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Abstract

It is known [Phys. Rev. Lett. 63 (11) (1990) 1196–1199] that a system can be controlled near an unstable period-k

point by applying a small perturbation signal to some parameter in the system. The required perturbation is calculated as a
function of the current system state. We consider that, in applications, such stabilizing algorithms can be implemented with
only finite accuracy. The error associated with the finite accuracy will grow exponentially, requiring repeated application
of the parameter perturbation to keep the system near the fixed point. We show that under a repeated perturbation control
algorithm, the resultant dynamical system is a piecewise expanding map that is well approximated by a Renyı́ transformation.
Additionally, we show that by an analysis of the kneading sequences, the system state can be known with greater accuracy
than is measured. Furthermore, we modify the standard parametric control algorithm to provide better time averaged control
of the system without increasing the complexity of implementation. We demonstrate application of these principles to the
2D case by considering a saddle fixed point of the Ikeda map and the OGY [Phys. Rev. Lett. 63 (11) (1990) 1196–1199]
algorithm.
© 2003 Elsevier Science B.V. All rights reserved.

PACS:05.45.−a; 05.45.Ac; 05.45.Gg; 02.30.Yy; 47.52.+j; 47.53.+n; 95.10.Fh

Keywords:Control of chaos; Finite measurement control; Finite accuracy measurement; Accuracy improvement algorithm; Kneading theory;
Symbol dynamics; Invariant measure

1. Introduction

An essential part of a control scheme to stabilize a system is to measure the system and then inject the calculated
control signal. Any such control scheme is obviously limited by the accuracy of the measurement system. Starting
with 1D maps and the Shinbrot algorithm[2], which was developed to target unstable periodic orbits on a chaotic set,
we develop a technique that allows knowledge of the system that is far more precise than the physical measurement
system we are using for control. As a separate application of the analysis, we propose an alternative control scheme
that requires no additional computations or measurement but provides significantly improved average performance.
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We then apply the general approach to stabilize a saddle inR2 with the OGY algorithm and illustrate that increased
knowledge of state and improved control can be achieved simultaneously. We develop our analysis rigorously for
the 1D maps, and we indicate only by numerical examples how the techniques of analysis should be extended to
two dimensions.

An essential part of our specification technique relies on using hyperbolicity to our advantage. In that sense, one
might be reminded of the data cleaning techniques, such as those of Farmer and Sidorowich[3,4]; however, our meth-
ods are substantially different. We introduce a novel application of symbolic dynamics relative to a nongenerating
partition, and this turns out to be an essential feature for our application.

2. Reduction of controlled systems with finite rounding

2.1. Background: targeting

We begin by developing a notation to summarize the targeting algorithm of Shinbrot et al.[2], which quickly
steers trajectories to unstable periodic orbits. Beginning with the simplest case: consider a discrete time, 1D system,
which is described by

xn+1 = f(xn).

Assume that the system has an unstable period-k point atx = p, such thatf k(p) = p and d/dx(f k(x))|x=p > 1.
In general, such a system can be controlled by a feedback control of a parameter associated with the functionf .
Suppose there exists a functionF(a, x) and a parameter valuea0 such that

f(x) ≡ F(a0, x)

with F ∈ C1 on a neighborhood of(a0, x). By the implicit function theorem, there exists a continuous function
a(x) such thata(p) = a0 and

f k−1 ◦ F(a(x), x) = p, ∀x ∈ I,
whereI is an interval containingp. Therefore, for any system statex (sufficiently close top), we can calculate a
required parameter valuea(x) to ensure that the system maps top afterk iterations.

Example. Consider the logistic map with parameter valuea0 = 4, so thatF(a0, x) = a0x(1 − x) = 4x(1 − x) =
f(x). This map has a fixed point atp = 0.75. Then

a(x) = 0.75

x(1 − x)

and

F(a(x), x) = 0.75

x(1 − x)
x(1 − x) = 0.75, ∀x ∈ (0,1).

For the ideal system, the perturbation of the parameter corrects the system exactly to the fixed point. Only one
control perturbation would be required, and the system would remain stabilized for all following iterations. But
in a real system, small errors will always persist (due to noise, measurement error, control execution error, etc.,
even a computer simulation will have roundoff error). If no further action is taken, those small errors will grow
exponentially, and the system will eventually be pushed far from the target point. Therefore, to stabilize a real
system, repeated application of control will be required.
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2.2. Generalized analysis, finite rounding

