

Virtual Machine Contracts for Datacenter and Cloud
Computing Environments

Jeanna Matthews
Clarkson University/VMware

Tal Garfinkel
Stanford University/VMware

Christofer Hoff
Packetfilter

Jeff Wheeler
Cisco

jnm@clarkson.edu, talg@cs.stanford.edu, choff@packetfilter.com, jewheele@cisco.com

ABSTRACT
Virtualization is an important enabling technology for many large
private datacenters and cloud computing environments. Virtual
machines often have complex expectations of their runtime
environment such as access to a particular network segment or
storage system. Similarly, the runtime environment may have
complex expectations of a virtual machine’s behavior such as
compliance with network access control criteria or limits on the
type and quantity of network traffic generated by the virtual
machine. Today, these diverse requirements are too often
specified, communicated and managed with non-portable, site
specific, loosely coupled, and out-of-band processes. We propose
Virtual Machine Contracts (VMCs), a platform independent way
of automating the communication and management of such
requirements. We describe how VMCs can be expressed through
additions to the Open Virtual Machine Format (OVF) standard
and how they can be managed in a uniform way even across
environments with heterogeneous elements for enforcement. We
explore use cases for this approach and argue that it is an essential
step towards automated control and management of virtual
machines in large datacenters and cloud computing environments.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Management, Security, Standardization

Keywords
Virtualization, contracts, cloud computing, automation

1. INTRODUCTION
Virtualization is an important enabling technology for many large

private datacenters and cloud computing environments. Much of
the power of virtualization stems from the platform independence
that virtual machines afford. The ability to snapshot a VM and run
it elsewhere, the ability to deploy a generic virtual appliance that
can be instantiated in an enterprise datacenter or a cloud
computing environment, and many other examples all stem from
this property. Unfortunately, today this property does not extend
far beyond the limits of the individual virtual machines. While
individual machines have been virtualized, many key elements for
managing them in the aggregate have not.

For example, enabling the correct set of firewall rules for a virtual
machine deployed in a datacenter would often require manual,
out-of-band communication between many individuals. The
designer of the virtual appliance knows the initial set of ports on
which server software running inside the virtual machine is
listening. The person deploying the virtual appliance knows the
addresses of other servers with which the deployed virtual
machine will be communicating. The administrators of the
system/network into which the virtual machine is being deployed
may have additional requirements to impose on the virtual
machine such as limiting deployment of the VM to a specific
isolated network segment. Information from all these individuals
must be collected and communicated to the firewall administrator
who actually applies the proper rules. Such manual, out-of-band
processes introduce substantial opportunities for missing
information and misconfiguration.

Further, such manual management practices may be completely
impractical in an environment where deployment of new virtual
machines is frequent and where there are no existing channels
through which such person-to-person communication can flow.
This is clearly the case in cloud computing environments and even
in some large private datacenters. In such environments, VMs are
deployed on demand and personal communication between end
users and datacenter administrators is often restricted or non-
existent (i.e. low “touch”).

We propose Virtual Machine Contracts, a platform independent
way of specifying, communicating and managing the complex
expectations that virtual machines have of their runtime
environment and vice versa. A Virtual Machine Contract (VMC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
ACDC’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-585-7/09/06...$5.00.

is a complex declarative specification of a simple question:
Should a given virtual machine be allowed to operate in a specific
runtime environment and if so, is that virtual machine currently
operating within acceptable parameters?

In Section 2, we describe how VMCs can be expressed as an
extension to Open Virtual Machine Format (OVF), a widely
supported open standard for specifying, packaging and
distributing virtual appliances. In Section 3, we discuss use cases
for VMCs and describe why this approach is especially
compelling in a large datacenter or cloud computing environment.
In Section 4, we discuss how VMCs can be managed in a uniform
way even across environments with heterogeneous elements for
enforcement. In Section 5, we discuss the production or origin of
information included in VMCs.

A Virtual Machine Contract is simple idea – adding management
metadata to the package in which VMs are stored and
communicated, but is also a powerful idea that is for the most part
missing from the management landscape of large datacenters and
cloud computing environments. We argue that standardization and
support for VMCs is an essential step towards automated control
and management of virtual machines in large datacenters and
cloud computing environments. Unlike physical machines, VMs
are digital objects to which contract metadata can be readily
attached. Standardization and support for VMCs extends the
platform independent nature of virtual machines themselves to the
management of those VMs.

