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Abstract— We present an algorithm for underwater robots to
visually detect and track human motion. Our objective is to
enable human-robot interaction by allowing a robot to follow
behind a human moving in (up to) six degrees of freedom.
In particular, we have developed a system to allow a robot
to detect, track and follow a scuba diver by using frequency-
domain detection of biological motion patterns. The motion of
biological entities is characterized by combinations of periodic
motions which are inherently distinctive. This is especially true
of human swimmers. By using the frequency-space response of
spatial signals over a number of video frames, we attempt to
identify signatures pertaining to biological motion. This technique
is applied to track scuba divers in underwater domains, typically
with the robot swimming behind the diver. The algorithm is able
to detect a range of motions, which includes motion directly away
from or towards the camera. The motion of the diver relative
to the vehicle is then tracked using an Unscented Kalman Filter
(UKF), an approach for non-linear estimation. The efficiency of
our approach makes it attractive for real-time applications on-
board our underwater vehicle, and in future applications we
intend to track scuba divers in real-time with the robot. The
paper presents an algorithmic overview of our approach, together
with experimental evaluation based on underwater video footage.

Fig. 1. An underwater robot servoing off a target carried by a diver.

I. INTRODUCTION

Motion cues have been shown to be powerful indicators
of human activity and have been used in the identification
of their position, behavior and identity. In this paper we

exploit motion signatures to facilitate visual servoing, as part
of a larger human-robot interaction framework. From the
perspective of visual control of an autonomous robot, the
ability to distinguish between mobile and static objects in
a scene is vital for safe and successful navigation. For the
vision-based tracking of human targets, motion patterns are
an important signature, since they can provide a distinctive
cue to disambiguate between people and other non-biological
objects, including moving objects, in the scene. We look at
both of these features in the current work.

Our work exploits motion-based tracking as one input cue to
facilitate human-robot interaction. While the entire framework
is outside the scope of this paper, an important sub-task for
our robot, like many others, is for it to follow a human
operator (as can be seen in Fig.1). We facilitate the detection
and tracking of the human operator using the spatio-temporal
signature of human motion. In practice, this detection and
servo-control behavior is just one of a suite of vision-based
interaction mechanisms. In the context of servo-control, we
need to detect a human, estimate his image coordinates (and
possible image velocity), and exploit this in a control loop.
We use the periodicity inherently present in biological motion,
and swimming in particular, to detect human scuba divers.
Divers normally swim with a distinctive kicking gait which,
like walking, is periodic, but also somewhat individuated. In
many practical situations, the preferred applications of UAV
technologies call for close interactions with humans. The
underwater environment poses new challenges and pitfalls
that invalidate assumptions required for many established
algorithms in autonomous mobile robotics. While truly au-
tonomous underwater navigation remains an important goal,
having the ability to guide an underwater robot using sensory
inputs also has important benefits; for example, to train the
robot to perform a repetitive observation or inspection task, it
might very well be convenient for a scuba diver to perform
the task as the robot follows and learns the trajectory. For
future missions, the robot can use the information collected by
following the diver to carry out the inspection. This approach
also has the added advantage of not requiring a second person
teleoperating the robot, which simplifies the operational loop
and reduces the associated overhead of robot deployment.

Our approach to track scuba divers in underwater video
footage and real-time streaming video arises thus from the
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need for such semi-autonomous behaviors and visual human-
robot interaction in arbitrary environments. The approach
is computationally efficient for deployment on-board an au-
tonomous underwater robot. Visual tracking is performed
in the spatio-temporal domain in the image space; that is,
spatial frequency variations are detected in the image space
in different motion directions across successive frames. The
frequencies associated with a diver’s gaits (flipper motions)
are identified and tracked. Coupled with a visual servoing
mechanism, this feature enables an underwater vehicle to
follow a diver without any external operator assistance, in
environments similar to that shown in Fig. 2.