Consider a dynamical system with an unstable period-k point. Our goal is to stabilize the period-k orbit by vary-
ing a control parameter, implementing control once per period, with the additional constraint that the algorithm is
implemented with finite accuracy. Specifically, we choose the simple case where the measurement of the system
state is of finite accuracy, such that there are only a finite number of possible measured states to describe a contin-
uum of actual states. (A physical example might involve temperature as a state variable, measured with a digital
thermometer.) The control algorithm must calculate a parameter perturbation based on the measured state of the
system. The new control iteration is given byF(a(xM), x), wherexM is the measured state of the system. Define an
explicit description of themeasured statexM, such as

xM ≡ 
Mx + 0.5�
M

, (1)

which is simply a precise description of “rounding” the measured state to the nearest 1/M, whereM is a positive
real number (typically a large integer).1 We definecalculated controlas

aM(x) ≡ a(xM)

and the finite controlled system by

gM(x) = f k−1 ◦ F(aM(x), x), (2)

which is one perturbed iteration followed byk− 1 iterations of the unperturbed map. Since the “rounding” process
is deterministic, this new map is a family of dynamical systems, parameterized by the value ofM. Our goal is to
understand the characteristics of these families.

Example. Again, consider the logistic map, with parameter value ofa0 = 3.9. Suppose we want to stabilize
the period-2 orbit. We will implement parameter control when the system is near the period-2 point atp =
0.8974359. . . . The control function is given bya(x) = f(p)/x(1 − x), and the finite controlled system (pa-
rameterized overM) becomesgM(x) = f ◦ F(aM(x), x). Fig. 1illustrates the resultant system. When we compare
the graphs ofgM forM = 20 and 1000, we see that, as expected, the more accurate measurement yields a function
with a smaller range in the vicinity of the fixed point, which produces a smaller invariant set. In each bin, all states are
assigned the same measured value and therefore the same control signal, soaM is constant over each bin (Fig. 1c).
The measurement and the control are exact at the center of each bin, so regardless of bin size, the center of each
bin is mapped to the target point. The resultant controlled map,gM , can be viewed as a piecewise collection of
functions (Fig. 1d), selected from the familyf ◦ F(a, x), parameterized overa. Within each bin, the appropriate
family member is the function that maps the bin center to the fixed point.

The above example leads to our first generalization:To stabilize the system, the finite control system must operate
with sufficiently small bins so that there is a trapping region that iterates to an invariant set containing the target
point.

Proposition 1. Let p be a fixed point off k(x), F(a, x) beC1 on some open regionIa × Ix containing(a0, p), and
a(x) be the continuous parameter control function, with a[Ix] ⊂ Ia. Then for any closed intervalI ⊂ Ix and any
ε > 0, there exists anM0 such that for allM > M0, |gM(x)− p| < ε for all x ∈ I.

1 A more general description of the measurement process is that we partition some intervalI into disjoint, half-open subintervalsIj , each
of width 1/M. We call each subinterval a measuring bin (or simply bin). To each bin, we assign a measured statexj so thatxj ∈ Ij and
xM(x) = xj ∀x ∈ Ij . The partition, together with the choice for eachxj , forms a bin scheme.Eq. (1)is a specific choice for a bin scheme.
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Fig. 1. Example of a finite controlled map: (a)gM for M = 20 and (b)M = 1000. The dashed line indicates the target point. (c) Calculated
control (solid black). The dash line shows the exact control signal required.aM is constant over each bin and exact only in the middle of each
bin. (d)gM is a piecewise collection of the family of functionsf ◦ F(a, x), parameterized overa.

Simply stated, this proposition says that on a closed interval strictly inside the region where the exact control
algorithm will work, there is some measurement precision that will allow the finite control algorithm to work to any
required accuracy. To prove the proposition, we will boundg′

M , which will limit the deviation from the fixed point
over any bin.

Proof. Using the chain rule,2 from Eq. (2)we calculateg′
M

g′
M(x) = d

dx
(f k−1(x))

∣∣∣∣
F(aM(x),x)

[
∂F

∂x
+ ∂F

∂a

da

dxM

dxM

dx

]
.

SincexM is a step function, constant in each measuring bin,

dxM

dx
= 0 a.e. x.

So

g′
M(x) = d

dx
(f k−1(x))

∣∣∣∣
F(aM(x),x)

∂F(aM, x)

∂x
. (3)

2 As an alternative application of this development, if the discretization is in the control signal calculation or application of the control, a
similar argument will still lead to the same mod map,Eq. (7). In either of those cases, da/dx = 0 a.e.x, and the rest of the argument follows
analogously.
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To boundg′
M uniformly: SinceIx is open, we can chooseM0 to make the bins small enough so that there is a

closed setU ⊂ Ix which contains all bins of size 1/M0 that intersect the closed setI. Then for anyM > M0,
aM [I] ⊂ a[U] ⊂ Ia. SinceI anda[U] are compact sets, we conclude

|g′
M | < sup

x∈I
a∈a[U]

