals,

IX1 = �x0,x1� , �23�

IXi = �xi−1,xi�, i = 2, . . . ,n , �24�

X = �
i

IXi, �25�

where we have �arbitrarily� chosen the closure conditions of
the intervals. Because of the conjugacy of the dynamical
systems, there must exist y= 
y0 , . . . ,yn�, with Y ��y0 ,yn�
and g2 monotone on each interval �yi−1 ,yi�, with a similar
decomposition of Y into a union of disjoint subintervals IYi.

23

To allow for well defined inverse functions, we denote

g2i = �g2�IYi
. �26�

Because f is a conjugacy, it must map monotone inter-
vals of X to monotone intervals of Y, such that we may write

f�IXi� = IYi, i = 1, . . . ,n , �27�

by which we infer the identity

f�IXi� = g2i
−1 � g2 � f�IXi� . �28�

We can now rewrite the commuting equation �1� as a system
of equations,

g2i
−1 � f � g1�IXi� = f�IXi�,i = 1, . . . ,n . �29�

Having now solved for f on the right-hand side �RHS� of Eq.
�29�, we can use this formulation to construct the commuta-
tion operator. Let F be the set of functions from X to Y. Then
we define the operator Cg1

g2 :F→F, which takes F�F to
Cg1

g2F by

Cg1

g2F�x� = ĝ2i
−1 � F � g1�x�x � IXi. �30�

Note the slight change in notation between Eqs. �29� and
�30� in that we now use ĝ2i

−1 instead of simply g2i
−1, where we

still need to define and explain the former. We remark that
g2i

−1 is defined only for the interval g2�IYi�, which may not be
all of Y. However, F �g1�x� may be any value in Y. Conse-
quently, we need to extend g2i

−1 to all of Y. We define ĝ2i
−1 such

that it satisfies the following:

• ĝ2i
−1 is continuous on Y.

• ĝ2i
−1�g2i

−1 on g2�IYi�.
• ĝ2i

−1 is Lipshitz continuous on Y −g2�IYi�, with Lipshitz con-
stant L�1.

Simply by expanding the domain of definition for each of the
inverses, we ensure that for each x�X, Cg1

g2F�x� exists, so
that the commutation operator is well defined. The require-
ment on the Lipschitz constant is meant to increase the like-
lihood that the operator may be a contraction. However, the

requirements, as stated, do not uniquely define ĝ2i
−1. We have

chosen to retain this flexibility because we find that a judi-
cious choice of extension may ease the numerical implemen-
tation and provide additional insight into the relationship be-
tween the systems. In this paper, the examples have used one
or the other of the following strategies: �i� assume ĝ2i

−1 is
constant on Y −g2�IYi�, or �ii� when g2 is piecewise linear,
then simply assume that ĝ2i

−1 lies on the same line as g2i
−1.

Proposition 1. Let g1 and g2 be conjugate, with h :X
→Y the conjugacy. Then h is a fixed point of the commuta-
tion operator, Cg1

g2.
Proof. Take an arbitrary x. Then there is an i such that

x� IXi. Because h is a conjugacy, it must map monotone
intervals to monotone intervals. In particular, h�IXi�= IYi,
which implies that yªh�x�� IYi. We apply the definition of
the commutation operator,

Cg1

g2h�x� = ĝ2i
−1 � h � g1�x� . �31�

Because h is the conjugacy, we know that h �g1=g2 �h. Sub-
stituting into the above equation gives

Cg1

g2h�x� = ĝ2i
−1 � g2 � h�x� = �ĝ2i

−1 � g2��y� . �32�

Because y� IYi and ��ĝ2i
−1 �g2��IYi is equivalent to the identity,

we have

Cg1

g2h�x� = y = h�x� . �33�

�

Although h is a fixed point of the operator, we have not
established that we can use an iterative scheme to find h. In
the best situation, we would like the commutation operator to
be a contraction �as it was for the class of tent maps consid-
ered in Sec. II A�. In application to maps with chaotic attrac-
tors, we have found that iteration under the operator numeri-
cally converges to a fixed-point function.

B. The commutation operator for maps
that are not „necessarily… conjugate

We now consider the problem of creating a commutation
operator when map g1 and g2 are not necessarily conjugate.
We would like this operator to be a contraction, so that its
fixed point could be found by fixed-point iteration. More-
over, we want the fixed point to satisfy the commutative
diagram. In this section, we will simply address the problem
of creating the operator such that the fixed point of the op-
erator satisfies the commutation diagram on some positive
measure subset. The primary difference between this prob-
lem and that of the preceding section is that because the
systems are not conjugate, there is no a priori reason that we
should be able to match monotonic intervals of one dynami-
cal system to monotonic intervals of the other. Consequently,
the method requires some ad hoc component that specifies
this matching. As in the preceding section, the underlying
principle is that we will construct an operator whose fixed
point satisfies the commutative diagram. If the resultant op-
erator is a contraction, then the fixed point can be found by
an iterative method. In general, g1 and g2 are not conjugate,
which means that the fixed point is not a conjugacy. We will
use commuter to denote a fixed point of this general commu-
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tation operator, where the term appropriately describes that
the fixed point satisfies the commutative diagram.

To motivate our methodology, we start with the “idea”
that the commuter, f :X→Y should act like a change of vari-
ables, associating a trajectory of dynamical system g1 with a
trajectory of g2. In mapping an interval Ix�X to a f�Ix��Y,
we would really like to be able to associate trajectories of
points in Ix to trajectories of points in f�Ix�. If the systems are
not conjugate, then the “matching” will not be perfect. When
the two systems are conjugate, the commuter is continuous,
mapping intervals to intervals, and we are able to easily iden-
tify an appropriate matching by the maximum intervals on
which the dynamical systems are monotone. In essence, it is
this matching that prescribes the operator.

Construction of the commutation operator requires that
the mathematician, now acting as a modeler, make some
choices regarding the particular matching scheme to be em-
ployed. To describe our technique, we will decompose the
problem into two components: first, we define a set of mini-
mal requirements to constructing the operator; secondly, we
define a set of recommended choices for the construction,
where we provide some justification for those recommenda-
tions.