The ability to track spatio-temporal intensity variations
using the frequency domain is not only useful for tracking
scuba divers, but also can be useful to detect motion of
particular species of marine life or surface swimmers [6]. It is
also associated with terrestrial motion like walking or running,
and our approach seems appropriate for certain terrestrial
applications as well. It appears that most biological motion
underwater as well as on land is associated with periodic mo-
tion, but in this paper we concentrate our attention to tracking
human scuba divers and servoing off their position. Our robot
is being developed with marine ecosystem inspection as a
key application area. Recent initiatives taken for protection
of coral reefs call for long-term monitoring of such reefs and
species that depend on reefs for habitat and food supply. We
envision our vehicle to have the ability to follow scuba divers
around such reefs and assist in monitoring and mapping of
distributions of different species of coral.

The paper is organized in the following sections: in Sec. II
we look at related work in the domains of tracking, oriented
filters and spatio-temporal pattern analysis in image sequences,
Kalman filtering and underwater vision for autonomous vehi-
cles. Our Fourier energy-based tracking algorithm is presented
in Sec. III. Experimental results of running the algorithm on
video sequences are shown in Sec. IV. We draw conclusions
and discuss some possible future directions of this work in
Sec. V.

Fig. 2. Typical visual scene encountered by an AUV while tracking scuba
divers.

II. RELATED WORK

The work presented in this paper combines previous re-
search in different domains, and its novelty is in the use of
frequency signatures in visual target recognition and tracking,
combined with the Unscented Kalman Filter for tracking 6-
DOF human motion. In this context, 6-DOF refers to the
number of degrees of freedom of just the body center, as
opposed to the full configuration space. In the following
paragraphs we consider some of the extensive prior work on
tracking of humans in video, underwater visual tracking and
visual servoing in general.

A key aspect of our work is a filter-based characterization
of the motion field in an image sequence. This has been a
problem of longstanding relevance and activity, and were it
not for the need for a real-time low-overhead solution, we
would be using a full family of steerable filters, or a related
filtering mechanism [2, 3]. In fact, since our system needs
to be deployed in a hard real-time context on an embedded
system, we have opted to use a sparse set of filters combined
with a robust tracker. This depends, in part, on the fact that we
can consistently detect the motion of our target human from a
potentially complex motion field. Tracking humans using their
motion on land, in two degrees of freedom, was examined by
Niyogi and Adelson [8]. They look at the positions of head
and ankles, respectively, and detect the presence of a human
walking pattern by looking at a “braided pattern” at the ankles
and a straight-line translational pattern at the position of the
head. In their work, however, the person has to walk across
the image plane roughly orthogonal to the viewing axis for
the detection scheme to work.

There is evidence that people can be discriminated from
other objects, as well as from one another, based on motion
cues alone (although the precision of this discrimination may
be limited). In the seminal work using “moving light displays”,
Rashid observed [10] that humans are exquisitely sensitive to
human-like motions using even very limited cues. There has
also been work, particularly in the context of biometric person
identification, based on the automated analysis of human
motion or walking gaits [16, 7, 15]. In a similar vein, several
research groups have explored the detection of humans on land
from either static visual cues or motion cues. Such methods
typically assume an overhead, lateral or other view that allows
various body parts to be detected, or facial features to be
seen. Notably, many traditional methods have difficulty if the
person is walking directly away from the camera. In contrast,
the present paper proposes a technique that functions without
requiring a view of the face, arms or hands (either of which
may be obscured in the case of scuba divers). In addition, in
our particular tracking scenario the diver can point directly
away from the robot that is following him, as well as move in
an arbitrary direction during the course of the tracking process.

While tracking underwater swimmers visually has not been
explored in great depth in the past, some prior work has been
done in the field of underwater visual tracking and visual
servoing for autonomous underwater vehicles. Naturally, this is
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closely related to generic servo-control. In that context, on-line
real-time performance is crucial. On-line tracking systems, in
conjunction with a robust control scheme, provide underwater
robots the ability to visually follow targets underwater [14].
Previous work on spatio-temporal detection and tracking of bi-
ological motion underwater has been shown to work well [12],
but only when the motion of the diver is directly towards or
away from the camera. Our current work looks at motion
in a variety of directions over the spatio-temporal domain,
incorporates a variation of the Kalman filter and also estimates
diver distance and is thus a significant improvement over that
particular technique.