∣∣∣∣∣ d

dx
(f k−1(x))

∣∣∣∣
F(a,x)

∂F(a, x)

∂x

∣∣∣∣∣ = K, (4)

whereK bounds uniformly in bothx andM.
In each bin, there is some point where the measured state is the same as the actual state (xM(x) = x). The control

calculation will be exact andgM will map that point top. Since the width of each bin is at most 1/M0, the farthest
the function can deviate from the fixed point isK/M0. ChoosingM0 > K/ε completes the proof. �

The derivations above help us draw some additional conclusions. FromEq. (4), we see that if we accept a smaller
desired trapping region (I), then the value ofKmay be reduced, and we may be able to achieve the required control
precision without the need to measure as accurately (smallerM0). Secondly, since we can chooseM to make the
system operate on a “small” invariant set, a piecewise linear approximation (on the invariant set) may be appropriate.
For x nearp, x ≈ p andaM(x) ≈ a(p) = a0. FromEq. (3), we can conclude that if the invariant set is small, the
slope of the map on that set is nearly constant and is approximated by

g′
M(x) ≈ d

dx
(f k−1(x))

∣∣∣∣
F(a0,x)

∂F(a0, x)

∂x
= d

dx
(f k(p)). (5)

2.3. Approximating finite controlled systems by Reny´ı transformations

For sufficiently large values ofM, the map is well approximated by a mod map on the invariant set. Specifically,
we can describe the linear approximation by

gM(x) ≈ g̃M(x) = p+ β(x− xM), (6)

where

β = d

dx
(f k(p)).

By a simple translation and scaling, the linear approximation (operating on the invariant set) is conjugate to a class
of functions given by

R(x) = Rα,β(x) = (α+ βx)mod 1 (7)

which maps [0,1] to [0,1], commonly called Renyı́ transformations. By referencing these maps of the unit interval,
it will be easier to compare the characteristic of our controlled system for various values of the parameterβ. In
general, there is not a diffeomorphism between the original finite controlled system and the Renyı́ map, so any
conclusions must be tempered by the realization that the kneading sequences and invariant densities of the actual
system will be only finitely close to the linear approximation.

So far, we have shown that if we measure “accurately enough”, the system will operate in a small invariant set
about the desired fixed point, and on that invariant set, the map looks like a mod map, with slope on the invariant set
approximately the same as the slope of the composed map at the fixed point. However, by focusing on the dynamics
of the invariant set, we will draw much stronger conclusions. We can use the dynamics to allow us to have greater
knowledge of the system or to increase the precision of our control algorithm.
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3. Improved control techniques

3.1. Conventions and assumptions

We assume the following:

1. In general, we will discuss techniques as if all maps are piecewise linear on the invariant set. We assume that a
real system will be measured with sufficient accuracy that the linear approximation is reasonable.

2. After a short transient, the system will operate on a small invariant set containing the fixed point. We assume we
are analyzing the system after this transient.

3. The techniques are most easily illustrated when the mapg̃M has odd symmetry about the pointx = p, y = p,
formally stated as̃gM(p + x) − p = p − g̃M(p − x). The related Renyı́ transformation, therefore, would be
symmetric about the pointx = 0.5, y = 0.5.3

Additionally, we will use the following conventions:

1. We will use a symbol dynamics to help us understand the techniques described. To each measuring bin in the
invariant set of the original system, we assign a symbol (typically,a, b, orc). We associate the same symbol with
the related region on the Renyı́ map. We refer to the interval as “binγ”. If the system state is in that bin, we say
that the measured state is “γ”.

2. The parameterβ is a characteristic of the original map and is not controlled. However, we will use ranges of that
parameter value to characterize system behavior with the understanding that in comparing various values ofβ

we are actually comparing the behavior of different systems.

3.2. Edge weighted maps: invariant density

We investigate the discrete control system in the neighborhood of the target in terms of the linearization,Eq. (6),
by considering the invariant probability density functions (pdfs) of the mapsEq. (7) with respect to the param-
eterβ. For a givenβ, we examine the map created by placing the bins so that the fixed point is at the center
of a bin. If β is non-integer, these maps will have a small bin segment at each edge of the invariant set inter-
val. We refer to this family of maps asedge-weighted maps. We analyze the time average asymptotic behavior
of the controlled system by studying the invariant measures for maps from this family. The density function
is easily and directly calculated in the case of rationalβ by the dominant eigenvector of a Markov transition
matrix [5,6] and is well approximated by a pdf of a nearby map of rational slope, in the case of irrationalβ

[7].4

If β is an integer, the invariant density is uniform. Otherwise, the invariant density generally trends toward
more non-uniformity as the magnitude of slope gets smaller (seeFig. 2). For |β| only slightly larger than integer,
the small edge bins provide additional pre-images for the edges of the interval, so those bins carry significant
weight in the associated density function. The higher-than-average density function over the outside bins (which
exists for all non-integer values ofβ) is the genesis of our termedge-weighted maps. When|β| < 2, the invariant

3 Although symmetry of the map is not an a priori result of the general measuring scheme described inSection 2.2, we assume that the
measuring bins can be adjusted either left or right, so thatp is at any desired position in the bin. Generally, we will choosep to be at the center
of the bin, although positioningp at the edge of the bin also creates a symmetric map.