The following are requirements for construction of a
commutation operator:

1. Choose an integer n, which will be the number of inter-
vals for which we will prescribe a matching.

2. Choose a collection of disjoint subintervals 
IXi�i=1
n ,

where IXi�X, and I=�iIXi is a closed set that is forward
invariant under g1. Without loss of generality, we as-
sume that these intervals are ordered, such that if x1

� IXi and x2� IXj, then x1�x2 whenever i� j.
3. For each i� 
1, . . . ,n�, assign an inverse function

ĝ2i
−1 :Y →Y which satisfies the following:

• ĝ2i
−1 is continuous on Y.

• There is an associated interval IYi�Y, such that ĝ2i
−1 acts

like an inverse to g2 on the interval IYi. Equivalently, for
all y� IYi , ĝ2i

−1�g2�y��=y.
• ĝ2i

−1 is Lipshitz continuous on Y −g2�IYi�, with Lipshitz
constant L�1.

Using the above minimal choices, the definition of commu-
tation operator given in Eq. �30� remains notationally cor-
rect. However, we need to recognize that the construction
depended upon the actual choices for 
IXi� and 
ĝ2i

−1�, and we
should formally treat them as parameters in describing how
the operator acts on functions,

Cg1

g2F�x� � Cg1

g2�
IXi�,
ĝ2i
−1��F�x� ª ĝ2i

−1 � F � g1�x�, x � IXi.

�34�

Based on our experience, we provide the following list
of recommendations for formulating the commutation opera-
tor, where our goal is to improve the utility of the resultant
fixed point. In particular, if the systems are conjugate, we
would like the fixed point to be the required conjugacy.
When the systems are not conjugate, we still would like it to
act as a commuter from X to Y, while retaining as much of
the character of a homeomorphism as possible. We recognize

that in some modeling situations there will be good reasons
to take alternative approaches to those outlined below.

• Choose n to be as small as practical. As n increases, the
modeler is required to make more choices regarding which
intervals of X should be matched with which intervals of
Y. Unless the modeler has an a priori reason to force a
particular matching, it is better to allow the algorithm to
find a matching. Consequently, it is generally counterpro-
ductive to choose n to be larger than n2, where n2 is the
number of monotone sequences of g2. On the other hand,
g2 must be monotone on each interval IYi to allow the
inverse to be defined. So if the graphs of ĝ2i

−1 are to cover24

the graph of g2, we will need at least n2 different inverse
functions, requiring n�n2. Therefore, we typically choose
n=n2.

• We usually require I�X. As a slight weakening of that
condition, we might simply require that I be a closed in-
terval in X. The basic idea is that we would like the com-
muter to map X to Y, so we need to cover as much of X as
is possible.

• If n�n2, we will construct ĝ2i
−1 so that IYi are disjoint and

that �iIYi is a closed interval. Typically, �iIYi�Y. This
construction allows the covering of g2 described above.
Additionally, because the IXi have been ordered, we as-
sume that ĝ2i

−1 have been chosen to reflect a similar order-
ing on the IYi.

Remark: For the divergence measurements of the com-
mutator f discussed in the next section, we would like to
have at least existence and uniqueness of f in all of the
general settings just discussed. Our experience indicates that
a useful f does exist uniquely for all of the widely varied
modeling choices of domains, partitions, and nonconjugate
systems we have made. For the time being, however, the
generality of our method remains unproven, although our
remarks are suggestive of how the methods of proof de-
signed for specific examples may generalize. Observe that
the expansiveness of g2 is needed to give the contraction of
g2

−1 and consequently its extension ĝ2
−1 to prove a contraction

mapping converging to f as shown in Lemmas 1–3.

IV. MEASURE OF MOSTLY CONJUGATE

Suppose we have two dynamical systems,

g1:X → X, g2:Y → Y . �35�

When the two systems are topologically conjugate, then the
dynamics of one system completely describe the dynamics of
the other. However, if they are not conjugate, we may find
that “some” of the dynamics of one system can be described
by the other. We might heuristically judge that “most” of the
dynamics are well represented by the other system. In some
sense, we could consider the two systems to be “close,” but
that description is only reasonable if we can describe a “dis-
tance from conjugacy.” As an application, we consider this
prototypical problem: Fix g1, and consider some family D of
dynamical systems; find the element g*�D that most
closely approximates the dynamics of g1. Topological conju-
gacy defines two systems as having the same dynamics, and
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any notion of “distance to conjugacy” ought to provide a
means of determining the extent to which the dynamics are
similar. In this section, we propose a construct that allows
such a measurement.

In Sec. III, we described a technique for finding a com-
muter, f , from g1 to g2. Although f satisfies the commutative
diagram, it need not be a homeomorphism �and, therefore,
not a conjugacy�. Let 
�f� be a measure of how far f deviates
from a homeomorphism, with 
�f��0 when g1 and g2 are
conjugate. In Sec. V, we give a more thorough description of

, but for now, we simply state that the measuring function 

should be defined with sufficient flexibility to measure f rela-
tive to the “important” subset of X and Y, where “important”
and the associated measure would be problem-dependent and
according to the modeler’s choice of what to compare. If we
define CF�g1 ,g2� to be the set of all commuters from g1 to
g2, then for a given 
, we can define

��g1,g2� � inf
f��g1,g2�


�f� . �36�

As an expository description of �, we may think of a com-
muting function f as taking us from dynamical system g1 to
g2, and 
�f� measures a cost. Then � would describe a great-
est lower bound for that cost. In general, we would not re-
quire that the cost function be symmetric,25 so that ��g1 ,g2�
need not be the same as ��g2 ,g1�. However, we will require
that �=0 if g1 and g2 are conjugate.