In terms of the tracking process itself, the Kalman filter
is, of course, the preeminent classical methodology for real-
time tracking. It depends, however, on a linear model of
system dynamics. Many real systems, including our model of
human swimmers, are non-linear and the linearization needed
to implement a Kalman filter needs to be carefully managed to
avoid poor performance or divergence. The Unscented Kalman
Filter [5] we deploy was developed to facilitate non-linear
control and tracking, and can be regarded as a compromise
between Kalman Filtering and fully non-parametric Conden-
sation [4].

III. METHODOLOGY

To track scuba divers in the video sequences, we ex-
ploit the periodicity and motion invariance properties that
characterize biological motion. To fuse the responses of the
multiple frequency detectors, we combine their output with
an Unscented Kalman Filter. The core of our approach is to
use periodic motion as the signature of biological propulsion
and specifically for person-tracking, to detect the kicking gait
of a person swimming underwater. While different divers
have distinct kicking gaits, the periodicity of swimming (and
walking) is universal. Our approach, thus, is to examine the
amplitude spectrum of rectangular slices through the video
sequence along the temporal axis. We do this by computing a
windowed Fourier transform on the image to search for regions
that have substantial band-pass energy at a suitable frequency.
The flippers of a scuba diver normally oscillate at frequencies
between 1 and 2 Hz. Any region of the image that exhibits
high energy responses in those frequencies is a potential
location of a diver. The essence of our technique is therefore
to convert a video sequence into a sampled frequency-domain
representation in which we accomplish detection, and then use
these responses for tracking. To do this, we need to sample the
video sequence in both the spatial and temporal domain and
compute local amplitude spectra. This could be accomplished
via an explicit filtering mechanism such as steerable filters
which might directly yield the required bandpass signals.
Instead, we employ windowed Fourier transforms on the se-
lected space-time region which are, in essence, 3-dimensional
blocks of data from the video sequence (a 2-dimensional
region of the image extended in time). In principle, one could
directly employ color information at this stage as well, but
due to the need to limit computational cost and the low

mutual information content between color channels (especially
underwater), we perform the frequency analysis on luminance
signals only.

We look at the method of Fourier Tracking in Sec. III-A.
In Sec. III-B, we describe the multi-directional version of the
Fourier tracker and motion detection algorithm in the XY T
domain. The application of the Unscented Kalman Filter for
position tracking is discussed in Sec. III-C.

A. Fourier Tracking

The core concept of the tracking algorithm presented here
is to take a time-varying spatial signal (from the robot) and
use the well-known discrete-time Fourier transform to convert
the signal from the spatial to the frequency domain. Since
the target of interest will typically occupy only a region of
the image at any time, we naturally need to perform spatial
and temporal windowing. The standard equations relating the
spatial and frequency domain are as follows.

x[n] =
1

2π

∫
2π

X(ejω)ejωdω (1)

X(ejω) =

+∞∑
n=−∞

x[n]e−jωn (2)

where x[n] is a discrete aperiodic function, and X(ejω) is pe-
riodic with length 2π and frequency ω. Equation 1 is referred
to as the synthesis equation, and Eq. 2 is the analysis equation
where X(ejω) is often called the spectrum of x[n] [9]. The
coefficients of the converted signal correspond to the amplitude
and phase of complex exponentials of harmonically-related
frequencies present in the spatial domain.

For our application, we do not consider phase information,
but look only at the absolute amplitudes of the coefficients
of the above-mentioned frequencies. The phase information
might be useful in determining relative positions of the un-
dulating flippers, for example. It might also be used to pro-
vide a discriminator between specific individuals. Moreover,
by not differentiating between the individual flippers during
tracking, we achieve a speed-up in the detection of high-
energy responses, at the expense of sacrificing relative phase
information.

Spatial sampling is accomplished using a Gaussian win-
dowing function at regular intervals and in multiple directions
over the image sequence. The Gaussian is appropriate since
it is well known to simultaneously optimize localization in
both space and frequency space. It is also a separable filter,
making it computationally efficient. Note, as an aside, that
some authors have considered tracking using a box filter
for sampling, but these produce undesirable ringing in the
frequency domain, which can lead to unstable tracking. The
Gaussian filter has good frequency domain properties and it
can be computed recursively making it exceedingly efficient.

