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Abstract— We examine the synchronization problem for a
group of dynamic agents that communicate via a moving neigh-
borhood network. Each agent is modeled as a random walker in
a finite lattice and is equipped with an oscillator. The communi-
cation network topology changes randomly and is dictated by the
agents’ locations in the lattice. Information sharing (talking) is
possible only for geographically neighboring agents. The complex
system is a time-varying jump nonlinear system. We introduce the
concept of long-time expected communication network defined as
the ergodic limit of the stochastic time-varying network. We show
that if the long-time expected network supports synchronization,
then so does the stochastic network when the agents diffuse
sufficiently fast in the lattice.
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ity, graph, fast switching

I. INTRODUCTION

Over the past few years, synchronization in complex net-
works has attracted a massive research attention, see the
excellent reviews [1], [2]. Synchronization problems can be
found in wide variety of phenomena, ranging from epidemics
[3], to biological systems [4], sociology [5], chemistry [6],
nonlinear optics [7], and meteorology [8].

Despite the very large literature to be found, the great
majority of research activities have been focused on static
networks whose connectivity and coupling strengths are con-
stant in time. For example, static networks are assumed for the
analysis of [9], [10], [11], [12], [13], [14], [15], [16]. However,
in many real-world complex networks, such as biological,
epidemiological and social networks, it is reasonable to assume
that the coupling strengths and even the network topology
can evolve in time. Recent works such as [17], [18], [19],
[20], [21], [22], [23] are amongst the few to consider time-
dependent couplings.

To our knowledge, [22] is the first research attempt, in
the synchronization literature, to naturally model the time
evolution of the communication network. In particular, in
[22] synchronization over a network of diffusing agents com-
municating within geographical neighborhoods is considered.
Each agent carries an oscillator and moves ergodically in the
environment. A communication network is formed based on
the agents’ motion. When two diffusing agents are close, a
communication link is established and information sharing is
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possible: the agents talk. When the same two agents move
apart, the communication link is removed, and information
sharing is prohibited. Through numerical experiments it is
shown that the oscillators’ synchronization is possible even
if the communication network is mostly disconnected at any
frozen time instants. It is conjectured that synchronization
of the set of oscillators can be assessed by examining a
time-averaged communication network that is computed from
the underlying time-varying and sparsely connected network.
The model proposed in [22] seems particularly promising for
modeling social interactions and epidemic spreading.

In [23] we made a first attempt to mathematically formalize
our results of [22] . However, whereas in [22], our agents
moved ergodically in an underlying state space, which au-
tomatically formed time varying networks, our work in [23]
simply concerned deterministic switching between a finite col-
lection of networks representing couplings between oscillators.
Network switching was not due to agents’ motion. In this
paper, for the first time we are able to put the results in [22]
onto a much firmer footing, using a related system, where we
assume agents randomly walking through an underlying graph.

We consider a system of /V identical agents that meander in
a finite region. Each agent carries an oscillator and diffuses in
the environment as a random walker. Each agent is described
in terms of a spatial coordinate X, specifying its random walk,
and a state variable z, characterizing the oscillator’s state.
We assume that the random walkers are independent and that
diffusion takes place in a bounded lattice described by a finite,
connected and not bipartite graph. In addition we assume that
the random walkers move only at prescribed instants in time,
equally spaced with a period A. The period A is a measure
of the time-scale of the diffusion process, the smaller A is,
the faster the agents meander in the environment.

We associate to the random walks a time-varying commu-
nication network, represented by a graph on a N-dimensional
vertex set that we name the moving neighborhood graph. The
edges of the moving neighborhood graph are determined by
the agents locations in the lattice, that is a link between two
agents is present only when the corresponding random walkers
occupy the same site of the lattice. Therefore, this graph is
generally not connected at frozen instants in time. The time



evolution of the moving neighborhood graph, due to motion of
the agents in the lattice, is called the network dynamics and
is independent by the states of the oscillators. When a link
is present between two agents in the moving neighborhood
graph, the corresponding oscillator systems are dynamically
coupled. The time evolution of the set of oscillators is called
the system dynamics and is influenced by the network dynam-
ics.

