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ABSTRACT  
This paper presents a novel methodology to quantify users’ 
polarization within social media networks, focusing on network 
structure instead of content. We model polarized networks as 
directed graphs, collecting users’ follower/following connections 
data, and propose a simple algorithm to compute a Connectivity 
Score for each node in sub-graphs associated with identified 
contrary groups of the polarized network. Our method has several 
advantages: it relies solely on users’ follower/following connections 
data, which is objective, often public and easy to obtain. Also, this 
input data is usually memory-e!cient, unlike the input data of 
content-based methods which may require a whole corpus. The 
algorithm’s performance is assessed through application to 
Twitter’s 116th Congressmembers network, comparing against a 
content analysis method: Sentiment score (using VADER), and two 
political behavior-based methods: Ideology score (based on co- 
sponsorship frequency) and Roll Call score (based on bill-voting 
similarity). The results demonstrate that: (1) users’ choice of 
connections on the social media can represent polarization 
behavior; (2) a meaningful correlation between Connectivity Scores 
and Ideology or Roll Call Scores shows that the political behavior 
of users is re"ected in their social media connections; (3) 
Democrats’ Twitter following behavior and their bill-voting and bill 
co-sponsorship behavior (represented by Roll Call and Ideology) 
are all significantly more correlated than that of Republicans. We 
believe applying our algorithm in conjunction with other methods 
is a valuable contribution resulting in more comprehensive analysis 
of the social media polarization space.

ARTICLE HISTORY
Received 20 September 2023 
Accepted 5 May 2024  

KEYWORDS  
Polarization; directed graph; 
algorithm; shortest path; 
social media

1. Introduction

Social media is a significant component of society; at its core, it provides users with a 
virtual outlet to share opinions on various topics (Weinberger, 2014). The goal of 
many social media platforms is to increase user engagement, such as suggesting 
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connections with like-minded individuals and tailoring content to users’ historical inter-
actions. Unfortunately, the nature of these platforms has contributed to the emergence of 
polarized discourse and online echo chambers (Guo et al., 2020).

Polarization refers to the sharp division of opinions or beliefs into multiple contrary 
groups, and is often described as a key root of the extreme segregation, radicalism, and 
racism seen in contemporary society (Colleoni et al., 2014; Pew Research Center, 2019). 
This phenomenon is especially apparent in the United States (US) where 84% of Amer-
icans believe the country has significant political divisions (Du!y & Gottfield, 2018). The 
reach of social media platforms is growing considerably, boasting a cumulative total of 
over 4.59 billion users worldwide (Statista, 2022). As a result, investigating and analyzing 
the link between polarization and social media has never been more urgent.

This paper presents a new method for quantifying polarization within social media 
networks where group divisions of the polarized network are known a priori. Our 
method is simple, focuses solely on the objective network structure (following/follower 
relationships between users), and quantifies each individual user’s polarization. We 
have no need to assess the content of users’ posts or evaluate their typical social media 
interactions over content (e.g., retweets, likes, share, etc.). To test the algorithm, we 
evaluate it against three other analysis techniques utilized in existing research. All four 
methods are deployed on the 116th US Congressmembers and compared.

While the algorithm proposed in this paper can be independently utilized for quanti-
fying the polarization level of each user in social media networks, it can also be used to 
complement existing content-based techniques. This paper’s approach will prove most 
beneficial when analyzing platforms with limited access to users’ content. Ultimately, 
this paper will serve the greater good and will hopefully assist in the development of 
methods for reducing polarization and promoting constructive dialogue in society.

2. Literature review and background

Polarization studies are often associated with politics, especially in the context of the US 
(Judge et al., 2023; Otala et al., 2021a). The two main political parties in the US are the 
Democrats and Republicans, and the country’s main legislative body is the US Congress 
(Christensen, 2013). The ideological divide between Democrats and Republicans has 
increased significantly since the 1970s (Dimock et al., 2014), especially when compared 
to countries with similar political structures (Boxell et al., 2020).

In recent years, the rise in political polarization in the US has been attributed signifi-
cantly to social media platforms and their echo chambers, which have intensified the 
divide between Democratic and Republican viewpoints (Bail et al., 2018). Out of all social 
media platforms, Twitter (recently renamed as X)1 is considered to have the greatest 
in"uence on this divide, and it is seen as an easy and e!ective way for politicians to inter-
act with their constituents (Beveridge & Tran, 2023; Hong & Kim, 2016; Matsilele & 
Nkoala, 2023).

