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Analysis Still Matters:
A Surprising Instance of Failure of
Runge–Kutta–Felberg ODE Solvers∗

Joseph D. Skufca†

Abstract. This paper provides a nice example to illustrate that without supporting analysis, a nu-
merical simulation may lead to incorrect conclusions. We explore a pedagogical example
of failure of Runge–Kutta–Felberg (RKF) algorithms for a simple dynamical system that
models the coupling of two oscillators. Although the system appears to be well-behaved,
the explicit RKF solvers provide erratic numerical solutions. The mode of failure is based
in a period-doubling route to chaos due to the existence of stable linear solutions in the
problem.
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1. Introduction. One of the goals of an undergraduate course in dynamical sys-
tems is to expose students to an area of study in a broad and interesting way that
(hopefully) will generate interest in the overall study of mathematics. It is almost
essential that numerical experimentation should be a central element of this introduc-
tory course. Inevitably, one of the students will question the validity of the numerical
simulations, so the course should discuss the concept that an orbit generated numer-
ically may shadow a true orbit of the system. Many students lack the mathematical
sophistication to appreciate the hypotheses under which shadowing holds [2]. The
students are often left with the idea that if the computer said so, then it must be true
(or at least it is “close” to true).

In this paper, we examine a class of problems for which the popular Runge–Kutta–
Felberg (RKF) algorithms give very interesting but fundamentally incorrect solutions.
We then illustrate how some simple analysis can help us identify that the solution
is incorrect and also understand the mechanisms that lead to failure. Our example
problem is one that is frequently included as part of a first course in dynamical systems
and involves a basic description of coupled oscillators. This simple problem provides
an excellent opportunity to show students that although the computer is a useful tool,
it must be used carefully. Additionally, the issues addressed in this paper may help
students appreciate that analytic theory and concepts that they will learn in higher
level courses can play a crucial role in real problems.
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Fig. 1 Numerical simulation of (2) using ODE45. The oscillators quickly couple (left), but they
appear to decorrelate after about time t = 100 (right).

Focus Problem. As a simple model for coupled oscillators, we assume that we
have two oscillators, each of which has a natural frequency, given by constants ω1
and ω2. The states of the oscillators are described by the phase angles θ1 and θ2. The
following system describes the coupling between the oscillators:

θ̇1 = ω1 + k1 sin(θ2 − θ1),

θ̇2 = ω1 + k2 sin(θ1 − θ2).
(1)

The constants k1, k2 describe the strength of the coupling constants. Generalizations
of this model are widely used as a starting point for studying the process of phase
synchronization. Strogatz [4] provides a detailed discussion of various techniques for
analyzing this model. However, suppose we take a naive approach and just explore
the model with numerical simulations. In other words, we choose some specific values
for the various constants, select an initial condition, numerically solve the differential
equation, and see what happens.

Although the results of this paper apply more generally, the specific system used
for the numerical simulations is

θ̇1 = 1 + sin(θ2 − θ1),

θ̇2 = 1.5 + sin(θ1 − θ2).
(2)

Starting from initial condition θ1 = 3, θ2 = 0, we produce the trajectories shown in
Figure 1. (The graphs are produced using MATLAB’s ODE45 routine—an RKF45
solver—with default options.) We note that if we integrate to time t = 8, the system
appears to synchronize, with the two oscillators phase locking by about time t = 2.
However, if we examine a longer trajectory, the phase lock breaks down shortly after
time t = 100. The two oscillators decorrelate and the time series become erratic.

The numerical results are somewhat surprising—the right-hand side of (2) is very
well behaved: analytic with all derivatives bounded. It seems like the type of nice,
smooth problem that an RKF solver should be able to handle with ease. Therefore, we
might be fooled into thinking that the system is doing something very interesting—
perhaps it is chaotic. This problem admits an easy contradiction of that hypothesis;
since the system is two-dimensional autonomous, we know that it cannot be chaotic.
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Fig. 2 Step size used by ODE45 in solving (2) on t ∈ [0, 200].

Therefore, we conclude that perhaps the numerics are wrong. In fact, we will find that
while the actual (continuous) system remains phased locked, our numerical solution
has become chaotic. Our goal is to explore this mode of failure of the RKF solvers.

2. Analysis of the Oscillator Model. The coupling of the two oscillators is most
easily understood by first making the change of variables φ = θ2 − θ1, ψ = θ2 + θ1,
yielding

φ̇ = 0.5− 2 sin(φ),

ψ̇ = 2.5.
(3)

So the average of the two phase angles (ψ/2) increases linearly, while the essential
dynamics are captured by φ, which tells us the phase difference between the two
oscillators. We have reduced the problem to a one-dimensional system in a rotating
reference frame. We note that φ has fixed points where

sin(φ) = 0.25.