2. SPECIFYING VIRTUAL MACHINE
CONTRACTS IN OPEN VIRTUAL
MACHINE FORMAT
A Virtual Machine Contract is a complex declarative specification
of a simple question, should this virtual machine be allowed to
operate and if so, is it currently operating within acceptable
parameters? If the answer is yes, then the VM should be allowed
to operate, connect to the network, etc. -- if no, then appropriate
action should be taken -- whether it is shutting down the VM,
logging divergences from the policy or taking other remediation
steps.

We propose that VMCs be expressed as extensions to Open
Virtual Machine Format (OVF) [1]. OVF is hypervisor-neutral
standard for describing, packaging and distributing virtual
appliances. OVF is an industry standard developed by the
Distributed Management Task Force (DMTF) with participation
of representatives from many companies including VMware,
IBM, XenSource, Cisco, Microsoft Dell and HP.

Requirements thus specified in the OVF package would directly
accompany the virtual appliance through its lifecycle. Returning
to our previous example of firewall policy, the correct set of rules
could added to the contract at each step of the VM’s lifecycle and
then they could be communicated directly to the runtime
environment when a VM is deployed, avoiding the manual
communication and increased risk of misconfiguration.

An OVF package consists of an XML document called the OVF
descriptor that specifies metadata about the virtual appliance and a
set of additional content, typically virtual disk files. An OVF
package can actually describe a set of virtual machines or virtual
systems as they are called in OVF.

For each virtual system, the associated metadata is described in a
set of specific sections. The VirtualHardwareSection describes the
virtual hardware required including the amount of memory,
number of CPUs, information about network interfaces, etc. The
OperatingSystemSection describes the guest operating system that
will run in the virtual system. The ProductSection provides basic
information such as the name and vendor of the appliance and can
also specify a set of properties that can be used to customize the
appliance. The EulaSection describes the licensing terms for the
virtual system and the AnnotationSection simply provides space
for free form annotation.

In many ways, these sections already provide a type of Virtual
Machine Contract. For example, the VirtualHardwareSection
specifies aspects of what the virtual system requires from the
runtime environment and the OperatingSystemSection describes
aspects of what the runtime environment can expect from the
virtual system once it is deployed.

We simply propose to extend OVF to include a much richer set of
contract types. For example, a network contract could include a
set of firewall rules specifying protocol, source/destination
addresses and source/destination port. This information could be
easily translated during deployment into the format required by
software firewalls, hardware firewalls, network monitors, etc.

A concrete example is shown in Listing 1 of a proposed new
section type, ContractSection. In this example, we specify that the
virtual system, a web server, should accept incoming requests on
port 80 and should initiate a connection to a database sever which
is also specified in the same OVF package. Notice that instead of
specifying IP addresses, which are assigned at runtime, the
network contract in Listing 1 refers to VMs by ids defined within
the OVF file (e.g. ovf:id=”webservervm”). These ids can be
mapped to IP addresses when a VM is deployed. This allows the
contract to describe not just single VM behaviour, but expected
patterns of communication between VMs.

Notice that the ContractSection in Listing 1 is marked as
ovf:required=”true”. This illustrates an important point. Contract
sections could be marked as required or not. If they marked as
required, then the hypervisor on which the VM is deployed is
required to parse and enforce the contract or the VM cannot be
deployed. If they are not marked as required, then enforcement of
the section is optional.

Not requiring some sections would be a good way to phase in
standardization and support for new contract elements.
Unrequired sections would still be vastly superior to out-of-band
communication or even to ad-hoc notations of information in the
AnnotationSection, but would not prevent the deployment of a
VM on a hypervisor that does not yet support the contract
element.

Notice also that the ContractSection in Listing 1 has type ovf:
NetworkContract_Type. This is meant to illustrate that some
contract types could be specified in the OVF standard. Contract
types that are already standard across a wide range of hardware
and software products, like classic five-tuple firewall rules, are
excellent candidates for initial standardization. As with any
standardization effort, the set of contract elements that are widely
supported and thus can be required would grow over time. Several
authors are members of the DMTF group developing the next
revision of the OVF standard.