Graph theory is a simple and "exible tool to model di!erent types of networks includ-
ing polarized networks (Bales & Johnson, 2006; Musco et al., 2017; Otala et al., 2021b; 
Stoica et al., 2018). Polarized networks can be modeled by graphs such that nodes rep-
resent people and edges denote the connections between people. We used directed graphs 
to model a polarized network with follower/following connections on Twitter. In general, 
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a given user’s followers are exposed to their posts and activities (such as ‘retweets’ and 
‘likes’) (Falkenberg et al., 2022). While the direct e!ect of consuming a user’s content 
cannot be known, it can be assumed that they have some amount of in"uence over 
their followers.

The literature on polarization problems on social media can be categorized as follows: 

(1) Exploring the societal impacts of political polarization (Garcia et al., 2015; Kearney, 
2019; Stewart et al., 2018; Tsfati & Nir, 2017; Tufekci & Wilson, 2012; Valenzuela 
et al., 2018; Warner & McKinney, 2013)

(2) Predicting the alignment of users in a potentially polarized network (Conover et al., 
2011) or detecting polarization in a network where the divisions of users are 
unknown. In these studies, usually methods based on both content and network 
structure have been used such as homophily and segregation measures, random 
walks (Garimella et al., 2018; Jiang et al., 2021), balance theory (Interian et al., 
2023), community detection (Blondel et al., 2008), and antagonism quantification 
(Guerra et al., 2021). Guerra et al. (2021) used modularity as an optimization 
metric to analyze both homophily and antagonism behaviors. They focused on the 
structural antagonism displayed by users who also have connections to the opposite 
group (they referred to them as boundary nodes). Their study results in the 
development of a network-wide and community-wide polarization metric (Guerra 
et al., 2021). These approaches often focus on quantifying the network at the com-
munity level and not node level (Phillips et al., 2023). This paper further captures 
nuanced homophily within the communities and quantifies at the user level for 
each node.

(3) Quantifying polarization in an already known polarized network on social media. 
This category is the most relevant one to our study (Moernaut et al., 2022; Santoro 
et al., 2023; Simon et al., 2022; Urman & Katz, 2022). Most studies in this category 
require users’ content (e.g., tweets, Facebook posts, etc.) for a content-based analysis 
technique such as sentiment analysis, natural language processing, and other text 
mining methods. If not content-based, the links between users are often retweets. 
Relying on retweet networks does assume that a retweet equates endorsement. 
While the Associated Press and NPR agree with this (Haden, 2023), many users 
on Twitter still have the disclaimer in their biographies: ‘RTs (Retweets) ≠ endorse-
ments’. These techniques can be e!ective, but they often either require access to 
users’ content and their metadata or rely on the ‘retweet equals endorsement’ 
assumption. Additionally these methods often produce a network level or commu-
nity level polarization metric (Guerra et al., 2021), while this paper will provide a 
polarization score for each individual node.

As our proposed method falls within the third category, it does not have the restric-
tions of the existing methods. It features with the following unique advantages: 

(1) It is solely focused on the social network structure (the relationships between users). 
This is a critical feature since user connection data is often public while access to 
some data related to users’ content is often restricted by platforms.
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(2) The user connection data itself is objective and relatively more stable, unlike using 
retweet networks or the content data, which tend to change frequently in a short 
period of time (Conover et al., 2011).

(3) Our analysis is at the user level (rather than community or network level), so a 
nuanced polarization score is assigned to each user. This provides a detailed view of 
individual users, which is especially interesting when applied to politicians or pundits.

(4) Our approach necessitates a smaller computational expense, as it often requires smal-
ler size of input data than existing content-based methods. It is also important to note 
that the size and complexity of collecting our input data (the connection between 
users) are dependent on the density of the connections within the network. In turn, 
this allows larger social media networks to be analyzed on an accelerated timetable.

These unique features highlight our method’s significance in comparison to previous 
studies.

In scenarios where group divisions of polarized networks are not known a priori, our 
method along with an existing method capable of identifying poles in a polarized net-
work, such community detection (second category), can be applied. The next section 
extensively explains the unique features of our method.