4 In this work, we implement Ulam’s method for approximating the Frobenius–Perron (FP) operator, and we iterate from an initial uniform
density. For|β| > √

2, the FP operator converges to its fixed point, the invariant density. For|β| < √
2, the operator converges to an invariant

density supported over only a periodic orbit, with the time average performance of the system estimated by averaging the densities over one
period[6].
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Fig. 2. Pdfs for edge-weighted maps. For each graph, the gray curve is the mod map that results from the control algorithm. The domain for each
graph is limited to the interval of support for the invariant set, which is equivalent to the interval [0,1] for the map ofEq. (7). The black curve
is the invariant density associated with that map.

density is not supported over the entire interval, but has a “hole” in the middle. Orbits that start near the fixed
point will be repelled from the fixed point until they enter one of the outer bins. Since the fixed point is not in the
range of either of the outside bins, the orbit remains finitely far from the fixed point, with the size of the avoided
region being|β| − 1.5 The techniques we will describe in this paper exploit the non-uniformity of the densities
of these maps. We focus our discussion on these small slope(|β| < 2) maps, where the non-uniformity is most
pronounced.

3.3. Edge-weighted maps: increased knowledge from kneading sequences

The system operates finitely far from the fixed point (the target), so continued control action will be required.
But the center bin has regions of non-zero density and is, therefore, always revisited. On each visit to the center
bin, the measurement indicates the system isat the target, which would imply that no further control action is
required. This “discrepancy”, which could be inferred from the measurements, helps to underline the fact that the
symbol dynamics generated by the partition from the measurement bins are not conjugate to the full dynamics of
the mapEq. (7) [8]. We can take advantage of the difference between the measurement partition and a generating
partition, using the past history of the orbit to determine the state of the system more accurately than is given by the
measurement system.

Fig. 3 provides a means for us to visualize the interplay of the kneading sequences and the symbol dynamics.
Although gM is defined on some large interval, only three measuring bins intersect the invariant set, and only
the middle bin is completely inside the invariant set. We use a cobweb representation to understand the interval
arithmetic that generates various symbol sequences.

Consider the symbol sequenceab. Whenb is measured, we know that the system is not allowed to beanywhere
in bin b, but is restricted to the interval whose pre-image is in that part of bina which is inside the invariant
set. Similarly, when we measurec following anab, we know that the system is actually in the subset ofc whose
pre-image is in intervalab. In both cases, we can estimate the state more precisely than the 1/M bin width capability
of our measuring system. For a given value ofβ, one can compute the intervals associated with each word by first
computing the kneading sequence of 0[9,10].

5 If |β| < √
2, an analysis of the kneading sequence reveals that another avoided region develops in each of the outer bins. These intervals of

non-support continue to emerge as|β| → 1.
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Fig. 3. Kneading sequences of edge weighted map,β = −1.5.gM is shown over three measuring bins, with the gray box enclosing the invariant
set. The solid curve isgM . The dashed line shows the kneading sequence of 0, which generates the intervals associated withabandabc.

Table 1is provided to illustrate two main points from this section:

1. The gain in knowledge of state can be quite significant. The smaller the magnitude of the slope, the more
accurately the system can be known. Note that forβ = −1.3, there are words for which the state is known to an
accuracy more than 100 times better than is measured.

2. The piecewise linear map provides a reasonable approximation while using this technique to improve our knowl-
edge of the state. The third column shows interval calculations forf(x) = 3.6x(1−x)withM = 1000. The slope
of this map is−1.6 at the fixed point. The results are well approximated by the piecewise linear approximations
for β = −1.6. If the control map is not computable in closed form, computation based on linearization is the
only alternative. However, since only finite length words are generally relevant, the difference between the actual
system and the piecewise linear system will be small.

