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1 Why a Markov Partition?

To simplify analysis of a dynamical system, we often study a topologically equivalent system using symbol
dynamics, representing trajectories by inÞnite length sequences using a Þnite number of symbols. (An
example of this idea is that we often write real numbers as sequences of digits, a Þnite collection of symbols.)
To represent the state space of a dynamical system with a Þnite number of symbols, we must partition
the space into a Þnite number of elements and assign a symbol to each one. In probability theory, the
term �Markov� denotes �memoryless.� In other words the probability of each outcome conditioned on all
previous history is equal to conditioning on only the current state; no previous history is necessary. The
same idea has been adapted to dynamical systems theory to denote a partitioning of the state space so
that all of the past information in the symbol sequence is contained in the current symbol, giving rise to
the idea of a Markov transformation.

2 One-Dimensional Transformations

In the special, but important case that a transformation of the interval is Markov, the symbol dynamic is
simply presented as a Þnite directed graph. A Markov transformation in R1 is deÞned as follows: [2].

Definition: Let I = [c, d] and let τ : I → I. Let P be a partition of I given by the points c = c0 <
c1 < . . . < cp = d. For i = 1, . . . , p, let Ii = (ci−1, ci) and denote the restriction of τ to Ii by τi. If τi is a
homeomorphism from Ii onto a union of intervals of P, then τ is said to be Markov. The partition P is
said to be a Markov partition with respect to the function τ .

2.1 One-Dimensional Example

Map 1, (Fig 1a) is a Markov map with the associated partition {I1, I2, I3, I4}. The symbol dynamics are
captured by the transition graph (Fig 1b). Although Map 2 (Fig 1c) is piecewise linear and is logically
partitioned by the same intervals as map 1, the partition is not Markov because interval I2 does not map
onto (in the mathematical sense) a union of any of the intervals of the partition. However, we are not
able to say that the map 2 is not Markov. There may be some other partition that satisÞes the Markov
condition. In general, Þnding a Markov partition or proving that such a partition does not exist, is a
difficult problem.
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Figure 1: (a) A Markov map with partition shown. (b) The transition graph for map 1. (c) The partition
is not Markov, because the image of I2 is not equal to a union of intervals of the partition.

3 In Higher Dimensions

Definition A Topological Partition of a metric spaceM is a Þnite collection P = {P1, P2, ..., Pr} of disjoint
open sets whose closures cover M in the sense that M = P1 ∪ ... ∪ Pr. [3]

Any topological partitioning of the state space will create a symbol dynamics for the map. In the
special case where the partition is Markov, the symbol dynamics capture the essential dynamics of the
original system.

Definition Given a metric space M and a map f : M → M , a Markov Partition of M is topological
partition of M into rectangles {R1, ..., Rm} such that whenever x ∈ Ri and f(x) ∈ Rj, then
f [Wu(x) ∩Ri] ⊃Wu[f(x)] ∩Rj) and f [W

s(x) ∩Ri] ⊂Ws[f(x)] ∩Rj . [1, 7].

In simpliÞed terms, this deÞnition says that whenever an image rectangle intersects a partition element,
the image must stretch completely across that element in the expanding directions and must be inside that
partition element in the contracting direction. (See Fig 2.)

Figure 2: In the unstable (expanding) direction, the image rectangle must stretch completely across any
of the partition rectangles that it intersects.

It is important to use a �good� partition so that the resulting symbolic dynamics of orbits through
the partition well represents the dynamical system. If the partition is Markov, then �goodness� is most
easily ensured. However, a broader notion, called generating partition, may be necessary to capture the
dynamics. AMarkov partition is generating, but the converse is not generally true. See [5, 6] for a thorough
discussion of the role of partitions in representing dynamical systems.
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3.1 Two-Dimensional Example - Toral Automorphism

The Cat Map, deÞned by
x = (Ax) mod 1 (1)

where A =

"
2 1
1 1

#
(2)

yields a map from the unit square onto itself. This map is said to be on the toral space T2 because the
mod 1 operation causes the coordinate 1+z to be equivalent to z. A Markov partition for this map is shown
in Fig 3. The Cat Map is part of a larger class of functions called toral Anosov diffeomorphisms, and [4]
provides a detailed description of how to construct Markov partitions for this class of maps.

Figure 3: The Cat Map is a toral automorphism. (a) The operation of the linear map on the unit square.
(b) Under the mod operation, the image is exactly the unit square. (c) Tesselation by rectangles R1 and
R2 forms an inÞnite partition on R2. However, since the map is deÞned on the toral space T2, only two
rectangles are required to cover the space. The Þlled gray boxes illustrate that R1 and R2 are mapped
completely across a union of rectangles.

4 Applications of Markov Partitions

In addition to the establishing the link to Symbol Dynamics, the Markov Partition has another direct
application in the 1-dimensional case. In a dynamical system, we are often interested in the overall behavior
of the map � the evolution of an ensemble of initial conditions. The Frobenius-Perron operator is used
to describe this evolution. When the map is Markov, this operator reduces to Þnite dimensional stochastic
transition matrix. Following the same development as in probability theory, the stationary (invariant)
density associated with these maps is described by the eigenvector for the eigenvalue 1. If the system
meets certain ergodic conditions, this density will describe the time average behavior of the system.

The analysis of the ensemble behavior of a dynamical system via its transition matrix is such a powerful
tool that we would like to apply it to other 1-dimensional systems, even when they may not be Markov. A
general technique for approximating the invariant density of a map is called Ulam�s Method, conjectured
by Ulam [9] in 1960 and later proven by Li [8] in 1976. The method relies upon the fact that Markov maps
are dense in function space. Consult [10] for a thorough description of this technique.
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