3. Our proposed algorithm to quantify polarization

We modeled a polarized network on social media using a directed graph G(N, E) where 
the set of nodes N and the set of edges E represent users and their following/follower con-
nections, respectively. This graph generally contains z � 2 mutually exclusive sets of 
nodes referring to the contrary groups of users (Bright, 2018). Therefore, G(N, E) can 
be divided into z sub-graphs G = Uz

i=1Gi(Ni, Ei) , such that Ni, 8i = 1, 2, . . . , z, are 
mutually exclusive. However, most traditional polarized networks typically contain 
two contrary groups. This study uses the following assumptions: 

. Each user (node) has at least one following (successor).

. There is at least one connection between each pair of contrary groups Gi(Ni, Ei). As a 
result, isolated groups do not exist. Previous literature has made similar assumptions 
(Guerra et al., 2021).

. A user is in"uenced by their followings (successors), not followers (predecessors) refer-
ring to the "ow of information that usually occurs on Twitter and other platforms.

. Sets Ni, 8i = 1, 2, . . . , z and Gi(Ni, Ei) are given and known. In other words, it is pre-
defined which user belongs to which contrary group.

In the literature, there are methods like community detection (Blondel et al., 2008) to 
identify group divisions if they are not known in advance. However, it is important to 
note that this study does not serve as a tool for this purpose.

Now, let us define functions Succ(n) and Pred(n) returning the sets of followings (succes-
sor nodes) and followers (predecessor nodes) of node n, respectively. Also, let the notation 
“||” represents the size of a set. For example, |Pred(n)| represents the number of n’s followers.

The successors and predecessors of a node can belong to either of the contrary groups 
Ni. Let n [ Ni, then, set Dn is defined such that Dn # Succ(n) and it contains all similar 
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successors of a node n, meaning, for all m [ Dn, then m [ Ni. Next, we define the classifi-
cation of nodes: 

. If |Dn| , |Succ(n)|, node n is defined as a central node, meaning that n [ Ni follows 
at least one user from another group (n has a heterogeneous set of successors). In pre-
vious literature, this group has been referred to as ‘boundary nodes’ or the community 
boundary (Guerra et al., 2021). While the labels ‘central’ and ‘boundary’ may appear 
contradictory for the same set of nodes, they are not. This discrepancy likely arises 
from di!ering viewpoints: that of the community versus that of the individual 
node. From the perspective of a community, Guerra et al. (2021) accurately consider 
these nodes to define an edge between the contrary groups. However, here, when con-
sidering the ideology of individual nodes, we expect these nodes to represent the ideo-
logical center.

. If |Dn| = |Succ(n)|, node n is defined as an outlying node, meaning that n only follows 
users in the same group as n (n has a homogeneous set of successors). These are 
occasionally referred to as internal nodes in previous literature (Guerra et al., 2021). 
Similarly to ‘central’ versus ‘boundary’, these opposing labels (‘outlying’ vs ‘internal’) 
stem from the same di!erence in orientation. From the perspective of a community, 
these are the internal community members. From the perspective of a node’s political 
ideology, these nodes represent the more extreme end of a political spectrum.

The concept of central and outlying nodes is illustrated in Figure 1. In the case where 
|Dn| , |Succ(n)|, as |Dn| grows toward |Succ(n)|, user n is less likely to be exposed to 
information shared by a contrary group. Therefore, it can be assumed that outlying 
nodes are more polarized than central nodes.

The activeness of user m in set Succ(n) a!ects the amount of information received by 
user n. Because of this, the number of followers, |Pred(m)|, is an appropriate measure to 
address the activeness of m. This is a common assumption on social media: the more fol-
lowers user m has, the more active m is, and the more in"uence m has (this is the 
definition of ‘In"uencer’ and blue check mark). For simplicity, in"uence, activeness, 
and number of followers are all the same.