If we assume that φ is on a circle, there are two fixed points, one of which is stable,
the other unstable. In our original system (2), the phase-space attractor is the family
of linear equations

θ2 = θ1 + arcsin(0.25) + 2nπ

with time domain form

θ1(t) = 1.25t+ c,

θ2(t) = 1.25t+ c+ arcsin(0.25) + 2nπ, n integer.
(4)

Therefore, analytically, we know (1) the two oscillators synchronize and (2) the syn-
chronized state is stable. Then the issue of central interest is, Why did our numerical
solution (using RKF) indicate something very different? One of the first questions to
ask is what the integrator was doing at the point of suspected failure. Figure 2 plots
the sequence of time steps used by the integrator in solving to time t = 200. There
appears to be no indication of when the solution changes from smooth (t < 100) to
erratic (t > 100), except that perhaps the time steps got larger. We are led to ask a
sequence of three questions:
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• Do the large step sizes cause the numerically erratic solution?
• If so, how do they cause this behavior?
• Why does RKF drive itself to large step sizes?

3. Stability of Runge–Kutta (RK) Methods. It is known [1] that RK methods
with fixed step size h are stable if hλi ∈ D for all eigenvalues λi of the local lin-
earization, where D is a domain that can be calculated from the particular method
employed. Specifically, for the classical fourth-order method (RK4) applied to a sys-
tem with real eigenvalues, the stability requirement is essentially that λih ∈ (−2.79, 0).
Therefore, the largest magnitude eigenvalue limits the size of the largest stable step
size. Our linearized system has eigenvalues of λ1 = −2 cos(φ), λ2 = 0. Assuming we
are near the steady state solution, sin(φ) ≈ .25 yields λ1 ≈ −1.93. Therefore, we
expect h < 1.44 for stability. Figure 2 shows that for the problem of interest, the step
size is often outside the region of stability.

That the solver operates (on some time steps) in a region of instability is the
source of the inaccuracy of the solution. However, the details of that behavior are more
rich than simple instability. We explore this issue by considering numerical solutions
using classical RK4 with a fixed step size, h. Given an IVP of the form x′ = f(x, t),
x(t0) = x0, a one-step explicit scheme reduces to a discrete-time dynamical system,

ξn+1 = Φf (ξn, tn;h), ξ0 = x0,

tn+1 = tn + h, t0 given.
(5)

Φf is the map that executes the RK4 method; it is determined by the method chosen
and by the field f and is parameterized by h. If we consider our reduced dimension
ODE

φ̇ = 0.5− 2 sin(φ),(6)

then we can study the effect of parameter value h on the discrete dynamical system
defined by Φ. The explicit form of Φ associated with RK4 applied to (6) is a little
complicated algebraically, as it requires several compositions of functions. However,
a few graphs will help us see the effects of the parameter h. Figure 3 shows the
dynamical system map for an h = 1, 1.44, 2.11. When h = 1, there is one stable fixed
point, which is the steady state solution to the continuous time system. At h = 1.44,
the system passes through a pitchfork bifurcation; two stable fixed points remain, but
neither is the steady state solution to (6). For h = 2.1, there are many stable fixed
points of the discrete system, none of which is the “correct” solution to the continuous
system.

To develop a better appreciation of the dynamical system defined by RK4, we
build a partial bifurcation diagram over the parameter h. Figure 4 shows 200 steady
state iterations of Φ for various values of h, using trajectories starting from three
different initial conditions, ξ0 = 0.25, 0.5, and 1.5. As previously noted, at h ≈ 1.44,
the system experiences a pitchfork bifurcation such that for h > 1.44, the RK4 dy-
namical system no longer converges to the fixed point of the continuous system (at
ξ = arcsin(0.25) ≈ 0.2527). Instead, it converges to the stable fixed points of the dis-
crete RK4 map. For h ∈ (1.44, 1.74), there are two stable fixed points, with ξ0 = 0.25
in the basin of attraction of the lower fixed point, and ξ0 = 0.5 and ξ0 = 1.5 in the
basin of attraction for the upper fixed point. For h > 1.74, the lower branch follows a
period-doubling route to chaos, while the other branch remains stable until h > 2.05,
when it also devolves to chaos. In addition to what is visible in the diagram, we
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Fig. 3 The discrete map found by applying RK4 to (6) for h = 1, 1.44, 2.1.