Although � appears to be a useful theoretical construct,
we have no method for performing the optimization to evalu-
ate. Therefore, we also define a less global definition by tak-
ing the following approach: In Sec. III, we described tech-
niques to construct the commutation operator, C, for a given
g1 and g2. Suppose that within a certain class of problems,
we choose a particular canonical technique to construct the
commutation operator such that given a particular choice of
g1 and g2, the operator is uniquely defined. This unique
choice of operator will have an associated fixed point, fC,
which is a commuter. Then we can use this commuter to
evaluate the cost of transforming between the dynamical sys-
tems, defining

d�g1,g2� � 
�fC� . �37�

In practical application, given a dynamical system g, we
may wish to restrict the comparison to dynamical systems g̃
from a particular family G. Some examples of such restricted
families include the following:

• skew tents
• symmetric tents
• constant slope maps
• polynomial maps of degree n.

The point of using these restricted families is that �i� it may
be easier to provide a methodology for producing unique
commutation operators; �ii� we may choose families that are
described by a finite set of free parameters, making it easier
to search within that family; �iii� the properties of the canoni-
cal system may be universally understood. When applying
this restriction to the general problem of comparing an arbi-
trary g1 and g2, it is then necessary to project the problem

onto the family G. We denote ḡ, the projection of g into G, by

ḡ = arg min
g̃�G

d�g, g̃� . �38�

From a theoretical aspect, we need to be concerned with both
the existence and uniqueness of this minimizer. In this paper,
we will simply argue that our approach is meant to give a
computable approximation, and within that framework of nu-
merical implementation, it appears that our projection opera-
tion is sufficiently robust. Using this projection, we now de-
fine a new measurement function DG by

DG�g1,g2� = d�g1,g1� + d�g1,g2� + d�g2,g2� . �39�

We make the following remarks regarding DG:

• If g1�G, then we may choose g1=g1⇒d�g1 ,g1�=0.
• If g2�G, then we may choose g2=g2⇒d�g2 ,g2�=0.
• If g1, g2�G, then DG�g1 ,g2��d�g1 ,g2�.
• If G is a sufficiently large family such that g1 and g2 can be

�arbitrarily� well approximated, then we may expect

d�g1,g1� = O�
�,d�g2,g2� = O�
�

and

DG�g1,g2� = d�g1,g1� + O�
� . �40�

We also recognize that an alternative approach in choosing
projections g1 and g2 would be to choose a projection pair
that minimizes the sum, d�g1 ,g1�+d�g1 ,g2�+d�g2 ,g2�. How-
ever, that approach might add significant computational com-
plexity to the optimization problem, and we have found the
simpler approach to be sufficient in application.

A. Manifesto for our particular choice for G

Consider the family of dynamical systems T defined as
follows:

• Each f �T is continuous and piecewise linear on �a ,b�.
• For each f �T, �T��x��=c, constant wherever the derivative

exists.
• For each f �T, �T��x�� exists for all but perhaps a finite set

of points.

We call T the the set of constant slope maps. In several
applications, we note that choosing G�T results in some
nice properties for the projections because they inherit these
properties from dynamical systems characteristics of con-
stant slope maps.

V. MEASURING THE DEVIATION
FROM HOMEOMORPHISM

Suppose we have two dynamical systems, g1 :X→X and
g2 :Y →Y. Additionally, suppose f :D→R is a commuter, f
�g1=g2 � f . If f were a homeomorphism, then g1 and g2

would be conjugate. However, if we know that the two dy-
namical systems are not conjugate, then f must fail to be a
homeomorphism. We desire to build a metric that measures
the extent to which f fails to be a conjugacy. Our general
strategy will be to define a homeomorphic defect, which pro-
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vides a weighted average based on measurements of each
possible failure. We denote


O�f�= 
amount that f is not onto�,

1-1�f�= 
amount that f is not 1-1�,

C�f�= 
amount that f is not continuous�,

C−1�f�= 
amount that f−1 is not continuous�,

where we note that f−1 may not be well defined. While there
are certainly many ways to define each of these components,
a specific definition scheme should satisfy the following:

• 
O�f��0, with equality when f is onto.26

• 
1-1�f��0, with equality when f is 1-1.
• 
C�f��0, with equality when f is continuous.
• 
C−1�f��0, with equality when f−1 is continuous.

We define homeomorphic defect of f , denoted 
�f�, as a
convex combination


�f� = �1
O�f� + �2
1-1�f� + �3
C�f� + �4
C−1�f� , �41�

where the weights satisfy

0 � �i � 1, and � �i = 1. �42�

Our decision not to specify a particular choice for the
weights allows the flexibility to “tune” this metric for a par-
ticular application. Then


�f� � 0, with equality when f is a homeomorphism. �43�

We note that if the converse were to hold �such that 0 defect
implied homeomorphism�, then 
 could be used to provide a
“distance from conjugacy” for the two dynamical systems g1

and g2. In this paper, our primary goal is to maintain the
flexibility of the definitions �to allow broader applicability�.
Indeed, to retain this flexibility, our definitions are measure-
based and, consequently, we expect that the converse will not
hold.

A. Supporting assumptions and notation

We assume measure space/s �D1 ,A1 ,�1� and
�D2 ,A2 ,�2�, where D1�X and D2�Y, A1 and A2 are �
algebras and �1 and �2 are measures. D1 and D2 are “cho-
sen” by the modeler, and represent the subsets of X and Y
that are of interest to the modeler. For example, one might be
interested in comparing the dynamics of g1 and g2 on their
forward invariant sets, which might be smaller than the
whole space of the dynamics. Additionally, by allowing the
modeler to specify a measure, the “important” parts of the
sets D1 and D2 can be more heavily weighted. In some cases,
the dynamics of interest might lie on D1=C, with C an in-
variant Cantor set with Lebesgue measure-0. We may still
choose �1 such that �1�D1��0, which would allow us to
measure subsets of D1 in ways that will distinguish there
size. Typically, we will be interested in chaotic dynamics,
and assume that X and Y are bounded sets. In all the ex-
amples in this paper, the sets D1 and D2 are closed intervals
and �1 and �2 are Lebesgue measures; for simplicity, we call
this the standard case. Unless otherwise stated, we assume
that �1 and �2 are finite and nonatomic measures. Addition-
ally, we assume that D1�Rn and D2�Rn, with topologies

inherited from the usual topology. Our notation is that
f :D→R is a commutator. Generally, we think of D1 as being
a restriction to a set of interest, but we do not preclude the
case that D1�D �or similarly D2�R�. These situations re-
flect that sometimes the modeler is interested in a set that is
larger than where the commutator is defined. As necessary,
we will simply assume that the subsets resulting from vari-
ous intersections are �1 or �2 measurable whenever this
measurability is required by some definition. For ease of no-
tation, we define