3.1. Our polarization metrics

Central nodes are directly exposed to the contrary group’s opinions. If a central user 
n [ Ni follows more users belonging to Ni compared to their total number of successors, 
then n has less chance to be exposed to the contrary opinions and might get polarized 
(Interian & Ribeiro, 2018). However, this claim is not quite accurate since the in"uential 
power of each successor is disregarded. Thus we introduce a novel metric to address this. 
Generally, users are in"uenced by their successors, so if a user has more followers, they 
have more in"uence. The Polarization Centrality, rn, is defined as the ratio of the cumu-
lative in"uence of Dn over the in"uence of user n’s total successors, 0  rn  1. This 
metric is calculated using Equation (1):

rn =
P

i[Dn
|Pred (i)|

P
i[ Succ(n) |Pred (i)| . (1) 
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The rn measures the total in"uence n receives from its like-minded successors in Dn, com-
pared to the total in"uence of all its successors. The greater rn is, the higher n’s polarization 
level is expected to be. It is worth noting that rn can be calculated for all nodes (central or out-
lying). However, it is only useful for central nodes because rn of all outlying nodes equals 1.

Although outlying nodes do not follow any users from a contrary group, they can still 
be indirectly exposed to a contrary group’s information. Paths exist between an outlying 
node n and nodes in a contrary group. If all users on these paths reshare a post from the 
contrary group, then user n will eventually be exposed to it via the domino e!ect. There-
fore, the shortest path between outlying node n and any of the contrary group’s nodes can 
be considered as the most probable path through which n can be in"uenced by the users 
in the contrary group. We propose the Shortest Path metric, sn, to measure the length of 
the shortest path from node n [ Ni to a node which does not belong to the same sub- 
graph (such as m ” Ni). sn can be defined for both central and outlying nodes. Given 
that all central nodes are directly connected to at least one node from a contrary 
group, s for all central nodes equals 1. To find sn for any outlying node n, the central 
nodes will be the starting points. The greater sn is, the more polarized n is.

We propose a final metric along with sn for outlying nodes to quantify their polariz-
ation: the Percentage of Sub-graph Connectivity metric, tn calculated by Equation (2). tn is 
defined for only outlying nodes and shows the proportion of group (sub-graph) Ni which 
is followed by n [ Ni.

tn =
|Succ(n)|
|Ni|

(2) 

Figure 1. In a symbolic black/white polarized network, n is central and n0 is outlying.
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Outlying nodes with the highest polarization level are not only far away from center (high 
sn) but also follow more users from their group (high tn). It should be noted that in a 
larger or potentially sparser network, this metric may skew heavily toward zero simply 
given account-following limits often imposed by platforms (i.e., the total sub-graph 
population is 100,000 but Instagram’s following limit is 7500 (How Many Accounts 
You Can Follow on Instagram | Instagram Help Center, n.d.). In the case of a restrictive 
platform, the following cap could be utilized in place of |Ni|.

3.2. The Connectivity Algorithm

The Connectivity Algorithm is executed on each sub-graph individually to quantify the 
polarization level of each individual node in the sub-graph. This refers to the node’s current 
polarization state based on its connection within and outside of the sub-graph. The polariz-
ation in the context of this paper does not represent any polarization process. The intuition 
behind this algorithm is that users are considered as polarized if they are far from people with 
di!erent views (farther away, more polarized). Additionally, we incorporate the distance 
in"uence must "ow over in our metric to further quantify the polarization of each user.

In more details, the functionality of the Connectivity Algorithm can be described as fol-
lows: the algorithm identifies the central nodes then traverses the sub-graph starting from 
the central nodes, continuing toward outlying nodes, until all nodes in the sub-graph are 
visited. The direction of visiting nodes (during the traversal) is aligned with the in"uence 
"ow (the opposite of the edge direction). Every time the algorithm visits a node, it calcu-
lates the Connectivity Score (CS) for that node. The farther the node is, the larger the CS, 
which estimates a higher level of polarization for the node. To keep track of visited nodes, 
we used a dynamic sorted set of nodes, Q which has a FIFO queue data structure. This 
means nodes are added and removed from the Q in a first-in-first-out order.

First, the Connectivity Algorithm identifies set Dn for each node n [ Ni. A ‘for’ loop is 
used to evaluate the entire set of successors of n (Lines 3–5). |Dn|  |Succ(n)| is always 
true, since Dn # Succ(n), so based on the size of set Dn two scenarios are possible: 

(1) |Dn| , |Succ(n)| (Lines 6–11) determines that n is a central node. Thus the polariz-
ation centrality metric rn is calculated using Equation (1) (Line 7). The length of the 
shortest path of n is 1, sn  1 (n is one edge away from the contrary group) (Line 8). 
Since n is already visited and the value of all relevant metrics are finalized, it should 
be inserted in Q (Line 9) and CSn should be calculated (Line 11). A binary variable Cn 
is used to avoid visiting a node more than once. This mechanism guarantees the ter-
mination of the algorithm (this is mathematically proved in the next section).