The set of oscillators coupled by the moving neighborhood
graph are synchronized if all their states are equal. We
determine sufficient conditions for asymptotic synchronization
by combining results from Markov chains, stochastic stability
and fast switching theory. We define the long-time expected
communication network as the ergodic limit of the moving
neighborhood graph. In the long-time average, the network
behaves like an all-to-all coupling scheme among the oscilla-
tors and the related synchronization problem may be addressed
by using the well-known master stability function, see e.g.
[9], [10], [13]. We show that if the oscillators synchronize
when coupled by the all-to-all network, then synchronization
is possible if the period A is sufficiently small.

II. REVIEW OF RELEVANT TERMS
A. Markov Chains

A sequence of discrete valued random variables X (k), k €
77+ with sample space F is called a Markov Chain if it satisfies
the Markov Condition

P(X(k+1)=s|X(k) =21, X(k—1) =241, ..
X(1)=z1) =P(X(k+1)=s|X(k) =)

for all k € Z* and all s,z1,...,7; € F. In this paper, we
specialize to homogeneous Markov chains, which implies the
additional property that

P(X(k+1) =j|X(k) = i) = P(X(2) = j|X(1) =),
Vk€Z", andi,j € F

Additional, we assume that I’ is finite and we indicate with
|F'| its cardinality. Without loss of generality, we number the
possible states of the chain using positive integers so that F' =
{1,...|F|}. (For ease of description, when we say Markov
chain in this paper, we are considering only the restriction to
this smaller set of finite, homogeneous processes.)

The matrix P = [p;;] where p;; = P(X(k+1) = j| X (k) =
1) is called the transition matrix of the Markov chain and
is a stochastic matrix, that is, it is nonnegative and all its
rows sum to one. A matrix is nonnegative (positive) if all
its entries are greater or equal (greater) than zero. Since the
rows of P sums to one, the |F|—vector e|p| = [1,...1]T is
always an eigenvector of P corresponding to an eigenvalue
equal to one. The random variable X (0) is called the initial
state of the Markov chain and its probability distribution
7(0) = [m1(0), ... 7| (0)]T, defined as

mi(0) = P(X(0) =)

is called the initial distribution. The distribution of the chain
at the k' time step 7 (k) = [m1(k),...m (k)] is defined as

mi(k) = P(X(k) = 1)

and can be expressed in terms of the initial distribution and the
transition matrix by using the Chapman-Kolmogorov equation,
see e.g. Theorem 1.1 in Chapter 2 of [24], as

(k)T = m.(0)T P (D

Two states 7 and j are said to communicate if there exists
k € Z* such that the ij and ji entries of P*, say pgf) and pglz),
are positive. If all the states in F' communicate the chain is
called irreducible and P is an irreducible matrix. The period d;
of a state 7 is defined by d; = gcd{n € Z* \ {0} :pi?) > 0},
and if d; = 1 the state i is called aperiodic. For an irreducible
Markov chain all the states have the same period, see e.g.
Section 2.4 in [24]. An irreducible aperiodic Markov chain
is called ergodic. The transition matrix of an ergodic Markov
chain is a primitive stochastic matrix, see e.g. Chapter 6 of
[24]. P being primitive means that there exists k € Z%
such that P* is a positive matrix. A probability distribution
7 is called stationary if 77 = 7T P. If all the entries of 7
are positive and m;p;; = 7;p;; for all the states ¢ and j,
the Markov chain is called reversible. The spectrum of the
transition matrix of an ergodic Markov chain is Aq, ... )\| Fls
with A\; = 1 having algebraic and geometric multiplicity equal
to one and with |A,.| < 1 for r = 2,...|F|. For a reversible
Markov chain all the eigenvalues of P are real. For an ergodic
Markov chain, there exist a positive constants p and a positive
constant p < 1 such that

k .