Fig. 4provides a graphical representation of the application of this technique to a dynamical system. The specific
example uses a Renyı́ transformations withβ = −1.3. The controlled system was used to generate the symbol
sequence (measurements) shown. At each iteration, the vertical width of each mark represents the accuracy of the
knowledge of the actual state of the system. For the upper graph, the vertical width is equivalent to one bin width, the
nominal accuracy of our measuring system. From that same symbol stream, our analysis uses kneading sequences

Table 1
Calculated accuracies from kneading sequencesa

β = −1.3 β = −1.6 f(x) = 3.6x(1 − x)

Word Size Word Size Word Size

a, c 0.15 a, c 0.3 a 0.3009
ab, cb 0.045 c 0.3045
abc 0.0585 ab, cb 0.18 ab 0.1834
abcc 0.03105 cb 0.1852
abccc 0.04365 abc 0.288 abc 0.2983
abcccc 0.007575 cba 0.2969
abccccc 0.009717 abcc 0.2808 abcc 0.2946

cbaa 0.2891

a Interval size for various words, given in fraction of a measuring bin. The first two columns are Renyı́ maps. The third column shows
calculations for the logistic map, withf(x) = 3.6x(1 − x) andM = 1000 (the slope is−1.6 at the fixed point) to illustrate the reasonableness
of using the piecewise linear approximation to perform calculations.
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Fig. 4. Improving knowledge of state in 1D. Signal 1 graphically represents the measured state of a controlled system. The height of each block
represents the interval of possible states associated with that measurement. Signal 2 shows the same iterations of the system. The vertical height
gives the interval for the state based on the symbol sequence labeled above each iteration.

and interval arithmetic to produce the second line of data. The two signals are plotted with the same vertical scaling,
with the vertical width of the signal at each iteration being proportional to the size of the interval associated with
that symbol sequence. In Signal 2, each iterate is labeled with the symbol sequence history. That history is used to
calculate theknowninterval for the state of the system, based on the techniques described above.Table 1, therefore,
gives the width of Signal 2 as a fraction of the bin width established by Signal 1.

3.4. Improved control accuracy algorithm

The average density associated with an edge-weighted map (|β| < 2) has a “hole” around the targeted point (see
Fig. 2). If the bin placement is shifted so that the target is at the edge of a bin, the map has two pre-images for the
center of the invariant set. We call this system center-weighted. Edge-weighted bin placement allows more accurate
knowledge of system state. But if the goal is to keep the system as close as possible to the target point (on average),
then the center-weighted bin placement would be more appropriate. However, a better way to improve the average
control accuracy is to modify the edge map as shown inFig. 5. We call this map theimproved-accuracymap. The
bin placement remains the same as in the edge-weighted map. However, in binsa andc, the map is shifted vertically
so that theinvariant set portionof those legs is centered on the target point. The map provides three pre-images for
the target (versus two for center-weighted maps).

Recall that one way to describe the original algorithm is that the control scheme selects a different value of the
control parameter for each bin, creating a piecewise function with the center of each bin mapped to the target point.
Since the target point is at the center of binb, the control parameter isa0, the parameter value of the original map;

Fig. 5. Targeting the center of the invariant set. The improved-accuracy map has the same bin setup as the edge-weighted map, but the map is
shifted vertically in the edge bins. It provides three pre-images of the target point.
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Fig. 6. Improved algorithm performance. For each graph, the gray area graphs the average density for the center weighted and the solid curve
shows the performance of the improved accuracy method. For each, the improved accuracy map is also shown as the dashed curve.

binsa andc require slightly different parameters:

a(x) =



a0 + δ+ x ∈ bina,

a0 x ∈ binb,

a0 + δ− x ∈ binc.

(8)

If a linear approximation is accurate, thenδ+ ≈ −δ−. In essence, the algorithm may be accurately implemented on
the invariant set with only one control signal generator, the perturbation delta. The control response is a 0 input if
the measured state isb, and±δ for measured statesa andc.

The improved-accuracy map requires an alteration to the basic control algorithm, but the new algorithm can
be executed without adding complexity. We simply calculate the required parameter perturbationδ̂ to select the
member of family of parameter curves that centers theinvariant setportion of bina on the target point (refer to
Fig. 1). Under the linearization assumptionδ̂+ ≈ −δ̂−, the revised control algorithm on the invariant set operates
exactly as above, selecting either perturbation 0 or perturbation±δ̂:

â(x) =



a0 + δ̂+ x ∈ bina,

a0 x ∈ binb,

a0 + δ̂− x ∈ binc.

(9)

Since the determination of the revised perturbation parameters is done during the development of the algorithm,
the improved system requires no additional real-time calculations to implement, but performance is significantly
improved in the sense that the pdf for that system is more highly peaked near the target point.Fig. 6 shows a
comparison of the density for the center-weighted map (gray area graph) to the improved-accuracy density (solid
line) for three different values ofβ.6 In addition to the overall reduction in variance, the improved density decreases
monotonically with distance from the target point.