List ing 1. Network Contract Example

<ns:ContractSection ovf:required=”true”

 xsi:type="ovf:NetworkContract_Type">

 <Info> Network Contract for Webserver </Info>

 <Rule>

 <Info> Incoming web requests </Info>

 <Protocol> tcp </Protocol>

 <DstAddr ovf:id=”webservervm” />

 <DstPort> 80 </DstPort>

 <SrcAddr> any </SrcAddr>

 <SrcPort> any </SrcPort>

 </Rule>

 <Rule>

 <Info> Connection to back-end DB </Info>

 <Protocol> tcp </Protocol>

 <DstAddr ovf:id=”dbservervm” />

 <DstPort> 3306 </DstPort>

 <SrcAddr ovf:id=”webservervm” />

 <SrcPort> any </SrcPort>

 </Rule>

 <Origin>

 <Info> Firewall protection for this VM is
required for regulatory compliance as it is
serving sensitive financial information </Info>

 <DateAdded> 2009-02-18 </DateAdded>

 <AddedBy name=”John Foo” role=”creator”</>

 </Origin>

 </ContractSection>

List ing 2. Proprietary and Site-Spec if ic Contract
Examples

<ns:ContractSection
xsi:type="cisco:IntrusionProtection_Type"
ovf:required=”true”>

 <Info> Site Specific IPS Policy </Info>

 <RequireCiscoIPS/>

 <Rule rule=”43” setting=”enabled” />

 <Rule rule=”88” setting=”disabled” />

</ContractSection>

<ns:ContractSection
xsi:type="local:NetworkAccess_Type"
ovf:required=”false”>

 <RequireLocalEngineeringNetworkAccess/>

</ContractSection>

Where the set of standardized contract types is insufficiently
expressive to capture the important requirements, proprietary or
site-specific contract sections could also be used. Listing 2
contains a concrete example. Proprietary or site-specific contract
types that begin to gain wider acceptance would naturally serve as
a starting point for further standardization.

3. USE CASES
In Section 2, we described how VMCs could be specified and
communicated through additions to the Open Virtual Machine
Format (OVF) Standard. In this section, we explore potential use
cases that make this approach especially compelling for cloud
computing or large datacenter environments.

- Datacenter Automation and Management

Certainly not all large datacenters or cloud computing
environments use virtualization [4], but for those that do, VMC
offer an opportunity to add rich metadata to VMs that can enable
sophisticated life cycle management. Furthermore, VMCs specify
what is required rather than how it is enforced opening the door to
a mix of physical an virtual enforcement techniques depending on
the needs of the specific datacenter environment. Managing the
integration of virtualization specific infrastructure (e.g. virtual
switches, virtual intrusion protection, virtual firewalls, virtual
anti-virus protection, etc.) with traditional physical infrastructure
is introducing even greater challenges [5, 6] which VMCs can
help address.

- Cloud Interoperability

Many customers resist moving vital functions into any cloud for
fear of vendor lock-in and availability problems from one carrier
[2]. The more the full requirements of virtual machines can be
expressed as standardized contract elements, the more customers
will be able to use multiple cloud providers to assuage these
concerns. We expect this “I won’t play with you until you play
nice with each other” attitude to ultimately drive the cloud and
VMC standardization process.

- Enterprise Datacenter to Cloud Migration

The ability to run a workload in a VM and deploy it safely in a
privately managed enterprise datacenter does not necessarily
imply that it can be moved safely into a cloud (e.g. out from
behind the local firewall, the local intrusion protection systems,
etc.). VMCs can be used to automate the examination of criteria
for moving a VM safely into a cloud environment. If the required
contract section cannot be enforced in a new environment, this
would correctly limit the migration of the VM to an external
datacenter or cloud provider until appropriate action can be taken
to address the problems.