) — 7| < pp 2)
where pgl?) is the 75 entry of P*, and 7 is the unique stationary
distribution of the chain, see e.g. [25]. From (2), for any initial
probability distribution and state j € F' the distribution at the
kth time step satisfy the ergodicity condition

i (k) — 5] < pp” 3)

B. Graphs

A graph is a pair of sets G = (E,V), where V =
{1,...|V|} and E C V x V are finite, see e.g. [26]. The
elements of V are called nodes, vertices or sites, and the
elements of E are unordered pairs and are called edges or
links. Two nodes ¢,r € V are neighbors if there is an edge
connecting them, that is if the unordered pair (¢q,7) € E. A
path from ¢ to r is a sequence of distinct vertices starting
with ¢ and ending with 7 such that the consecutive vertices
are neighbors. The graph G is connected if there exists a path
between every two vertices in V. If the graph is connected, all
the components of d are nonzero. The graph is called bipartite
if V' can be partitioned into two subsets V; and V5, such that
every edge has one end in V) and the other in V5. A graph
is said to have a self-loop at node ¢ if (g, q) € E. The graph



topology can be algebraically represented by introducing the
adjacency matrix A = [aq,| defined by

_J 1 if (¢g,r)eFE
%r =11 0 otherwise

Since edges are represented by unordered pairs, we may
immediately infer that A is symmetric. The degree matrix D =
diag(d) is a diagonal matrix, whose diagonal elements are

n

dq = > agr. The Laplacian matrix L = [,,] is defined as the

differgﬂc}e between the adjacency matrix and the degree matrix,
thatis L = D— A. The graph Laplacian is a symmetric positive
semidefinite matrix. Spectral properties of graph Laplacians
may be found for example in [27] and [28].

The Laplacian matrix is a zero row-sum matrix. Therefore
the null space of L contains the |V|—vector ey;| = [1,...1]T
corresponding to the zero eigenvalue. The multiplicity of the
zero eigenvalue is one if and only if the graph is connected.
The highest eigenvalue is less or equal to max{d, + d-.
(g,r) € E} (see e.g. [28]), which is less than 2|V|.

III. PROBLEM STATEMENT
A. Moving Neighborhood Network

Let the network dynamics be described by a set of N
independent random walkers X;,... Xy on a finite not bi-
partite connected graph G™ = (E™, V™), see e.g. [29].
(We use the superscript (-)™ to denote that these objects
are associated with lattice graph that determines where the
random walkers can move.) Each random walk represents
the motion of an agent in the system. The initial probability
distribution of each random walker X,, ¢ = 1,...N, is
7q(0) = [141(0), ... 7gpvm  (0)]

Consider a random walker X, on G™. If at the k*" time
step, k € Z*, X, is located at the site 4, that is X, (k) = 1,
we allow the walker to move to any of its neighboring sites
with equal probability, so that

[ 1ay (i,7) € E™
Pij = { 0 otherwise. @)

The sequence of positions X, (k) is a Markov chain on the
set V™ with transition matrix P = [p;;]. Since the graph is
connected and not bipartite, the Markov chain is ergodic, see
e.g. [29]. The stationary probability distribution is

>

E‘V”” drw )

T =

and the chain is reversible.

The random walkers move independently from each other,
and share the same transition matrix P and stationary distri-
bution 7. From (3), for any initial probability distribution and
site j € V™ the distribution at the k%" time step satisfies (3).

The overall state of the independent random walkers may
be represented by a sole augmented Markov chain on a space
of cardinality |[V™|" whose transition matrix is P ® --- ® P
(N times), where ‘®’ is the standard Kronecker product.