B. Multi-directional Motion Detection

To detect motion in multiple directions, we use a predefined
set of vectors, each of which is composed of a set of small
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Fig. 3. Outline of the Directional Fourier motion detection and tracking process. The Gaussian-filtered temporal image is split into subwindows, and the
average intensity of each subwindow is calculated for every timeframe. For the length of the filter, a one-dimensional intensity vector is formed, which is
then passed through an FFT operator. The resulting amplitude plot can be seen, with the symmetric half removed.

rectangular subwindows in the spatio-temporal space. The
trajectories of each of these subwindows are governed by a
corresponding starting and ending point in the image. In any
given time T , this rectangular window resides in a particu-
lar position along this trajectory and represents a Gaussian-
weighted grayscale intensity value of that particular region in
the image. Over the entire trajectory, these windows generate
a vector of intensity values along a certain direction in the
image, producing a purely temporal signal for amplitude com-
putation. We weight these velocity vectors with an exponential
filter, such that intensity weights of a more recent location
of the subwindow have a higher weight than another at that
same location in the past. This weighting helps to maintain
the causal nature of the frequency filter applied to this velocity
vector. In the current work, we extract 17 such velocity vectors
(as seen in Fig. 4) and apply the Fourier transform to them (17
is the optimum number of vectors we can process in quasi-
real time in our robot hardware). The space formed by the
velocity vectors is a conic in the XY T space, as depicted
in Fig. 5. Each such signal provides an amplitude spectrum
that can be matched to a profile of a typical human gait. A
statistical classifier trained on a large collection of human gait
signals would be ideal for matching these amplitude spectra to
human gaits. However, these human-associated signals appear
to be easy to identify, and as such, an automated classifier is
not currently used. Currently, we use two different approaches
to select candidate spectra. In the first, we choose the particular
direction that exhibits significantly higher energy amplitudes in
the low-frequency bands, when compared to higher frequency
bands. In the second approach, we precompute by hand an
amplitude spectrum from video footage of a swimming diver,
and use this amplitude spectrum as a true reference. To find
possible matches, we use the Bhattacharyya measure [1] to
find similar amplitude spectra, and choose those as possible
candidates.

C. Position Tracking Using an Unscented Kalman Filter

Each of the directional Fourier motion operators outputs an
amplitude spectrum of different frequencies present in each
associated direction. As described in Sec. III-B, we look at
the amplitudes of the low-frequency components of these
directional operators, the ones that exhibit high responses are
chosen as possible positions of the diver, and thus the position
of the diver can be tracked across successive frames.

To further enhance the tracking performance, we run the
output of the motion detection operators through an Unscented
Kalman Filter (UKF). The UKF is a highly effective filter for
state estimation problems, and is suitable for systems with a
non-linear process model. The track trajectory and the motion
perturbation are highly non-linear, owing to the undulating
propulsion resulting from flipper motion and underwater cur-
rents and surges. We chose the UKF as an appropriate filtering
mechanism because of this inherent non-linearity, and also its
computational efficiency.

According to the UKF model, an N -dimensional random
variable x with mean x̂ and covariance Pxx is approximated
by 2N+1 points known as the sigma points. The sigma points
at iteration k− 1, denoted by χik−1|k−1, are derived using the
following set of equations:

χ0
k−1|k−1 = xak−1|k−1

χik−1|k−1 = xak−1|k−1 + (
√

(N + λ)(P )ak−1|k−1)i

i = 1 . . . N

χik−1|k−1 = xak−1|k−1 + (
√

(N + λ)(P )ak−1|k−1)i−N

i = N + 1 . . . 2N

where (
√

(N + λ)(P )ak−1|k−1)i is the i-th column of the
matrix square-root of ((N + λ)(P )ak−1|k−1), and λ is a
predefined constant.
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(a) Motion directions covered by the various directional
Fourier operators, depicted in a 2D spatial arrangement.

(b) Image slices along the time axis showing 5 out of 17
possible track directions while tracking a scuba diver.

Fig. 4. Directions of motion for Fourier tracking, also depicted in 3D in a diver swimming sequence.

For the diver’s location, the estimated position x is a two-
dimensional random variable, and thus the filter requires 5
sigma points. The sigma points are generated around the mean
position estimate by projecting the mean along the X and Y
axes, and are propagated through a non-linear motion model
(i.e., the transition model) f , and the estimated mean (i.e.,
diver’s estimated location), x̂, is calculated as a weighted
average of the transformed points:

χik|k−1 = f(χik−1|k−1) i = 0 . . . 2N

x̂k|k−1 =

2N∑
i=0

W iχik|k−1

where W i are the constant weights for the state (position)
estimator.