4. Numerical application to stabilization of saddles in R2

When we study finite accuracy feedback control systems inR2, we see that the basic ideas from the 1D case still
apply:

• Dynamics on the invariant set are well described by a piecewise linear approximation;

6 Densities are invariant, except for the slope−1.3 center-weighted map, where the bimodal nature of the center-weighted graph (whose slope
is<

√
2) forces the use of an average density over one period.



28 J.D. Skufca, E.M. Bollt / Physica D 179 (2003) 18–32

• We can achieve better control by assigning a specific control signal for each of the finite measurements instead
of using a single (global) rule that calculates control based on the measured state (the center of each measuring
bin);

• By analyzing symbol sequences on the finite set of measurements in the invariant set, we can know the state of
the system with greater accuracy than measured.

However, where the 1D case allowed us to describe characteristics of these maps over the parameter space described
by β, we have not yet found a “nice” parameter space to characterize the 2D case. The analysis techniques can
achieve numerically significant improvements in performance but require study of a specific system and algorithm.
As such, we limit ourselves to a general description of how the analysis would be applied to the OGY[1] algorithm
for stabilizing a saddle fixed point, and provide a specific example by analyzing finite accuracy measurement control
of the Ikeda map.

4.1. OGY technique under finite accuracy measurements

Consider the map,

xn+1 = f(xn), (10)

f(xn) = F(xn, p0), (11)

wherexn ∈ R2, F(xn, p) is a smooth function, andp a scalar control parameter, with nominal valuep0. LetxF (p0)

be a saddle fixed point of(10). The OGY[1,11–13]algorithm is a state feedback control scheme that provides the
necessary calculations to determine the required control signalp to stabilize the fixed point when the state is within
anε neighborhood ofxF (p0). Since OGY is well described in other references[1], we review OGY in only brief
details.

Assume that for anyx, the required control is given byp(x) such that

xn+1 = F(xn, p(xn)) ∈ Es(xF (p0)).

Near the fixed point,Es is near the stable manifold (Ws) of the fixed point, so unperturbed iterations of the map
would move the orbit generally toward the fixed point. IfWs is non-linear, further parameter perturbations will be
required to maintain the system near the fixed point. Now assume that the state is not known exactly. Rather, each
coordinate of the state is measured using a finite accuracy system as described inSection 2.2, with the measured
state given by the vector

xM =
(
xM1(x1)

xM2(x2)

)
.

The control perturbation is calculated aspM(x) ≡ p(xM). Control is active on each iteration to yield the control
map

gM(x) = F(x, p(xM)). (12)

The geometric interpretation of this procedure is that the measuring scheme partitionsR2 into rectangles of size
1/M1 ×1/M2. A single vector value (the measured state) is assigned to each rectangle, and the system is controlled
so that the measured state maps onto theEs. Since control is activated only when the system is near the fixed point,
linearization is appropriate, and the image of a rectangle is approximately a parallelogram centered about the point
that is the image ofxM under the standard OGY algorithm. Under suitable conditions for successful OGY execution
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(in the exact measurement case), the system with finite accuracy can be measured with sufficient precision to achieve
an attracting invariant set in the vicinity of the fixed point.

In the 1D case, we gave general descriptions by parameterizing overβ (the slope at the fixed point). Similarly,
the stability of variations of the 2D maps are characterized by the Jacobian derivative matrix, evaluated at the fixed
point

J = dF
dx

∣∣∣∣
xF (p0)

.

However, because the measurement grid fromEq. (12)is generally not aligned with the eigenvectors associated with
J, a linear change of coordinates to the eigenvector basis does not simplify the description of the piecewise function.
Additionally, the size and character of the 2D maps are highly dependent upon the direction the fixed point is moved
in response to control perturbation, as described by∂xF/∂p|p=p0 to first-order. As such, for a given map and fixed
point, althoughJ is unchanged, the finite controlled map will depend upon the specific choice of which parameter
is used as the control parameter. Therefore, five parameters are required to completely discuss this family of finite
control maps (in 2D). Because we were interested in the specific aspects of “improving” the control algorithm, we
have not pursued general conclusions. Instead, we use numerical simulations to illustrate how analysis of a specific
problem yields worthwhile results in both

1. providing a means for better control,
2. increasing knowledge of the state.

4.2. Ikeda map: a case study of the 2D problem

Consider the Ikeda map, given by

F(x, y, p) =
(
(1 + p)− 0.9(x cosτ + y sinτ)

0.9(x sinτ + y cosτ)

)
(13)

with τ = 0.4− 6/(1+ x2 + y2) and nominal parameterp0 = 0. The map has a saddle fixed point at(1.054972676,
−2.174591983) with eigenvalues ofλu = −1.221 andλs = 0.6634. We implement OGY[1] control based on
measuring the system under anxy grid withM1 = M2 = 1000. The measurement grid is placed so that the fixed
point is at the center of a measurement box, and in each box, the assigned measured state is the center of the box. A
large set of initial conditions are placed randomly near the fixed point. Under repeated application of the controlled
map, the points appear to converge to a chaotic attractor. The resultant graph is shown inFig. 7. After several
iterations, the mean variance (from the fixed point) changes little under iteration, and we assume that the map is
converging to an invariant density which is supported over a Cantor set.