�2�f�A�� = �2�f�A � D1� � D2� �44�

for arbitrary set A�X. The idea is that we want to restrict
ourselves to measuring image points that lie in D2, whose
pre-image was in D1. Similarly, we define

�1�f−1�B�� = �1�f−1�B � D2� � D1� . �45�

B. “Onto” deficiency

To measure the onto deficiency, we desire to measure the
fraction of D2 which is not covered by the range of f . We
define the onto deficiency, 
O, of the function f by


O�f� = 1 −
�2�f�D1��

�2�D2�
. �46�

See Fig. 6.
Because f may have fractal structure with the range of f

a Cantor set, it may be difficult to implement Eq. �46� in
computational practice. As a “suitable surrogate,” we find
that if D2 is an interval and �2 is absolutely continuous, we
can often quantify the lack of onto-ness by finding the “big-
gest hole” in the range of f . Specifically, if we define

G ª D2 − f�D1� , �47�

then a suitable surrogate is given by


̃O�f� ª sup
I�G

m�I� , �48�

where I is an interval and m is a Lebesgue measure. Note

that generally 
̃O�f��
O�f�, but we expect that the values


̃O�f� and 
O�f� will both change in the same direction �ei-
ther increase or decrease� in response to a change in the
argument function f . In other words, the hallmarks of an

FIG. 6. �Color� Illustration of onto deficiency. See the definition of 
O, Eq.
�46�. The space X is represented on the horizontal, with Y the vertical. The
sets of interest, D1 and D2, are colored red and green. On each graph, we
show an example of the graph of a commuter, f�x�. The “onto-deficiency” is
computed from a �2 measure of the yellow portion. The right-hand example
illustrates that �1� we are only interested in measuring the extent to which
D2 is covered �so the lower gap is not a problem�, and �2� we are only
allowed to use the part of f that is over D1.
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appropriate suitable surrogate are such monotonicity with

respect to parameter variations between 
̃ and 
. This may
not always hold true, but it is often true in application on the
simple examples we describe here.

C. 1-1 deficiency

To measure the extent to which f is not 1-1, we need to
quantify where the function is not 1-1, by measurement on
the domain of f , and the extent of the folding,27 a measure-
ment on the range. We proceed as follows: we define G to be
the collection of all subsets G�D1 which satisfy the follow-
ing:

• G is �1 measurable.
• f�G� is �2 measurable.
• f is restricted to G is 1-1.

For any such G, we denote its complement in D1 by Ḡ
�D1−G. Then we define the 1-1 defect by


1-1�f� ª inf
G�G

� �1�Ḡ�
2�1�D1�

+
�2�f�Ḡ��
2�2�D2�

� . �49�

See Fig. 7.
In the standard case, we simply try to identify the largest

part of the range that is multiply covered. We define enve-
lope functions

e+�x� = sup
D1�y�x

f�y� , �50�

e−�x� = inf
D1�y�x

f�y� . �51�

Then e+�x� records the largest function value to the left of x,
while e−�x� records the smallest function value to the right of
x. Then


̃1-1�f� = �e+�x� − e−�x��p. �52�

We often choose p=	, yielding the sup norm, but other
choices for p may be useful in some situations.

D. Measuring discontinuities of f

To measure discontinuities, we note that a continuous
function maps “small sets to small sets,” and that a discon-
tinuity is indicated when an arbitrarily small set is mapped to
a large one. In particular, we seek to identify when the f
undergoes a “jump,” and measure the jump. To allow the
possibility of Cantor sets for D1 and D2, we will need to
define these ideas in terms of sets and measures of those sets.

For each x0�D1 and for each ��0, we define the set

B��,x0� ª 
x:x � D1, �x − x0� � �� , �53�

which creates a nested family of sets as �↘0. We measure
the f image of these sets by defining

a��x0� ª inf
I�f�B��,x0��

�2�I � D2�
�2�D2�

. �54�

Because a��x0� is monotonically decreasing with decreasing
�, we can take the limit as �↘0, defining

a�x0� ª lim
�→0+

a��x0� , �55�

where we think of a�x0� as being the atomic part of f .28 We
define


C�f� ª sup
x0�D1

a�x0� . �56�

See Fig. 8.
Because 
C�f� is fundamentally based on intervals, we

generally find that it is sufficiently easy to approximate such
that we have not used a surrogate. However, we note that if
D1 is an interval, we can define


̃C�f� = �a�x0��p. �57�

We note that 
̃C�f��
C�f� when p=	, but the flexibility to
use other norms might prove useful in some situations.

E. Discontinuity in f−1

In the standard case, we note that if f is 1-1 and con-
tinuous, then f−1 is well defined and is also continuous, so
this requirement on a conjugacy may seem redundant. Gen-
erally, this requirement for a topological conjugacy is needed
because the domain space and range space may be defined
with very different topologies. In our situation, although the
topologies are typically similar �based on inheriting the usual

FIG. 7. �Color� 1-1 defect. See definition of 
1-1, Eq. �49�. �Left� A typical
deficiency, where we take a �1 measure of the set that must be removed
from D1 to make the remaining function 1-1 �the blue horizontal segment�
and a �2 measure of the portion of D2 which is multiply covered �the
yellow�. �Right� In this example, note �1� the nonmonotonicity near region A
is not measured, because it lies outside the sets of interest; �2� the horizontal
component in region B results in a defect from the horizontal measurement,
but no contribution from the vertical; �3� in region C, we take the interval to
the left of the jump to perform the horizontal measurement because of the
inf in the definition of 
1-1.