- Setting Bounds on Resource Consumption/Capacity Planning

In any environment, assurance that a VM will be restricted to
operating within certain bounds is valuable. However, for
customers deploying VMs into an off-premise cloud offering, it is
especially critical. In a cloud environment, the amount of

resources available on-demand is much greater than on-premise
infrastructure, substantially amplifying the potential impact of a
VM acting in an undesired manner. One of the primary
advantages of cloud computing to users is the ability to quickly
expand their resource usage on demand. Given this, the
administrators of a cloud environment could not assume that
sudden increases in resource consumption are a sign of
compromise. Thus resource limits expressed through VMCs could
be quite helpful in bounding resource consumption and costs for
cloud users.

Similarly, contracts can specify minimum and maximum amounts
of a resource that a VM needs to function. This can also be an aid
to capacity planning. Application level performance contracts.
enabled by the software such as B-hive [3] where a VM could be
required to provide some minimum level of service as a function
of its resource utilization, could also help spot emergent
problems.

- Detecting Compromised Virtual Machines

The specification and enforcement of contract rules help to turn
virtual machines into appliances with a well-defined, limited
purpose rather than general purpose computing devices. VMCs go
along way towards delivering software that does only what is
advertised and thus can help protect against virtual machines that
become compromised. For example, the contract in Listing 1
specifies that the web server VM should only accept incoming
connections on port 80. If the VM were compromised and
attempted to open another port on which it could receive botnet
command and control instructions, this unauthorized activity
would be thwarted. Again, these types of limitations are useful in
any environment, but are especially crucial in a cloud
environment where the amount of resources available on-demand
is much greater than in on-premise infrastructure, substantially
amplifying the potential impact of a VM acting in an
unadvertised, undesired manner.

- Virtual Network Access Control

Managing network access control policies is a key challenge in
managing large datacenters of any kind. Any client which is
running out-of-date software or which diverges from a standard
site configuration represents a point of entry for an attacker.
VMCs provide an easy platform for deploying virtual network
access control (VNAC) policies that ensure that only correctly
configured clients (and servers) can access the network.

If a system is not correctly configured, the VMC policy can allow
it to run only in a mode that will permit remediation, e.g.
connecting to a restricted VLAN to download patches, receive
configuration updates, etc. There is certainly nothing new in the
idea of doing NAC, rather VMC provides a means to realize this
functionality as just one of its possible applications.

- Regulatory Compliance

Regulatory compliance is a large and growing concern for many
businesses. HIPPA, Sarbanes-Oxley, and Payment Card Industry
(PCI) regulations all have significant IT components. Virtually all
the key elements for compliance could be touched on by a VMC
such as requirements about host configuration (e.g. AV usage),
network security (firewall use), security for data at rest (storage
encryption) and data in flight (network encryption), and data

retention (virtual rights management expiration policies), and
network isolation (connectivity policies e.g.VLAN).

VMCs can helps an organization configure and audit its IT
infrastructure to ensure compliance. For example, a contract could
require that a VM containing sensitive data should only be
powered on if it is on the proper protected network segment. The
specification and enforcement of such requirements can help
automate the negotiation of the safe migration of VMs from
enterprise datacenter to cloud or from one cloud provider to
another.

- Disaster Recovery

A key problem with disaster recovery is ensuring that a cluster at
Site A will be able to fail over to the cluster at Site B. For virtual
machines alone, ensuring this will work is a relatively simple
matter as we can assume (modulo differences in processor type,
etc.) that hardware we are recovering over to is uniform.
However, the same cannot be assumed about the network, storage
and other infrastructure elements with which a VM may expect to
interact in its new environment. With VMCs, the list required
infrastructure elements is known without needing to instantiate the
VM instance on a recovery cluster.

4. ENFORCEMENT OF VIRTUAL
MACHINE CONTRACTS
VMCs specify the requirements or policies that should be realized
rather than how they should be enforced. Different datacenters
may be running different hypervisors (e.g. VMware or Xen). As
long as the contract is enforced, the details of enforcement are
hidden from the virtual machine itself – extending the platform
independent benefits of virtualization.

Similarly, different datacenters may deploy different methods for
enforcement. For example, firewall rules like those specified in
Listing 1 could be enforced by a virtual firewall implementation –
either directly in the hypervisor or in a service VM such as a
firewall VM through which all network traffic could be routed.
However, firewall rules could also be enforced with a hardware
firewall deployed upstream from the VM. In this case, a single
hardware firewall could processes rules for many VMs running on
multiple physical servers. Again, as long as the contract is
enforced, the details of enforcement are hidden from the virtual
machine itself.