(2) |Dn| = |Succ(n)| determines that n is an outlying node and should wait to be visited 
later, so it is not inserted in Q and other metrics cannot be finalized for n yet.

Now, Q is populated by only central nodes (the start points of traversal towards out-
lying nodes). The algorithm removes one node at a time from Q (e.g., n [ Q) and finds 
n’s proper metrics. Then, only those predecessors of n that have not been visited yet will 
be inserted into Q. This process iteratively continues until Q empties (using a ‘while’ loop 
in Line 12 for this purpose). All nodes are eventually inserted and removed from Q once 
(see the proof in Section 3.3).
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Every time a node n [ Ni is removed from Q (Line 13), two conditions are checked for 
all y [ Pred(n) (Line 15): 

(1) Whether y is in the same sub-graph (y [ Ni)
(2) Whether y has not been already visited (Cy = 0).

If both conditions are ‘True’, then y is an outlying node (see the proof in Section 3.3) 
and algorithm can find sy and ty metrics. In the traversal, node y is reached through node 
n and y [ Pred(n) (y is one edge away from n), so the shortest path is sy = sn + 1 (math-
ematically proved in Section 3.3) (Line 16). Metric ty is also calculated through Equation 
(2) (Line 17). Therefore, CSy = sy + ty is determined and y is inserted in Q and "agged as 
visited by setting Cy  1 (Lines 18–20).

When Q empties, Cn for all nodes is already set as 1 (showing that all nodes were 
visited). 

. The Connectivity Score range for all central nodes n is 1  CSn , 2, because sn is set 
as 1 and rn , 1.

. CSm for all outlying nodes m is greater than 2, because sm � 2, tm  1.

The final nodes inserted and removed from Q are users who are likely more polarized 
than earlier visited nodes, since they have the farthest distance from the center. CS is used 
to sort the sub-graph based on polarization level of users in that sub-graph.

The Connectivity Algorithm 2

Input Gi(Ni , Ei)  

Output CSn : The Connectivity Score for node n for all n [ Ni  

*** Initialization and calculation of rn*** 
1. For all n [ Ni 
2.   sn  +1 (initializing the value of shortest path for all nodes) 
3.   For all m [ Succ(n) (this ‘for’ loop identifies Dn for n) 
4.     If m [ Ni 
5.      Insert m into Dn 
6.   If |Dn| = |Succ(n)| (if n is a central node) 

7.     rn  
P

i[Dn
|Pred (i)|

P
i[ Succ(n) |Pred (i)|

8.     sn  1 (assigning 1 as the shortest path of the central node) 
9.     Insert n into Q (initially populating set Q by the central node) 
10.    Cn  1 (flagging n as a visited node which is inserted into Q) 
11.    CSn  sn + rn  

***Calculation of the shortest path *** 
12. While Q is not empty 
13.   Remove n from Q (marking n as visited, then calculating its metrics) 
14.   For all y [ Pred(n) 
15.    If y [ Ni and Cy = 0 (checking to not visit an already visited node) 
16.      sy  (sn + 1) (calculating the shortest path for node y) 
17.      ty  |Succ(y)|

|Ni |
18.      Insert y into Q 
19.      Cy  1 (flagging y as a visited node which is inserted into Q) 
20.      CSy  sy + ty
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3.3. Proof of the connectivity algorithm

We will prove that (1) the Connectivity Algorithm eventually terminates and (2) it is 
functionally correct, meaning that the algorithm’s input/output behavior follows valid 
mathematical logic.

Lemma 1. Suppose a polarized Graph, G(N, E) with at least two mutually exclusive sets of 
nodes (contrary groups of users), such as Ni, N 0i , N. In the case of existence of more than 
two contrary groups, N0i = N ˇ Ni. Furthermore, let Q be a queue where nodes n [ Ni can 
be inserted in and removed from, and assume that: 

(1) Set Q is initially populated by a subset of Ni (second assumption in Section 3).
(2) After a node n was inserted into Q, it is !agged by a binary variable, Cn  1.
(3) A node n can be inserted into Q, if n [ Ni and Cn = 0 (note that these conditions are 

necessary, but not su"cient).