Given that the static graph G™ describes the lattice where
the agents meander, we now introduce a second graph G™"
that describes the agents’ talking. The moving neighborhood
graph G™(k) = (E™(k),V™) is a sequence of random
graphs whose node set is V™ = {1,...N}, where we
associate a node with each of the random walkers, and whose
edges depend on the random walkers’ location in the graph
G™. (Note that for the moving neighborhood graph, we use
superscripts ()™ to distinguish this communication graph
from the lattice where the random walkers are moving.) In
the k'" time interval, the set of edges of G™ (k) is defined by

E™(k) ={(q,r) e V™ x V™, q #r: Xq(k) = X, (k)}

that is the edge (q,7) is present at the k' time step if and
only if the random walkers X, and X, occupy the same site
in the graph G™ during the k'" step. Clearly, the moving
neighborhood graph does not have self-loops.

For ¢ # r, The gr entry of the expected value of the
adjacency matrix of the moving neighborhood graph G™" at
the k" step is

V™

Z 7gi (k)i (K (6)

and it represents the probability that the ¢* and r*" random
walkers occupy the same site in the graph G™ during the k'"
time interval. The expected value of the r*"* diagonal element
of the degree matrix at the the k*" time interval is

N |Vm
Eld"(k)] = > > milk)mn(k (7)
r=1,r#q i=1

and it represents the probability that the ¢*" random walker
occupies the same site of any other random walker in the graph
G™ during the k'™ time interval. Therefore, the expected value
of the graph Laplacian in the £*" time interval is E[L™ (k)] =
E[D™ (k)] — E[A™(k)], and it is a zero-row sum matrix.

We have a notion of the long-time expected graph which
describes the communication of the agents with respect to the
stationary distribution 7. We note that the sequence of random
graphs G™ (k) is used to generate several sequences of random
variables, such as A™(k) and L™ (k). For a sequence of
random variables Y (k), we introduce the ergodic limit, E*[Y],
defined by

E*[Y] = lim E[Y(k)]

k—o0

if the limit exists. We note that for ¢ # r, by using the
ergodicity condition (3) and (6) we have

vl
= Z ;T
i=1
(k) =0. So
E*[A™] = nTa[ly — eeT]

1 mn
while Qg

where Iy is the N x N identity matrix. (This notation is
adopted throughout.) We note that E*[A™] is not a binary



matrix consisting of entries 0 and 1, and therefore cannot be
described as an adjacency matrix. However, it does provide
a description of the time-averaged connectivity within the
network. From (7), we have

N [V

dmn - Z Z T

r=1,r#q i=1

so that E*[D™] = (N — 1)n " nly.
Therefore, we associate our notion of long-time expected
graph with a weighted Laplacian matrix given by

E*[L™] = n"7[NIy — enen] 8)

The weighted Laplacian (8) represents a weighted all-to-
all coupling among the random walkers, see e.g. [13]. The
eigenvalues of E*[L™] are 0 (with multiplicity 1) and 7T7 N
(with multiplicity N — 1).

B. Synchronization Problem

Let each agent carry an oscillator characterized by a n di-
mensional autonomous dynamics. We study the time evolution
of the complex dynamical system obtained by coupling the
oscillators’ dynamics according to the moving neighborhood
network generated by the random walks. We assume that the
random walkers do not move over time intervals of duration
A > 0. Jumps are allowed only at equally spaced transition
instants ¢, = kA, k € Z*. The resulting system dynamics is
described by

N, teRT
©)

where t is the time variable, z, € R™ is the random state
vector of the ¢** agent, f : R™ — R” describes the oscillators’
individual dynamics, B € R™*"™ describes coupling between
oscillators, o is the coupling strength and L™"(¢) is the graph
Laplacian of the moving neighborhood network. In the time in-
terval Tj, = [tg,tx+1) the random process L™ (¢) corresponds
to the random variable L™" (k). Thus it is a function of the
random walks X1,... Xy at the k*" time interval. We collect
all the states of the system in the n/N dimensional vector x.
The initial conditions are prescribed at the initial time ¢ = 0
as z(0) = zo.

If for any ¢ € RT all the oscillators have the same state
s(t), that is

&q(t) = +0BZlmn )y, ¢g=1,...