Fig. 4 (Left) A partial bifurcation diagram for the discrete RK4 map of φ̇ = 0.5 − 2 sin(φ). The
diagram was constructed from orbits with initial condition ξ0 = 0.25 (black), 0.5 (red),
and 1.5 (blue). The bifurcation at h ≈ 1.44 is a pitchfork, not a period doubling. For
1.44 < h < 1.74, the black curve and the blue curve each represent two different stable fixed
points, each with its own basin of attraction. (Right) A portion of the diagram at higher
resolution reveals the classic structure of a period doubling route to chaos.

may appreciate that with increasing h, the multimodal map will create many stable
fixed points (via tangent bifurcations). Since the bifurcation diagram was created
using only three initial conditions, it can show at most three distinct fixed points or
periodic orbits for each h. The full bifurcation diagram, created by computing steady
state trajectories of all initial conditions, would show many more branches.

The bifurcation diagram for this system is very rich and would support several
paragraphs of explanation and perhaps many more graphs to fully appreciate its
structure. However, the focus of this paper is not to fully explain the behavior of the
discrete dynamical system. Rather, the important element is that as h increases past
the first bifurcation point at h ≈ 1.44, although the algorithm remains stable (in the
sense that it does not blow up), it no longer provides a reasonable approximation to
the continuous system. Because the algorithm is stable, a computer program would
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be able to complete the calculation and provide an answer without any indication of
an error.

4. How RKF Leads to Large Steps. In section 3, we see that the RK4 method
generates a chaotic dynamical system as the step size gets large. RKF algorithms use
a basic RK method with an adaptive step size. From Figure 2, we see that the step
sizes used by the RKF method were not only unstable, but were often in the chaotic
region of the bifurcation diagram. Obviously, when RKF makes the step size large,
the numerical system behaves erratically. But why did the step size grow so large?
The adaptive algorithm estimates the error over one time step by comparing the one-
time-step approximation from two different methods of sequential order, discussed in
detail in [3]. The crux of the method is the update formula

hnew = αh

(
ε|h|

|ξ̂n+1 − ξ̄n+1|

) 1
p

,(7)

where ξ̂n+1 is an estimate from an order p RK method, ξ̄n+1 is from an order p + 1
RK method, ε is a specified one-step error tolerance, and α is an adjustment factor.
(The typical value chosen is α = .9.) We note that

ξ̂n+1 − ξ̄n+1 = (ξn + hm̂)− (ξn + hm̄) = h(m̂− m̄),

where m̂ represents the weighted average of slopes associated with the order p method
and m̄ is the weighted average of slopes associated with the order p+1 method. Then
(7) can be expressed as

hnew = αh

(
ε

|m̂− m̄|

) 1
p

.(8)

Normally, we would expect that the denominator does not vanish, because the higher
order method should give a better estimate of the appropriate slope to use. For the
system of coupled oscillators, however, the system attracting solution is of the form
Ψ(t) = mt + b, (a line). Along this attracting trajectory, the slope is constant. The
approximation of the slope by an RK algorithm will be exact, regardless of the order
of the method. Therefore, near this attracting linear trajectory, the slope estimates
of the higher and lower order methods tend to converge, with

m̂→ m and m̄→ m.

In this region of phase space, the error estimate tends to 0, and the adaptive step size
will increase until it is large enough to make the method unstable.

4.1. Typical, Pathological, or Somewhere In-Between. In general, a numerical
solution to an ODE is an approximation, with some amount of acceptable error.
However, we have shown that there is at least one dynamical system for which the
RKF45 algorithm will yield a numerical solution which is qualitatively different from
the exact solution. Does this difficulty arise frequently, or did we simply find a special
case? The answer to this question requires some qualification, because the system
given by (1) has some characteristics that are typical and others that are more rare.
The typical behavior, which describes the basic mechanism of instability, is quite
common. The atypical aspects (although not completely uncommon in nonlinear
systems) create the more interesting behavior that results from the instability.
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Fig. 5 Solution to y′ = 100−y, y(0) = 0 using default MATLAB settings for ODE45. Fluctuations
are visible even on the full scale graph. The zoomed inset clarifies that the oscillations are
not simply an artifact of the graphic display.

Typical. If a dynamical system has an attracting linear solution (where the at-
tracting trajectory can be expressed as Ψ(t) = at+b, with a and b constant), then the
step size will tend to increase until the RKF method becomes unstable, because all
RK methods are exact on that linear trajectory. The numerical solution will diverge
from the attractor. Once it diverges from the attractor, the RKF error estimate will
decrease the step size to the stable regime, and the numerical solution will return
toward the attractor. We describe this behavior as typical and note that this class of
systems includes the case where a = 0 and the attractor would be a stable equilibrium.
Therefore, the phenomenon is present in systems as simple y′ = 100− y; one can see
the fluctuations in a graph of the ODE45 solution (computed with default MATLAB
settings). (See Figure 5.)