As an initial position estimate of the diver’s location for the
UKF, we choose the center point of the vector producing the
highest low-frequency amplitude response. Ideally, the non-
linear motion model for the scuba diver can be learned from
training using video data, but for this application we use a
hand-crafted model created from manually observing such
footage. The non-linear motion model we employ predicts
forward motion of the diver with a higher probability than
up and down motion, which in turn is favored over sideways
motion. For our application, a small number of iterations
(approximately between 5 and 7) of the UKF is sufficient for
convergence.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been experimentally validated
on video footage recorded of divers swimming in open- and
closed-water environments (i.e, pool and open ocean, respec-
tively). Both types of video sequences pose significant chal-
lenges due to the unconstrained motion of the robot and the
diver, and the poor imaging conditions, particularly observed
in the open-water footage due to suspended particles, water
salinity and varying lighting conditions. The algorithm outputs

a direction corresponding to the most dominant biological
motion present in the sequence, and a location of the most
likely position of the entity generating the motion response.
Since the Fourier tracker looks backward in time every N
frames to find the new direction and location of the diver, the
output of the computed locations are only available after a
“bootstrap phase” of N frames. We present the experimental
setup below in Sec. IV-A findings and the results in Sec. IV-B.

A. Experimental Setup

As mentioned, we conduct experiments offline on video
sequences recorded from the cameras of an underwater robot.
The video sequences contain footage of one or more divers
swimming in different directions across the image frame,
which make them suitable for validating our approach. We run
our algorithm on a total of 2530 frames of a diver swimming
in a pool, and 2680 frames of a diver swimming in the open-
ocean, collected from open ocean field trials of the robot. In
total, the frames amounted to over 10 minutes video footage of
both environments. The Xvid-compressed video frames have
dimensions of 768 × 576 pixels, the detector operated at a rate

Fig. 5. Conic space covered by the directional Fourier operators.
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(a) Snapshot image showing direction of diver
motion (in light gray) and an arbitrary direction
without a diver (in dark gray).

(b) Frequency responses along the motion of the
diver.

(c) Frequency responses along the direction de-
picted by the dark gray arrow. Note the low
amplitude values.

Fig. 6. Contrasting frequency responses for directions with and without diver motion in a given image sequence.

of approximately 10 frames per second, and the time window
for the Fourier tracker for this experiment is 15 frames,
corresponding to approximately 1.5 seconds of footage. Each
rectangular subwindow is 40 × 30 pixels in size (one-fourth in
each dimension). The subwindows do not overlap each other
on the trajectory along a given direction.

For visually servoing off the responses from the fre-
quency operators, we couple the motion tracker with a sim-
ple Proportional-Integral-Derivative (PID) controller. The PID
controller accepts image space coordinates as input and pro-
vides as output motor commands for the robot such that the
error between the desired position of the tracked diver and the
current position is minimized. While essential for following
divers, the servoing technique is not an integral part of the
motion detection algorithm, and thus runs independently of
any specific visual tracking algorithm.

B. Results

Figure 6(a) shows a diver swimming along a diagonal
direction away from the camera, as depicted by the light gray
arrow. No part of the diver falls on the direction shown by
the dark gray arrow, and as such there is no component of
motion present in that direction. Figure 6(b) and 6(c) show
the Fourier filter output for those two directions, respectively
(the light gray bars correspond to the response along the light
gray direction, and similarly for the dark gray bars). The DC
component from the FFT has been manually removed, as has
the symmetric half of the FFT over the Nyquist frequency. The
plots clearly show a much higher response along the direction
of the diver’s motion, and almost negligible response in the
low frequencies (as a matter of fact in all frequencies) in the
direction containing no motion component (as seen from the
amplitude values). Note that the lane markers on the bottom
of the pool (that appear periodically in the image sequence)
do not generate proper frequency responses to be categorized
as biological motion in the direction along the dark gray line.