We choose the mean variance from the fixed pointv as both our evaluation function of the control algorithm as
well a means to compare the model and its linear approximation. For the Ikeda map with parameters as chosen,
v ≈ 0.609× 10−3, while the linearized model has varianceṽ ≈ 0.607. The “closeness” of the linear approximation
(when corrected for scaling) indicates that the analysis may be performed even when a closed form description of
the non-linear map is not available, as long as the eigenvalues and eigenvectors of the Jacobian can be determined.

4.3. Improving the 2D algorithm

The general effect of finite accuracy measurement is that all states inside a specific measuring box are assigned
the same measured state(xM, yM), and therefore the associated control parameter must be the same for all states
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Fig. 7. Finite accuracy control inR2. (a) Numerical approximation of the invariant set of the Ikeda map stabilized via OGY with state measurements
to the nearest 1/1000. The dashed lines and arrows show the stable and unstable subspaces. (b) Zoomed to the boxed area of (a) to better illustrate
that the controlled system appears to operate on a Cantor set.

inside that box. Our goal, therefore, is to find the “best” control parameter perturbation to associate with each box.
The geometric interpretation would be that instead of mapping the center of each box ontoEs (as described in
Section 4.1), some pointother than the center of the boxis mapped toEs. We call that point theoptimal control
point for the box. Since we are concerned only with the behavior of the invariant set (which is bounded), we need
to find only a finite set of optimizing parameter values or optimal control points.

If we focus on the linearization, we note that the map will be symmetric, so the invariant set will occupy an
odd number of boxes. If the invariant set occupies 2k + 1 boxes, then a general optimization is over 2k + 1
parameter values. However, if the cost function is even, the box containing the fixed point can be assigned
control parameterp = 0, and a symmetry argument tells us that the optimization is overk control param-
eter values. Solving this optimization problem with a generalized cost function is made difficult by the fact
that the cost must be evaluated over the invariant set, which we believe to be fractal in nature and not com-
putable in closed form. This paper does not try to address efficient algorithms for solving the optimization prob-
lem, but merely asserts that parameters other than those from a straightforward OGY calculation may provide
improvement.

As a specific example of improved control, we address the Ikeda map problem fromSection 4.2with the same
cost function of mean variance from the fixed point. Since the invariant set covered only three boxes, our goal was
to optimize over a single parameter. We used a relatively unsophisticated approach of approximating the invariant
set via Monte Carlo simulation and conducted a line search using a bisection method with several seed values. Our
search yielded a parameter value that was equivalent to a control point of(xM − (0.509/M), yM) for the right box
and the symmetric point for the left. As before, we iterate a large ensemble of random initial conditions until the
average variance stabilizes and we assume that we have approximated the invariant density. The average variance
over that set isv ≈ 0.193× 10−3 (compared to 0.609× 10−3 for the standard OGY control ofSection 4.2).
Fig. 8shows the numerical approximation of the resultant invariant set. The asterisks in the figure plot theoptimal
control pointfor the left and right boxes. As in the case with standard algorithm, the system appears to live on a
Cantor set.

4.4. Increased knowledge of state in a 2D system

In the 1D model, improving the accuracy of system control and increasing the knowledge of the actual state
were considered as an analysis of two different maps. If we consider “state knowledge” as the area associated with
a given measurement (a single symbol), then simply determining the invariant set provides improvement. If the
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Fig. 8. Improved control inR2. (a) To improve control of our Ikeda map, we used control points marked by asterisks for the left and right
measurement bins. We iterate a large ensemble of initial conditions to estimate the invariant set. The dash and arrow lines show the stable and
unstable manifolds for the map. (b) A zoomed copy of the boxed area in (a). We associate each measuring box with a symbol (a, b, or c), and
label various portions of the invariant set with the associated symbol sequence.