In the equilibrium case (Ψ(t) = b), the unstable behavior is often unnoticed, since
we generally are not concerned with the numerical solution once it is “close” to the
equilibrium. Whether we can “see” the problem depends on the value of ε, the one-
step error tolerance, which governs how quickly the RKF algorithm will restabilize.
In most ODE solvers, that tolerance is bounded below by some fraction of ||y||. (In
MATLAB, this parameter is called RELTOL.) The idea is that when the variables are
large (say O(104)) we are willing to accept errors that are relatively large (perhaps as
large as O(1)). If ε is sufficiently small, the system tends to restabilize before the error
is large enough for us to detect in a computer graph. However, if the attractor is a
linear solution with nonzero slope (i.e., y = t as the attracting solution for y′ = 1−y+t,
although the fluctuations (∆y) remain small in a relative sense (|∆y/y| = O(ε))), the
unbounded solution allows ∆y to eventually grow large.

Atypical—Small Fluctuations. In the original problem posed in (2), the attrac-
tor is an infinite family of linear solutions, given by (4). As discussed above, since
the attractor is an unbounded linear equation, we eventually see “large” fluctuations
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due to the instability. Because the right-hand side of (2) is calculated from the dif-
ference of two unbounded variables, it is sensitive to “small” fluctuations in ∆θi/θi.
In contrast to the typical behavior, the fluctuations in the numerical solution to (2)
become large enough to cause the solution to jump from one basin of attraction to
another. Because small (in a relative sense) fluctuations are controlling the behavior
of an unbounded system, we could consider this atypical.

Atypical—Modal Right-Hand Side. In our reduced one-dimensional system (6),
the RK dynamics are similar to the two-dimensional system; the bifurcation diagram
(Figure 4) would have been exactly the same if we had applied RK4 to (2) and plotted
θ2 − θ1. Solutions to (6) remain bounded, so clearly the atypical behavior described
above does not apply. However, this problem is different from the examples cited
as “typical” because the right-hand side of (6) is not a monotone function of φ. As
a result, when h is large the RK map is multimodal. When h increases beyond
the absolute stability criteria (h ≈ 1.44 for this problem), although the equilibrium
solution is unstable, the RK map has other fixed points that are stable. Therefore,
the error estimate does not immediately grow large enough for the RKF algorithm to
restore the step-size to the region of stability. Instead, h continues to grow, allowing
the RK map to move into a chaotic regime. We conjecture that many systems with
non-monotone RHS may cause similar problems for RKF algorithms.

In summary, the typical behavior (when the attractor is linear in t) causes the step
size to increase. The atypical qualities of the problem allowed something interesting
to happen when the step size grew large. In may also be the case that systems with
attracting solutions that are nearly linear over an extended time domain may locally
cause similar effects.

4.2. Avoiding Instability. A class of ODE where RKF solvers are known to be
inadequate is the class of stiff ODEs. Typically, the failure is due to a vast spread
in the eigenvalues and the mechanism of failure is that the step size gets too small
for the RKF solver to complete the computation (i.e., geometrically decreasing) or
the step size does not get small enough for the solution to track the “fast” dynamics.
The class of problems discussed in this paper shows a mode of failure that is due to
the adaptive step size driving the numerical algorithm to instability, but it is just
another example of a stiff problem. There are many ODE methods than can tackle
stiff systems. Typically, they are based on implicit methods [3]. Many implicit solvers
are stable for all step sizes. Therefore, they will not suffer from the mode of failure
discussed in this paper, even with adaptive step size adjustments. All of the stiff
solvers in the MATLAB ODE suite were able to accurately compute solutions to the
problems in this paper, even with step sizes as large as h = 500.

5. What Have We Learned?. In the 1950s and 1960s, computers were first used
to explore nonlinear dynamical systems. Those simulations produced some profound
realizations about the complexities that can result from nonlinear systems. Many of
the early results, however, were viewed with a bit of skepticism—perhaps the strange
behavior (which would later become known as chaos) was actually caused by compu-
tational errors in the approximation and not a fundamental property of the system.
At the same time that mathematicians were developing a better understanding of such
systems, they were improving numerical algorithms and learning to apply computa-
tional tools with more confidence. With a modern PC and efficient computational
techniques, it is easy and fast to simulate a problem numerically, and then simply
assume a priori that the numerical solution is sufficiently accurate. That philosophy
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is doomed to failure, as illustrated by our problem. The computer should not be used
in the “stand-alone” mode. There are qualitative tools that we can employ to help us
understand general behavior of systems. There are numerical analysis techniques that
allow us to condition problems for numerical simulation. And there is hard analysis,
which can provide the essential error bounds to ensure the validity of results. None
of these aspects should be ignored if we want to assemble a toolkit that is suitable for
doing solid mathematics.
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