T (t) = ...

or equivalently
r=en®S

we say that the agents are synchronized. Since e is in the null
space of L™, a synchronized solution s is a solution of the
individual agent equation, namely $ = f(s). The manifold
in R™V consisting of all trajectories ey ® s(t), where s(t)
is a solution of the individual agent equation is called the
synchronization manifold.

Synchronization can be assessed by examining local sta-
bility of the oscillators with respect to the synchronization
manifold. Linearizing each oscillator about the trajectory s(t),
which is assumed to be on the synchronization manifold
yields,

Zq(t) = F(t

+aBZlm“

where
2¢(t) = xq(t) — s(t)

and F'(t) is the Jacobian of f evaluated at s(t). Thus, the
system of linearized coupled oscillators may be rewritten as

A(t) = (Iy ® F(t) + o L™ (t) ® B)(t) (10)

where z(t) = [2T(t),...,2%5(t)]T. To assess asymptotic sta-
bility of the set of oscillators, we partition the state of (10) into
a component that evolves along the synchronization manifold,
and a component that evolves transverse to the synchronization
manifold. For analysis, it suffices to show that the component
that evolves transverse to the synchronization manifold asymp-
totically approaches the synchronization manifold.

Let W € RV*(N=1 gatisfy WTey = 0 and WTW =
In_1. Note that the state vector z(¢) in (10) can be de-
composed as z(t) = (W @ I,)((t) + en @ zs(t), where
¢ = (WT®1I,)z is transverse to the synchronization manifold,
and z; = %(e N® In)Tz is on the synchronization manifold.
Note that

(W @ 1,)0) (en @ 2,) = 0.

The variational equation (10) in terms of ¢ and z; becomes
25(t) = F(t)z5(t) + o(exy L™ ()W @ B)((t)
(t)=Un_1 @ F(t)+oWTL™®)W @ B)C(t)  (11)

We say that the set of oscillators (9) locally asymptotically
synchronize almost surely at the synchronized solution s(t) if
(11) is almost surely asymptotically stable, see e.g. [30], that
is if ¢ converges to zero almost surely for any ¢y, € R(N-1n
and for any initial probability m,, q=1...N.. The definition
of almost sure convergence may be found, for example, in
Chapter 5 of [31]. System (11) represents a jump linear time
varying system, see e.g. [32].

We associate to the stochastic dynamic network (9) the
deterministic dynamic network

q(t) = +aBZE [Im™zg(t), ¢=1,...N, t € RF

(12)
where E*[L™] is the long-time expected value of the graph
Laplacian defined in (8).

Synchronization of the deterministic set of coupled oscilla-
tors (12) may be studied using the master stability function.
As a representative parameter for the synchronizability of (12),
we introduce the friendliness ® of the graph G™ defined
by ® = |||3 where || - ||2, is the Euclidean norm. The
stability question reduces by linear perturbation analysis to



a constraint upon the coupling parameter o, the friendliness
7 and the number of agents N of the form ®N € S, where
S is the stability region and is an interval of R*. For many
oscillator dynamical system (see e.g. [13]) the stability region
is a bounded interval of the type S = (a1, @2). The parameters
a1, g are given by the master stability function, which is a
property of the individual oscillator dynamic equation and of
the coupling matrix B. Therefore, synchronization of (12) is
generally expressed as a constraint on the control parameter
o, that is

M 5 <
No 7

Qz

N®

For large values of & (highly friendly networks) the set of
oscillators (12) synchronizes for small values of the coupling
parameter o. While, large coupling is required for achieving
synchronization in unfriendly networks. In addition, we note
that for a prescribed graph G™ synchronization for small
coupling may also be possible by increasing the number of
agents NV.

Our main contribution is to show that if the static network in
(12) supports synchronization, also the stochastic network (9)
does if the random walkers are sufficiently fast, or equivalently
if the switching period A is sufficiently small.