determinant of the Jacobian has magnitude less than one (as for this Ikeda map), then the contraction under the
map must result in a measure-zero set inR2. Although we cannot determine the invariant set exactly, we can find
a small set that covers the invariant set and use it to approximate the state for a given symbol. In the 2D case, the
added dimensionality allows us to optimize some global function while still (possibly) achieving higher resolution
of state with the symbol dynamics.Fig. 8is annotated to indicate the symbol sequences associated with some of the
“striations” of the invariant set of our Ikeda map, where the parameters have already been manipulated to optimize
the global performance. If we associate a symbol with each measurement box, then we can associate a finite symbol
sequence with various portions of the invariant set. If the set is a Cantor set (as appears from simulations) then
improved estimates of state would be based on some small set that covers the appropriate portion of the invariant
set. The figure provides an easy means of visualizing the improved knowledge of state, since each measurement (a
symbol) would be a 0.001× 0.001 square inR2. It appears as though the mapping is transitive, so eventually, even
a small subset of initial conditions will get stretch over the whole set. However, we can track a symbol sequence
for several iterations (and gain improved measurement) before we lose resolution in the invariant set. Because the
Ikeda map is area contracting, each iteration indicates an improvement in knowledge. However, our experimentation
with other systems indicates that even for expanding maps, analysis of even short (1–3 symbols) sequences yields
significant gains in knowledge of state variables.

5. Conclusion

The foundation of many feedback control systems is some process that converts from analog to digital. Typically,
systems have been designed so that the inaccuracies of that approximation are within the tolerances of the system,
so little attention is given to the dynamical system that is actually in place. However, an analysis of that system may
yield significant improvements, both in the sense of state observation as well as time average performance. In the 1D
case, the resultant dynamics are easily described, in a general sense, by the fact that the controlled system generates
a simple mod map structure whose slope is given by the slope of the original unstable map at the fixed point. In
higher dimensions, general analysis becomes more difficult, but analysis of specific control problems may prove
very useful, with improvement in performance and greater resolution simultaneously achievable. For the higher
dimensional problem, this paper considered only saddle points stabilized with the OGY algorithm. However, the
basic idea of analyzing the dynamics on the invariant set of the deterministic system should prove useful, regardless
of the particular circumstance of instability and choice of control algorithm.



32 J.D. Skufca, E.M. Bollt / Physica D 179 (2003) 18–32

Acknowledgements

EMB was supported by the NSF under Grant No. DMS-0071314.

References

[1] E. Ott, C. Grebogi, J. Yorke, Controlling chaos, Phys. Rev. Lett. 63 (11) (1990) 1196–1199.
[2] T. Shinbrot, C. Grebogi, E. Ott, J.A. Yorke, Using chaos to direct trajectories to targets in systems describable by a one-dimensional map,

Phys. Rev. A 45 (1992) 4165–4168.
[3] H. Kantz, T. Schriber, Nonlinear Time Series Analysis, Cambridge University Press, New York, 1997.
[4] J.D. Farmer, J.J. Sidorowich, Optimal shadowing and noise reductions, Physica D 7 (1993) 153.
[5] P. Góra, A. Boyarsky, Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser, Boston, 1997.
[6] A. Lasota, M. Mackey, Chaos, Fractals, and Noise, 2nd ed., Springer, New York, NY, 1997.
[7] L. Billings, E. Bollt, Probability density functions of some skew tent maps, Chaos Solitons Fract. 12 (2001) 365–376.
[8] E. Bollt, T. Stanford, Y.-C. Lai, K. Zyczkowski, What symbolic dynamics do we get with a misplaced partition? On the validity of threshold

crossings analysis of chaotic time-series, Physica D 154 (3–4) (2001) 259–286.
[9] J. Milnor, W. Thurston, On Iterated Maps of the Intervals I and II, Princeton University Press, Princeton, 1977;

J. Milnor, W. Thurston, On Iterated Maps of the Interval, Dynamical Systems, Lecture Notes in Mathematics, vol. 1342, Springer, Berlin,
1988, pp. 465–563.

[10] W. de Melo, S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993.
[11] F. Romerias, C. Grebogi, E. Ott, W. Dayawansa, Contolling chaotic dynamical systems, Physica D 58 (1002) (1992) 165–192.
[12] G. Chen, X. Dong, From Chaos to Order Methodologies, Perspectives and Applications, World Scientific, Singapore, 1997.
[13] H.-G. Schuster (Ed.), Handbook of Chaos Control: Foundations and Applications, Wiley, New York, 1999.


	Feedback control with finite accuracy: more knowledge and better control for free
	Introduction
	Reduction of controlled systems with finite rounding
	Background: targeting
	Generalized analysis, finite rounding
	Approximating finite controlled systems by Reny transformations

	Improved control techniques
	Conventions and assumptions
	Edge weighted maps: invariant density
	Edge-weighted maps: increased knowledge from kneading sequences
	Improved control accuracy algorithm

	Numerical application to stabilization of saddles in R2
	OGY technique under finite accuracy measurements
	Ikeda map: a case study of the 2D problem
	Improving the 2D algorithm
	Increased knowledge of state in a 2D system

	Conclusion
	Acknowledgements
	References