FIG. 8. �Color� Continuity defect. See definition of 
C, Eq. �56�. �Left� For
a typical discontinuity, we �2 measure the size of the jump �and then choose
the largest such jump�. �Right� When D2 is not an interval, we must be more
careful. The discontinuity in region A does not create a defect, because it lies
outside of D2, while in region B, we only measure the portion of I that lies
inside D2.
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topology of the line�, we find that directly measuring this
fourth defect is the easiest and most direct way to measure
gaps in the domain of definition. To define this defect, we
employ the same strategy as for measuring the continuity of
f .

For each y0�D2 and for each 
�0, we define the set

B�
,y0� ª 
y:y � D2, �y − y0� � 
� . �58�

We measure the pre-image of these sets by defining

â
�y0� ª inf
I�f−1�B�
,y0��

�1�I � D1�
�1�D1�

. �59�

Taking the limit 
↘0, we define

â�y0� ª lim

→0

â
�y0� , �60�

where we think of â�y0� as being the atomic part of f−1. We
define


C−1�f� ª sup
y0�D2

â�y0� . �61�

In the standard case, we use this defect to measure gaps in
the domain. Similarly as for 
C, a suitable surrogate is to
measure the largest such gap in the domain. We define I to
be the set of all intervals I�D1 such that f�x� is undefined or
constant for all x� I. Then we measure the defect as


̃C−1�f� = sup
I�I

m�I� , �62�

where m is a Lebesgue measure.
The picture for 
C−1�f� is not shown, but would be simi-

lar to that shown for 
C�f� in Fig. 8, where the roles of
domain and range are reversed in the obvious manner for
inverse functions.

VI. EXAMPLES

In this section, we present several examples of compar-
ing maps g1 and g2 by showing the resulting commuter f ,
whether it be a homeomorphism or not �Figs. 9–16�. Each
example follows the same presentation template: in the left
panel, we graph g1 in blue and g2 in red. Additionally, the
graphs for ĝ2i

−1 are displayed in green circles. Along the hori-
zontal axis, the blue and red rectangles indicate the chosen
intervals IXi and IYi. The right panel graphs the resultant
commuter function created by repeated application of the

commutation operator. For each commuter, the caption

shows the approximate computation 
̃�f�=1 /4�
̃O+ 
̃1-1

+ 
̃C+ 
̃C−1�.

VII. CONCLUSIONS

In this paper, we have put forward a generalizable
method based on functional fixed-point iteration to explicitly
construct the change of coordinates function that acts as a
conjugacy between two topologically conjugate dynamical
systems. We expect that our method of fixed-point iteration
will extend, in a straightforward manner, to building conju-
gacy functions between higher dimensional systems when
the symbol generating partitions are available. Of course, we
know that this last caveat29,30 is nontrivial, and this research
is one aspect of our continuing work in the subject.

While construction of conjugacy functions is interesting
in its own right, we do not consider this to be the main
intellectual contribution of the work. In our opinion, a re-
markable aspect of our methods of fixed-point iteration is
that it still produces a commuter, even between nonequiva-
lent systems, and in a sensible manner according to choices

FIG. 9. �Color� These two tent maps are almost conjugate. 
̃�f�
�1 /4�0.032+0+0.032+0�. Note that g1�1��0.

FIG. 10. �Color� Maps that are not close to conjugacy. 
̃�f��1 /4�0+0+0
+0.163�. Near x=1 /2, the commuter, f is actually horizontal, indicating that
there is an interval of orbits of g1 than cannot be represented in g2, but are
instead associated with the vertical sections of the green graphs of g2, which
we defined as ĝ2i

−1, which “complete” the inverse of g2, as required by Eq.
�30�. The apparent vertical gap of the commuter is not a defect of continuity,
but is simply the result of an extremely steep section in the graph, and not
enough points are plotted to fill in the picture. We know there is no actual
vertical gap because g1 is a full shift and is able to match all orbits of g2.

FIG. 11. �Color� Logistic map with “just a little” extra dynamics. Although
these maps are nearly the same height, they are far from conjugacy. That g1

has two humps, and g2 has one hump, which suggests that subshifts of �4

and �2, respectively, are required to represent the dynamics. 
̃�f�
�1 /4�0.12+0.056+0.12+0�. However, g1 behaves as if it is almost conju-
gate to a trapezoid map �Ref. 37�, also known as a gap-map �Ref. 38�, since
it does not take a large perturbation to replace the extra humps of x
� �0.25,0.5�, with a horizontal line segment. However, our first choice,
using a tent map of approximately the same height as g1, does not match
very well. Note the vertical gaps in the commuter, indicating that g2 has
dynamics that are not matched by g1.
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and preconceptions of the modeler. We put forward that the
major contribution of this work is the thesis that dynamical
systems should be comparable in a sense that is consistent
with the topological conjugacy notion of equivalence; this is,
after all, the centerpiece of the field of dynamical systems.
Whereas nonequivalent systems have typically been com-

pared by choice of a particular functional Banach space, such
as L2, it is obvious and well known that similarity or dissimi-
larity within such a norm does not directly address compari-
son between orbits of the two systems. Instead, we have
claimed that comparison of nonequivalent dynamical sys-
tems could be made via the commuter function by measuring
how it fails to be a homeomorphism. We believe that the
specific details of our defect cost function 
 are reasonable
and useful to our stated purposes in the manifesto of Sec.
IV A. Furthermore, we have designed flexibility for the mod-
eler to design the details of 
 so as to focus on various
aspects of the mismatch. As we have shown in the examples
of Sec. VI, a nonzero defect is generally descriptive of non-
matching between some of the orbits of the two dynamical
systems, and the concept of measuring mismatch is the main
issue we wish to emphasize, separate from the details of our
defect functions. Thus, beyond entropy, we have outlined a
new method measuring the dissimilarity of the languages
corresponding to orbit structures of two nonequivalent dy-
namical systems. In this sense, our new methods may be
considered more natural, within the context of a dynamical
systems-based comparison, than a direct comparison of the
right-hand sides of dynamical systems by using the norm of
the difference in some Banach space.