In Fig. 7(a), we demonstrate the performance of the detector
in tracking multiple divers swimming in different directions.
The sequence shows a diver swimming in a direction away
from the robot, while another diver is swimming in front of

Direction Lowest-Frequency Amplitude response
Left-to-right 205.03
Right-to-left 209.40

Top-to-bottom 242.26
Up-from-center 251.61
Bottom-to-top 281.22

TABLE I
LOW-FREQUENCY AMPLITUDE RESPONSES FOR MULTIPLE MOTION

DIRECTIONS.

her across the image frame in an orthogonal direction. The
amplitude responses obtained from the Fourier operators along
the directions of the motion for the fundamental frequency
are listed in ascending order in Tab. I. The first two rows
correspond to the direction of motion of the diver going across
the image, while the bottom three rows represent the diver
swimming away from the robot. As expected, the diver closer
and unobstructed to the camera produces the highest responses,
but motion of the other diver also produces significant low-
frequency responses. The other 12 directions exhibit negligible
amplitude responses in the proper frequencies compared to the
directions presented in the table. The FFT plots for motion
in the bottom-to-top and left-to-right direction are seen in
Figs. 7(b) and 7(c), respectively. As before, the FFT plot
has the DC component and the symmetric half removed for
presentation clarity.

An interesting side-effect of the Fourier tracker is the
effect of the diver’s distance from the robot (and hence the
camera) on the low-frequency amplitude. Figure 8 shows two
sequences of scuba divers swimming away from the robot,
with the second diver closer to the camera. The amplitude
responses have similar patterns, exhibiting high energy at the
low-frequency regions. The spectrum on top, however, has
more energy in the low-frequency bands than the one on the
bottom, where the diver is closer to the camera. The close
proximity to the camera results in a lower variation of the
intensity amplitude, and thus the resulting Fourier amplitude
spectra shows lower energy in the low-frequency bands.
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(a) An image sequence capturing two divers swimming in orthogonal directions.

(b) Frequency responses for the diver swimming away from the robot
(dark gray cross) in Fig. 7(a).

(c) Frequency responses for the diver swimming across the robot (light
gray cross) in Fig. 7(a).

Fig. 7. Frequency responses for two different directions of diver motion in a given image sequence.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a technique for robust detection
and tracking of biological motion underwater, specifically to
track human scuba divers. We consider the ability to visually
detect biological motion an important feature for any mobile
robot, and especially for underwater environments to interact
with a human operator. In a larger scale of visual human-robot
interaction, such a feature forms an essential component of the
communication paradigm, using which an autonomous vehicle
can effectively recognize and accompany its human controller.
The algorithm presented here is conceptually simple and easy
to implement. Significantly, this algorithm is optimized for

real-time use on-board an underwater robot. In the very near
future, we aim to focus our experiments on our platform, and
measure performance statistics of the algorithm implemented
on real robotic hardware. While we apply a heuristic for
modeling the motion of the scuba diver to feed into the UKF
for position tracking, we strongly believe that with the proper
training data, a more descriptive and accurate model can be
learned. Incorporating such a model promises to increase the
performance of the motion tracker.

While color information can be valuable as a tracking cue,
we do not look at color in this work. Hues are affected
by the optics of the underwater medium, which changes
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(a) (b)

(c) (d)

Fig. 8. Effect of diver’s distance from camera on the amplitude spectra. Being
farther away from the camera produces higher energy responses (Fig. 8(b))
in the low-frequency bands, compared to divers swimming closer (Fig. 8(d)).

object appearances drastically. Lighting variations, suspended
particles and artifacts like silt and plankton scatter, absorb or
refract light underwater, which directly affects the performance
of otherwise-robust tracking algorithms [11]. To reduce these
effects and still have useful color information for robustly
tracking objects underwater, we have developed a machine
learning approach based on the classic Boosting technique. In
that work, we train our visual tracker with a bank of spatio-
chromatic filters [13] that aim to capture the distribution of
color on the target object, along with color variations caused
by the above-mentioned phenomena. Using these filters and
training for a particular diver’s flipper, robust color information
can be incorporated in the Fourier tracking mechanism, and be
directly used as an input to the UKF. While this will increase
the computational cost somewhat, and also introduce color
dependency, we believe investigating the applicability of this
machine learning approach in our Fourier tracker framework
is a promising avenue for future research.
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