IV. SYNCHRONIZATION THROUGH FAST-SWITCHING

In this section we show that asymptotic synchronization
is achieved almost surely if the deterministic network (12)
asymptotically synchronizes and the random walkers are mov-
ing sufficiently fast. By means of Proposition 1, the synchro-
nization problem for the network of oscillators described by
(9) reduces to the analysis of synchronization over a static
network. Thus we reduce the problem to one which has been
extensively studied in the literature and may be addressed by
using the well-known master-stability function (MSF) analysis,
see e.g. [13]. The proof of our result may be found in [33].

Theorem 1: Consider the deterministic dynamic system

y(t) = (In_1 @ F(t) + o WTE*[L™]W ® B)y(t) (13)
representing the linearized transverse dynamics of (12). As-
sume that F'(t) is bounded and continuous in RT. If (13) is
uniformly asymptotically stable, there is a time-scale A* > 0
such that for any shorter time-scale A < A* the stochastic
system (9) locally asymptotically synchronizes almost surely.

V. ILLUSTRATION BY NUMERICAL SIMULATION

For the purpose of illustration, we consider a set of N =
20 agents diffusing in the small-world planar graph G™ with
|[V™| = 50 sites depicted in Fig. 1.

The graph G™ is connected and not-bipartite. The friendli-
ness of the network is ® = 0.020.

Each agent is equipped with a Rdossler oscillator. When
agents occupy the same site, their first state is coupled. Thus

Fig. 1. Small-world graph G"™ used for the numerical illustration.

the system of oscillators is described by

N
q1(t) = =22 (t) — wga(t) — o Y It (t)
Eq2(t) = 241(t) + azga(t) .
L43(t) = b+ 2g3(t)(zq1(t) — ¢

where ¢ = 1,..., N, and a, b, c are constants.

By choosing the parameters a = 0.2, b = 0.2, and ¢ = 7
from the stability region plot of Fig. 2 of [13] we have that
the stability region oy and a9 in (III-B) are a; = 0.2 and
a1 = 2.3. Therefore, from (III-B) the deterministic system
(12) asymptotically synchronizes in the sense of the transverse
Lyapunov exponents if 0.50 < o < 5.7. As previously
remarked, this does not always mean the transverse dynamics
is uniformly asymptotically stable. We choose o = 2. Fig. 2
depicts the time evolution of the x; coordinate of the Rossler
oscillators with static coupling given by the long-time expected
graph.

-15 i i i i
0 20 40 60 80 100

Fig. 2. Time evolution of the z1 coordinate of the set of coupled
Rossler oscillators using the long-time expected graph. Observe the asymptotic
stability of the synchronized state.
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Fig. 3. Time evolution of the x; coordinate of the set of coupled
Rossler oscillators using the moving neighborhood graph. Even though the
neighborhood graph is instantaneously disconnected, fast switching allows
for synchronization.

For the stochastic network (14) we consider a switching
period for the random walkers of A = 0.1. Fig. 3 depicts
the x; coordinate of the set of coupled Rossler oscillators
coupled by the moving neighborhood graph using the same
initial conditions as in Fig. 2.

VI. CONCLUSIONS

New generalizations on synchronization of mutually cou-
pled oscillators are presented. We pose the synchronization
problem in a stochastic dynamic framework where each agent
diffuses in a finite lattice and carries an oscillator. The commu-
nication network topology evolves in time and is determined
by the agents’ locations in the lattice. Communication takes
place only within geographical neighborhoods. We introduce
the concept of long-time expected communication network
defined as the ergodic limit of the stochastic time-varying
network. We utilize tools based on fast switching and stochas-
tic stability, and show that synchronization is asymptotically
achieved if the long-time expected network supports synchro-
nization and if the agents are moving sufficiently fast in
the lattice. A numerical simulation illustrates the theoretical
achievements of the present paper. We expect that theoretical
framework presented in this paper to provide a better under-
standing of synchronization problems in biological, epidemio-
logical and social networks, where the dynamics of the agent
cannot be ignored.
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