There are a number of theoretical and applications ori-
ented directions that we are currently pursuing in the future
development of this work. These efforts include a topological
based parameter estimation scheme for modeling dynamical
systems within an assumed model classes, for example to
match “toy models” to observed data. Similarly, our methods
should be considered as a principled way to validate models
produced by analysis of time-delay embedded data, where
the primary desire is proper representation of the dynamical
characteristics of the original system. Furthermore, since cer-
tain systems of differential equations �such as the Lorenz
equations� admit Poincaré surface of sections which are very
much like one-dimensional maps, our techniques are already
directly applicable to such ODEs. We are also pursuing an
extension of our fixed-point iteration scheme to allow for
multivariate systems, within our ability to decide generating
partitions. In this context, there is promise to extend our
methods for comparison of general classes of differential
equations. There is no fundamental roadblock to a multivari-
ate extension of the fixed-point iteration scheme, and since

FIG. 12. �Color� Better projective comparison. The blue map g1 is identical
to that shown in Fig. 11, but here it is compared to a shorter tent map,
g2�x�=T0.55. Therefore, this g2 involves much less folding of the interval into
itself than the g2 of Fig. 11. Because of the L1 difference between the maps,
we might presume g2 is less close to g1 in an almost conjugacy sense.

However, our almost conjugacy surrogates measure 
̃�f��1 /4�
1+0.004
+
3+0.031�, where 
i denotes a numerically small value, which is signifi-
cantly smaller than the defect in Fig. 11. Although the graph seems to

indicate a large onto deficiency, the small 
̃O can be understood by first
considering only the invariant sets of each map, D1= �0.201,0.95� and D2

= �0.495,0.55�, instead of the unit intervals �0, 1� shown. This scenario is

emphasized by the inset picture of f , where we can see that 
̃O is small, and
the other defects are even smaller. Comparing the maps g1 and g2 outside of
the invariant sets, say on the left sides, near x=0, the maps are very similar:
each sweeps initial conditions monotonically into D1 and D2, respectively.
Thus the extension of f to the full �0, 1� to �0, 1� does not suffer the apparent

onto deficiency near x=0 and x=1. 
̃1-1 is small because this surrogate
measures only the difference between the upper and lower envelope, as per

Eq. �52�. f is not continuous, but 
̃C is small since the vertical steps are

short. The largest defect measurement, 
̃C−1, comes from short horizontal
components, which are measured as discontinuities in f−1. Why would the
much shorter tent map g2 here measure better as almost conjugate than the
g2 shown in Fig. 11? The result is reasonable when we focus on invariant
sets: The blue curve on its invariant set is much more like the green g2 in
this example than the g2 in Fig. 11, where a large fraction of the unit interval
is folded over itself. We conclude that although the blue curve is tall, on its
invariant set, it appears to be much like a scaled, almost conjugate, version
of the short tent map on its invariant set.

FIG. 13. �Color� Identical on the invariant set. For this example, g1 and g2

are identical on the interval �0.1, 1�. However, whereas g2 is a simple tent
map, g1 has an additional hump on the interval �0, 0.1�. Because the maps
are the same over a portion of the domain, the commuter coincides with the

identify map on an interval. 
̃�f��1 /4�0+0.12+0+0�. If dynamics were
restricted to the invariant set of each system, then the two maps would be
conjugate, with f�x�=x the homeomorphism.
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the design of the defect functions was entirely measure-
based, it will extend directly to this setting. A future goal for
this work is to be able to measure the degree to which a toy
model is descriptive of the larger system �such as a Galerkin
projection of a PDE�.39,40
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APPENDIX A: QUADWEBBING

“Quadwebbing” is our name for a graphical representa-
tion that allows us to visualize the action of the both com-
mutation operator and the commuter in relation to one-
dimensional �1D� maps of the interval. The basic structure of
a quadweb diagram is based on the idea that we seek to

understand the relationship between dynamical systems g1

and g2 within the context of the commutative diagram:

X ——→
g1

X

f↓ ↓ f

Y ——→
g2

Y

�A1�

Each quadweb is constructed by dividing the figure into a
two-by-two panel of axes, where each panel shows the graph
of one of the four functions shown in the commutative dia-
gram. The plots are arranged to allow a graphical illustration
of how the function f satisfies the commutative diagram.
Figure 1 �left� illustrates the case of conjugate dynamical
systems.

In addition to illustrating how the commuter satisfies Eq.
�A1�, it reveals where it might fail. Specifically, as we recall
from Sec. III, we noted that to have a well defined operator,
we needed to extend the graph of g2 such that its inverse
could be applied to any y�Y. We denoted the modified
graphs as ĝ2i

−1. We use the term31

The zed describes that portion of the graph of

ĝ2i
−1 that does not coincide with g2. �A2�

If f �g1�x� lies on the zed, then Eq. �A1� does not hold for
that x. This phenomenon can be interpreted to mean that g1

has more dynamics than can be represented by g2 under the
assumed partitions. Figure 17 illustrate this behavior.

The quadweb diagram allows for easy understanding of
what some typical defects imply about the dynamics of the
system. In particular, wherever f is horizontal, we see an
interval of initial conditions for system g1 that must be rep-

FIG. 14. �Color� The period–3 window. Choosing g1 to be the logistic map
with parameter 3.84, there is an attracting period–3 orbit whose basin is a
point in the interval. A Cantor set of initial conditions that are not in that
basin constitute a chaotic saddle of g1. We compare this map to a submaxi-
mal tent map, where we have chosen the height of that tent map so that the

defect will be small, with 
̃�f��1 /4�0.0005+0+0.0005+0.022�. A higher
tent map would create large intervals on which f is horizontal, while choos-
ing a smaller tent would create larger vertical gaps. Each horizontal compo-
nent indicates that f is associating an interval of g1 dynamics to a single
point in g2.