An enforcement architecture is a service for connecting deployed
VMs to enforcement elements that can support the rules contained
in their contract sections. A simple prototype enforcement
architecture has been demonstrated on VMware Virtual Center
(VC) [7] with the following components:
- Policy Language Processing When a virtual appliance is
deployed, rules are parsed from its OVF descriptor are placed in
the VC inventory.
- Rules Database The VC inventory stores the contract
sections associated with each virtual machine deployed in the
datacenter.
- Enforcement Element Notif ication Currently,
enforcement elements must poll the VC inventory for the addition
of rules that they are configured to support. This prototype
enforcement architecture does not recognize when there is no
enforcement element available to support a required contract

element. It would be better to enable enforcement elements to
register as handlers for specific contract sections types so that an
error could be raised when there is no registered handler for a
given contract element.

A similar prototype could be implemented in any hypervisor
supporting OVF. For example, a Xen-based prototype could be
built using XenStore [8] to store the contract sections associated
with each virtual machine and communicate them with registered
enforcement elements.
The real work of enforcement is done in the enforcement
elements, not in the enforcement architecture. The enforcement
architecture provides a framework in which both existing and new
enforcement elements can be deployed to support an ever-
expanding list of contract types.

5. PRODUCTION OF VIRTUAL MACHINE
CONTRACTS
In this section, we discuss how and why virtual machine contracts
would be produced.

Rules could be added by the original designer of the virtual
appliance to describe the expected behavior of the virtual
machine. Rules could be added by the person deploying the VM
or by anyone who modifies the VM. Rules could be added by the
system or network administrator in charge of the environment in
which the VM is deployed. Each of these individuals has
knowledge of the VM’s requirements that they are best suited to
record and communicate.

The designer of a virtual appliance typically knows a great deal
about its expected behavior simply based on the software they
install and how they configure it [9,10,11,12,13]. They can
specify when the appliance expects external resources, what
hardware resources are required to provide a certain quality of
service, what type of network traffic will be produced by the
appliance and many other important pieces of information.
Similarly, anyone that modifies the virtual appliance by adding or
reconfiguring installed software could add similar information.

Contracts provide a way for appliance designers or modifiers to
add value with information they already know. It also enables
them to further differentiate the appliances they produce. In an
appliance marketplace, they can compete not just based on the
functionality and ease-of-use, but also on their ability to create an
appliance with an appropriately, restrictive contract. Just like
hardware appliances that consume less electricity, appliances that
require less trust or fewer resources will be more attractive to
users.

The person deploying a virtual appliance is best suited to know
about the runtime environment and their intention for deploying
the VM. For example, they know the precise identify of external
resources to which they are connecting the VM. They may also
know that a VM is being deployed for testing purposes only in a
completely isolated testing environment or the expected load on a
production service.

System or network administrators responsible for the deployment
environment may also wish to add contract elements for VMs
being deployed on resources under their control. For example,
they may add network access control requirements such as
maintaining a certain patch level for installed software or may set

limits on the resources that can be consumed by the VM. Some
such requirements could be appended automatically to the contact
section of any VM deployed in their environment as a way of
communicating global site requirements for all VMs.

VMCs enable the automation of communication between all the
individuals involved in the life cycle of the virtual appliance.
VMCs allow all such information to be packaged and distributed
as a fundamental part of the virtual appliance itself.

In Listing 1, the example contract section includes information on
the origin of the contract element. Information about who added
the rule, when and why can help those deploying the VM later or
in other environments to decide how to react if a desired runtime
environment does not support the rule.

6. RELATED WORK
The Virtual Machine Contract was discussed in [14]. The focus in
that work was on file system contracts that granted access to
portions of user’s personal data store with rich permission types
such as “read-some” or “write-rarely”.

VMware’s Application vServices are built-in services
enforcement elements provided by a virtual datacenter operating
system [15]. VMware vApps are collections of VMs specified in
OVF. The OVF representation of a vApp can include a
description of some operational policies and service level
requirements.