Then the set Q eventually empties.

Proof. Each node can be inserted into Q at most once. This can be proved by contradiction: 
Suppose n was inserted into Q for the second time. According to the third hypothesis, the 
following are true about any node that was inserted in Q: n [ Ni and Cn = 0 (the 
Connectivity Algorithm, Line 17). On the other hand, based on the second hypothesis, the 
first time that n was inserted into Q, it was already "agged, so Cn = 1 which contradicts 
Cn = 0. Therefore, n cannot be inserted into Q more than once.

Given that Ni is a finite set of nodes, there cannot be any more than |Ni| nodes added/ 
removed from Q, so Q eventually empties.                                                           ▪

Lemma 1 proves that the Connectivity Algorithm eventually terminates (the ‘while’ 
loop in Line 12 stops).

Lemma 2. Suppose a polarized Graph, G(N, E) with all terms and assumptions given in 
Lemma 1. Moreover, assume that: 

(1) The initial elements of set Q are central nodes in Ni (n [ Ni such that 
|Dn| = |Succ(n)|) and the length of the shortest path from n to contrary group equals 
to 1 (sn  1).

(2) As nodes n [ Q are removed from Q one at a time, a subset of predecessors of n, 
(Y , Pred(n)) is inserted into Q such that Y , Ni and Cy = 0, 8y [ Y.

Then the Connectivity Algorithm correctly calculates sy = sn + 1 as the length of the 
shortest path from node y [ Ni to a node v ” Ni.

Proof. The hypothesis is proved by induction over the distance of nodes n [ Ni from a 
node m ” Ni in a contrary group. First, consider the base case, x1 which is one edge 
away from other groups. This means x1 is a central node by definition and has a 
successor y which does not belong to Ni (i.e., y [ Succ(x1), y ” Ni). Therefore, by the 
definition, the shortest path of x1 is 1 (sx1 = 1). Also, the Connectivity Algorithm 
assigns sx1  1 (Line 8), which is correct. This proof can be extended to all central 
nodes n in Ni.

INFORMATION, COMMUNICATION & SOCIETY 9



Next, for the induction step, consider node xk [ Ni, such that there exists a shortest 
path consisting of k . 1 edges between xk and a node in a contrary group. Assume that 
the Connectivity Algorithm correctly calculated sxj for all xj [ Ni, sxj  k, 8j [ Nk.

Now, we need to prove that the Algorithm correctly calculates the shortest path for 
nodes whose distance from the contrary groups is k + 1.

Using the induction assumption, xk had been visited (Cxk = 1) and inserted in Q once. 
Also, its shortest path is already calculated. According to the second hypothesis of 
Lemma 2, when a node such as xk [ Q is removed from Q, only a subset of its predeces-
sors such as xy [ pred(xk) is inserted into Q which have not been visited before (based on 
the second hypothesis of Lemma 2, Cxk+1 = 0). xy is only one edge further from the con-
trary groups than node xk (xy [ pred(xk)). Hence, the shortest path of xy equals 
sxy = sxk+1 = sxk + 1. Connectivity Algorithm (Line 16) also calculates sxy  sxk + 1 
which is correct.                                                                                              ▪

Now, Theorem 1 uses Lemmas 1 and 2 to prove that the Connectivity Algorithm is 
correct.

Theorem 1. Given a polarized graph, G(N, E) with at least two mutually exclusive sets of 
nodes N0i , Ni , N. Then, after execution of the Connectivity Algorithm on Ni, the 
Connectivity Scores (CSn) for all nodes n [ Ni are correctly calculated.

Proof. As for the central nodes n [ Ni, the algorithm uses CSn = sn + rn (Line 11) to 
calculate the Connectivity Score of n. In this formula, sn  1 (Line 8) which is correct 
according to Lemma 1; additionally, rn is correctly computed through Line 7 of the 
algorithm. Concerning the outlying nodes m [ Ni, the algorithm utilizes CSm = sm + tm 
(Line 20). As per Lemma 2, the Connectivity Algorithm accurately calculates sm. 
Furthermore, every time a node m is visited, the algorithm computes the tm metric (Line 17). 
By Lemma 1, each node is visited only once, ensuring sm and tm are calculated once and 
correctly. Hence, the Connectivity Algorithm correctly determines CSn for all nodes, both 
central and outlying.                                                                                               ▪

4. Numerical example

Figure 2 shows a polarized network with two subsets of red and blue nodes. To find the 
Connectivity scores for red nodes, our algorithm will be executed on the red sub-graph 
{A, B, C, D, E, F}.