FIG. 15. �Color� Two full-shift maps that are not conjugate. g1 is a slight
alteration of the full-shift symmetric tent. The right leg has been modified so
that a small portion has a slope m, with �m��1, where that interval contains
the fixed point. Therefore, g1 has a stable fixed point at xf =0.665. This
commuter is similar in character to that of Fig. 14—the stable periodic point
of the X dynamics means that an entire interval of initial conditions must be
associated with a single point in the Y dynamics. Since the initial condition
is in the basin of attraction for this fixed point, the resultant commuter is a

devil’s staircase function. 
̃�f��1 /4�0+0+0+0.048�. We remark that when
measuring the defect via suitable surrogate, the deficiency caused by hori-
zontal portions of the commuter is recorded as a defect in the continuity of
the inverse, not by the defect in 1-1.

FIG. 16. �Color� The “too-tall” logistic map. The literature �Refs. 5 and 9�
tells us that the invariant set of this logistic map is semiconjugate to the full
tent map. This relationship is a conjugacy if the domain of the tent map
excludes the peak point, and all of its pre-images. This commuter f , shown

here for the first time, has defects 
̃�f��1 /4�0+0+0+1 /3�, and it is, in
fact, a devil staircase function with flat spots over the holes of a Cantor set.
Notice the strong similarity to the previous two examples.
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resented by a single point under g2. Similarly �see Fig 1
�right�� when f has a vertical gap, there is an interval in g2

that has no associated orbit in system g1.
As a final illustration of alternative uses of the quadweb,

we use the diagram to provide a graphical description of the
action of the commutation operator. If we graph an arbitrary
f0 in the lower left panel, we can graphically compute f1

=Cg1

g2f0 as follows: Choose an arbitrary x coordinate in the
right half of the quadweb. Move up until you reach g1, then
left until you reach f0, up again to g2, then to the right.
Although we used g1 and f0 in the usual way of graphically
applying a function, we note that we used graph g2 by going
from range Y to domain Y, equivalent to applying g2

=1. Con-
sequently, we graphically “compute” the path g2

−1 � f �g1�x�.
The resultant intersection of that line with the original x co-
ordinate is a point on f1. Repeating at a sufficiently dense set
of x coordinates will allow a robust description of f1. See
Fig. 18 for an example of this technique.

APPENDIX B: RELATIONSHIP TO DE RHAM
FUNCTIONS AND LEBESGUE SINGULAR FUNCTIONS

In this appendix, we will give a direct and constructive
proof of the singular nature of homeomorphisms between
full shift tent maps. A standard result from ergodic theory
gives that probability measures on distinct shift maps are
mutually singular.32 Since the conjugacy must map the uni-
form measure of the symmetric tent to the mutually singular
probability measure on a skew tent, that conjugacy must be a
singular function.33 The purpose of including a proof of the
special case form of this fact, in the form of Proposition 1
below, is that we hope that its constructive approach gives
explicit intuition for general homeomorphisms, to the geo-
metric constructive nature of the fixed-point iteration scheme

highlighted in this paper, and some insight into what may
become of the geometry of nonhomeomorphic commuters.
We show that the conjugacy function h�x� which results is
both a Lebesgue singular function, and in many ways re-
minds us of a de Rham function. The similarity of our ho-
meomorphisms h�x� to the de Rham functions arises from the
fact that both are solutions to functional equations of similar
form. We note that required solutions to de Rham–like equa-
tions can arise quite naturally in other settings of dynamical
systems,34 with a standard solution approach of finding an
expression of the problem that can be solved using the Con-
traction Mapping Principle.

We recall definitions of these peculiar functions before
we proceed to prove the properties of our h�x�. While we
have not proven that homeomorphisms between two tents
that are not both full have these properties, and we also do
not prove these properties for either nontent maps or nonfull
shift tent maps, the properties are certainly suggestive of the
nature of the kinds of peculiarities one might expect, and
even which seem apparent in the simulations. Most striking
is the degree to which we now know that the usual homeo-
morphism example between a full tent and the full logistic
map, which gives rise to a diffeomorphism, can mislead in-
tuition from the more typical conjugacy.

1. Lebesgue singular functions

Definition [36]: A continuous function of bounded varia-
tion s�x� is called a singular function if it is differentiable
almost everywhere on its domain, and the derivative s��x�
=0 where it exists, and it is called a Lebesgue singular func-
tion when almost every one is in the sense of a Lebesgue
measure.

Definition [39 and 40]: de Rham functions. A de Rham

FIG. 17. �Color� Quadweb for nonconjugate maps. g1 maps across X a full
three times. g2, shown in red, also has three laps, but they do not map
completely across Y. The yellow graph shows the ĝ2i

−1, which are used to
construct a well-defined commutation operator. The green path illustrates
f �g1 for a particular x. Using the same x, we use the purple path to show
g2 � f�x�, which obviously does not coincide with the green. Rather the green
path shows that we land on the zed which is the case for all x inside the
intervals colored pink. The black rectangles illustrate that Eq. �A1� holds at
x lying outside these intervals.

FIG. 18. �Color� Quadweb illustration of the commutation operator. For
ease of illustration, we choose f0 as the identify map, and plot it in the lower
left corner. The orange vertical shows a chosen x coordinate, and the green
path shows the graphical computation of g2

−1 � f �g1�x�. The intersection in the
upper right quad is a point that lies on f1=Cg1

g2f0. Generally, you would need
to repeat for a large number of x coordinates. However, since all maps are
linear in this example, a few well chosen points are sufficient to describe the
first application of the commutation operator.
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function is the unique bounded solution of the functional
equation

�� t

2

 = a��t�, �� t + 1

2

 = a + �1 − a���t� , �B1�

where a� �0,1� is fixed and Eq. �B1� is satisfied for all
t� �0,1�.