7. FUTURE WORK
We have focused initially on the use cases for virtual machine
contracts in large datacenter or cloud computing environments in
part because the standardization process to be driven by two main
factors – first, the need for cloud interoperability and the need to
integrate virtual and physical versions of key infrastructure
elements to manage large datacenters (e.g. virtual or physical
switches, virtual or physical intrusion protection, etc.). However,
VMCs can be extremely useful in the desktop and mobile
environments as well. For example, the ability to detect and limit
the impact of compromised VMs would be extremely beneficial in
desktop environments, especially home machines with high
bandwidth, always-on Internet connections that are the favorite
targets of botnets. Similarly, as virtualization moves into the
hand-held computing environment, VMCs can be used to
negotiate the highly varied space of hardware characteristics (e.g.
to determine if a given runtime environment has sufficient display
features to support a given VM.)

We are working actively on standardization of virtual machine
contracts. Several authors are members of the DMTF group
developing the next revision of the OVF standard. The benefits of
VMCs require building wide spread support for recording and
enforcing VM requirements in a standardized format.

Finally, we described contracts as a declarative specification, but
an enforcement architecture could also contain a scripting engine
to support imperative contract rules. Such a scripting engine
would enable periodic execution of scripts written to assess
compliance with a given rule (e.g. causing a request to be sent to a
blocked port to determine if it is indeed blocked).

8. CONCLUSION
Virtual Machine Contracts are a simple idea but also crucial step
towards automated control and management of large datacenters
and cloud computing environments. VMCs help enable VMs to
can migrate safely and naturally within a datacenter, between on
and off premise capacity and between multiple cloud providers.
They help bound the resources consumed by VMs and
detect/thwart VMs that become compromised. They can help
manage thorny issues such as virtual network access control and
regulatory compliance. It is our sincere desire that a discussion of
VMCs in this workshop on automated control for datacenters and
controls can help to build interest and demand in the community
for the deployment and standardization of rich management
metadata associated with VMs.

9. ACKNOWLEDGMENTS
Thanks to Winston Bumpus, Larry Lamers, Orran Krieger,
Stephen Evanchik, Rene Schmidt, Steffen Grarup, Bich Le, A.B.
Srinivasan, Warren Wu, Wendy He and Christian Dickmann at
VMware for feedback on these ideas.

10. REFERENCES
[1] DMTF System Virtualization, Partitioning and Clustering

Working Group, “Open Virtualization Format (OVF)
Specification, Version 0.90”, April 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud
Computing”, University of California at Berkeley Technical
Report No. UCB/EECS-209-28, February 10 2009.

[3] B-hive, Application Performance Management for VMware
Infrastructure, http://www.bhive.net/.

[4] J. Fry, “Sorry, VMware: you don't need virtualization for
cloud computing”,

http://datacenterdialog.blogspot.com/2009/02/sorry-vmware-
you-dont-need.html, February 25 2009.

[5] VMsafe: A Security Technology for Virtualized
Environments,
http://www.vmware.com/overview/security/vmsafe.

[6] C. Hoff, “The Four Horsemen Of the Virtualization Security
Apocalypse”, Black Hat 2008.

[7] VMware Virtual Center,
http://www.vmware.com/products/vi/vc/.

[8] XenStore, http://wiki.xensource.com/xenwiki/XenStore.

[9] VMware Virtual Appliance Marketplace,
http://www.vmware.com/appliances.

[10] Bagvapp Virtual Appliance Repository,
http://bagside.com/bagvapp.

[11] RPath, http://www.rpath.com.

[12] Thoughtpolice VMware Images,
http://www.thoughtpolice.co.uk.

[13] Jailtime, http://www.jailtime.org.

[14] J. Matthews, J. Herne, T. Deshane, P. Jablonski, L. Cherian,
M. McCabe, “Data Protection and Rapid Recovery From
Attack With A Virtual Private File Server and Virtual
Machine Appliances”, Proceedings of the IASTED
International Conference on Communication, Network and
Information Security (CNIS 2005), p. 170-181, November
2005.

[15] VMware Application vServices,
http://www.vmware.com/technology/virtual-datacenter-
os/application.html.