The Connectivity Algorithm starts with processing all nodes randomly (Line 1), seen 
in Table 1. Initially, Cn for all nodes are 0, and set Q is empty. The algorithm classifies 
nodes either as central or outlying; and, accordingly, set Q is populated by all central 
nodes.

The outputs of Table 1 (Q and Cn) are used to execute the ‘while’ loop (Lines 12–20) in 
Table 2 to traverse the remaining nodes. Since Q has a FIFO queue data structure, nodes 
are removed in the order they were inserted in Q. Finally, the Connectivity Algorithm 
finds the total Connectivity Scores of nodes and sorts the sub-graph accordingly in Figure 
3.

It should be noted that the dashes in a cell indicate that no changes are necessary, and 
no calculations have been done by the algorithm at that step. Also, the previous value for 
the corresponding element remains valid.
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5. Real case studies on US Congressmembers Twitter network

We applied the Connectivity Algorithm to the polarized network of US 116th Congress-
members’ users (2019–2021)3 on Twitter. If the algorithm identifies multiple verified 
accounts for a particular Congressmember, the account with more followers and 

Table 1. Executing the connectivity algorithm, the ‘for’ loop, lines 1–11.
Line 1 Line 2 Lines 3–5 Line 7 Line 8 Line 9 Line 10 Line 11
‘For’ loop over the 
node Initial sn Dn rn

Updated sn for Central 
nodes Q Cn CSn

A +1 {B, D} 0.75 1 {A} CA = 1 CSA = 1.75
B +1 { } 0 1 {A, B} CB = 1 CSB = 1
D +1 {A, B, C} – – – – –
E +1 {B} – – – – –
C +1 {E, D, F} – – – – –
F +1 {C} – – – – –

Figure 2. A polarized network with red and blue contrary groups.

Table 2. Execution of the connectivity algorithm, the ‘while’ loop, Lines 12–20.
Line 12–13 Line 14–15 Line 16 Line 17 Line 18 Line 19 Line 20
‘While’ loop over Q - Removed node (n) For all y [ Pred(n) sy ty Q Cy CSy

A
D 2 0.5 {B, D} CD = 1 CSD = 2.5
X _ _ _ _ _

B
E 2 0.167 {D, E} CE = 1 CSE = 2.167
D _ _ _ _ _
A _ _ _ _ _

D
C 3 0.5 {E, C} CC = 1 CSC = 3.5
A _ _ _ _ _
Z _ _ _ _ _

E C _ _ _ _ _

C
D _ _ _ _ _
F 4 0.16 {F} CF = 1 CSF = 4.167

F C _ _ { } _ _
X _ _ _ _ _
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following is used. After filtering, our network consists of 527 nodes (n = 527) represent-
ing verified Congressmember Twitter accounts. This includes 269 Democrats and 258 
Republicans. This sample makes a real-world polarized network since each Congress-
member’s political party (sub-graph) is publicly known (Democrat vs. Republican). Inde-
pendent politicians were manually labeled based on their political party history because 
in practice, those registered as Independent often do not caucus independently. They 
may have a historical preference for or caucus with one of the major parties. For instance, 
Senator Bernie Sanders, initially registered as a Democrat, has a well-documented left- 
leaning ideology and currently caucuses with Democrats. Grouping Sanders with an 
Independent whose behaviors lean Republican introduces bias into that group’s scores.

Three other methods for quantifying polarization are applied to the same dataset for 
comparison: sentiment analysis (Section 5.2), ideology scores (Section 5.3.1), and roll call 
scores (Section 5.3.2). The last two methods measure politicians’ polarization based on 
their political behavior in real world.

5.1. The connectivity algorithm applied to the politicians Twitter network

The distribution of Connectivity Scores is depicted in Figure 4. Scores range from +1 to 
+2.74, where scores below 2 indicate central users and above 2 indicate outlying users.