2. h„x… is a singular function

In this section, we will show that for some parameter
values, the f� that results from Lemma 3 is a singular func-
tion. The argument of this proof follows closely the structure
found in Ref. 19, which is standard for the de Rham func-
tions. However, slight modifications to the proof are required
due to the differences between his problem and ours. We will
specifically consider the conjugacy between a full shift skew
tent map and the full shift symmetric tent.

Consider the set of skew tent maps of the form Sa,1,
which are the maps that generate a full shift on two symbols.
These maps are conjugate to the full shift symmetric map,
T1, by which we infer that �=�0=1. If a=1 /2, then S�T1,
and the conjugacy would be the identify map. However,
when a�1 /2, we can find the conjugacy h by developing
the contraction operator and identifying its fixed point. Then
f�� f�0

� f1�h. Because h is a conjugacy, we know it is
strictly increasing and continuous. However, we will find
that despite these restrictions, h remains a very strange func-
tion.

Recall35,36 that by the Lebesgue Decomposition Theo-
rem, a function g�x� of bounded variation may be decom-
posed,

g�x� � a�x� + s�x� , �B2�

where a�x� is absolutely continuous and s�x� is purely singu-
lar. As an additional description of this decomposition, we
have

a�x� =� g��x�dx ⇒ g�x� = s�x� +� g��x�dx . �B3�

So the singular part separates out the components that pre-
vent a function from satisfying the fundamental theorem of
calculus. Because h is strictly monotone and continuous on a
closed interval, it is of bounded variation, so it is decompos-
able as above. However, in the following paragraphs, we
show that h�x� is itself a purely singular function, such that

h�x� � a�x� + s�x� ⇒ a�x� � 0. �B4�

Proposition 2. Let h�x� be the conjugacy between Sa,1

�S and T1, where a�1 /2. Then h��x� exists for almost ev-
ery x� �0,1�. Moreover, h��x�=0 wherever h��x� exists.

Proof. Because h must be a homeomorphism, it is in-
creasing. Then a standard result from analysis36 tells us that
h is a.e. differentiable, giving the existence of h��x�. Suppose
that the derivative exists at some 0�x�1; we will show that
h��x�=0.

For each n, we find integer kn such that

x � In ª � kn

2n ,
kn + 1

2n �; �B5�

measuring the range of h over the interval In, we define

pn ª h� kn + 1

2n 
 − h� kn

2n
 . �B6�

Since h��x� exists, we know that

h��kn�2−n,�kn + 1�2−n� =
pn

2−n → h��x� , �B7�

where the left-hand side symbolizes the Newton divided dif-
ference. If h��x��0, then the ratio of two successive divided
differences �for n and n+1� will tend to 1. Therefore, the
ratio

pn+1

pn
→

1

2
, �B8�

as long as h��x� is distinct from 0.
To complete the proof, we will show that either

pn+1 / pn=a or pn+1 / pn=1−a, where this property holds for
all x. This portion of proof results from the self-similar struc-
ture that derives from the fact that h�x� is the fixed point of
the contraction mapping M1 defined by Eq. �13�, where we
are using b=�=�0=1. The proof proceeds by induction:

• True for n=0. We have p0=h�1�−h�0�=1−0=1. If x
�1 /2, then I1= �0,1 /2� ;h�1 /2�=a, and p1 / p0=a. For x
�1 /2, p1=h�1�−h�1 /2�, giving p1 / p0=1−a.

• Induction. Assume that for arbitrary x, pj+1 / pj

� 
a ,1−a� for all 0� j�n−1. We will show that the prop-
erty holds for j=n.

Note that the end points of In are xleftªkn /2n and xright

ªkn+1 /2n. Denote the midpoint of In as xmid. Then either
In+1= �xleft ,xmid� �which implies that kn+1=2kn� or In+1

= �xmid,xright�, implying kn+1=2kn+2. If we assume that In+1

is on the left half of In, then

pn+1

pn
=

h�2kn + 1

2n+1 
 − h� 2kn

2n+1

h� kn + 1

2n 
 − h� kn

2n
 , �B9�

whereas if In+1 is the right half of In, we have

pn+1

pn
=

h�2kn + 2

2n+1 
 − h�2kn + 1

2n+1 

h� kn + 1

2n 
 − h� kn

2n
 . �B10�

We now take advantage of the self-similarity implied by Eq.
�7�: When x�1 /2, we have that ah�2x�=h�x�. So for each
function evaluation in Eqs. �B9� and �B10�, we perform the
substitution

ah� m

2r−1
 = h�m

2r
 . �B11�

To simplify notation, we denote by In� the dyadic intervals
containing the point 2x, and define pn� as the length of the
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intervals h�In��. Then applying Eq. �B11� to Eqs. �B9� and
�B10�, we have that

pn+1

pn
=

ah�2kn + 1

2n 
 − ah�2kn

2n 

ah� kn + 1

2n−1 
 − ah� kn

2n−1
 =
pn�

pn−1�
, �B12�

or

pn+1

pn
=

ah�2kn + 2

2n 
 − ah�2kn + 1

2n 

ah� kn + 1

2n−1 
 − ah� kn

2n−1
 =
pn�

pn−1�
. �B13�

By assumption,

pn�

pn−1�
� 
a,1 − a� . �B14�

The argument for x�1 /2 is similar, though the scaling factor
is 1−a instead of a. �

3. Remarks and lessons from the de Rham–like
conjugacies

We have remarked that since two piecewise linear maps
with different metric entropies must not be diffeomorphically
related, then any conjugacy between two such maps cannot
be everywhere differentiable. It may not be immediately ob-
vious what is the distinguished point or points where the
discontinuity of the derivative of h�x� should reside. Now, in
light of the analysis of the de Rham like properties of h�x� in
the previous section, we see that the discontinuities are
dense, located at endpoints of the dyadic intervals In�, corre-
sponding to preimages of the map peaks, where there is a
discontinuity in the slope of the nth composition of the sym-
metric tent map.
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