Figure 3. The sorted red sub-graph based on the CS of the red users.
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Figure 4 illustrates that most Republicans (90.3%) and Democrats (94.5%) are 
classified as central users who follow at least one user from the opposing party. However, 
scores for central users heavily lean towards +2, suggesting that they follow significantly 
fewer users from the opposing party compared to users from their party. This is further 
explored later in the section. This observation aligns with our intuition: even if a Demo-
crat follows Republicans, they are likely to follow more Democrats than Republicans (and 
vice versa).

The remaining users are identified as outlying users as listed in Table 3. These poli-
ticians (25 Republicans and 14 Democrats) are more polarized by not following any 
politicians from the opposing party. The CS of outlying nodes (in Table 3) are all between 
2 and 3 calculated by CSy = sy + ty, i.e., in this particular example, all these users are 2 
edges away from an opposing Congressmember, so sy = 2 for them; and ty (the fraction 
part of the score) measures how well-connected the user is within their own subgroup 
(Percentage of Sub-graph Connectivity). Specific accounts of interest in Table 3 include 
Senate Majority Leader Mitch McConnell (CS = 2.154), Speaker of the House Nancy 
Pelosi (CS = 2.597), and well-known left-leaning Senator Bernie Sanders (CS = 2.044).

There are also central users of interest: both Senator Kyrsten Sinema and Senator Joe 
Manchin, both well known as centrists, were identified as central via the algorithm, with 
CS of 1.596 and 1.569 (within the 10 most central Democrats). Sinema most recently 
switched political a#liation to Independent but still often caucuses with Democrats 
(Collins & Wise, 2022). Manchin is a self-proclaimed centrist and potentially also 

Figure 4. Distribution of connectivity scores (CS) of 527 Congressmembers.
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switching to an Independent as well (Alfaro, 2023). Senate Minority Leader Chuck Schu-
mer was also identified as a central user, (CS = 1.855).

To facilitate a comparison with other polarization methods, CSn are normalized using 
Equation (3) to range from 0 to +1, representing the least and most polarized levels, 
respectively. The distribution of these normalized scores is depicted in Figure 5.

x0 = xˇ xmin
xmax ˇ xmin

(3) 

In the rest of Section 5, only the normalized Connectivity Scores are used, so, from now 
on, the ‘Connectivity Scores’ refers to ‘normalized Connectivity Scores’.

We believe the heavy skew toward the boundary between central and outlying nodes is 
based on a nuanced feature of the users in the network: over 90% of the politicians in our 
dataset are central nodes and follow other politicians from the opposite party, placing 
them just one edge away from the opposing group (shortest path sn equals to 1). Despite 
this, they follow far fewer politicians from the opposing party than those from their own 
(resulting in larger rn).

Since CS is highly reliant on a node’s degree count and the shortest path to the opposite 
subgroup, correlation coe#cients and corresponding confidence intervals (using 95% and 
the Fisher transformation, (Fisher, 1915)) are calculated between key network metrics and 
CS, as seen below in Table 4. This is to ensure that CS is producing a novel ranking that 
cannot be demonstrated with common existing network metrics such as degree.

The correlation coe#cients involving edge counts are worth noting, but not substan-
tial. For the shortest path to opposing subgroup, this correlation coe#cient is much lar-
ger but makes sense within context of CS. The largest portion of each node’s CS is its 

Table 3. The connectivity scores for the outlying nodes.
Outlying Republicans (Twitter Handle, Score) Outlying Democrats (Twitter Handle, Score)

RepBrianBabin 2.563707 RepThompson 2.74359
RepLizCheney 2.432432 SpeakerPelosi 2.59707
SenToddYoung 2.254826 JoaquinCastrotx 2.483516
RepFranklin 2.239382 Repblumenauer 2.369963
RepBlaine 2.212355 RepMarkTakano 2.347985
RepBobGood 2.204633 RepPressley 2.344322
RepTroyNehls 2.177606 RepRaulGrijalva 2.252747
LeaderMcConnell 2.15444 RepJahanaHayes 2.179487
SenJohnThune 2.15444 RepRichardNeal 2.128205
RepBurgessOwens 2.15444 RepSaraJacobs 2.087912
SenTomCotton 2.15444 BernieSanders 2.043956
RepGrothman 2.135135 RepSchakowsky 2.029304
Jbletlow 2.127413 Repdelgado 2.018315
Lancegooden 2.111969 RepLouCorrea 2.007326
RepClayHiggins 2.104247
KenCalvert 2.092664
RepJacobs 2.07722
RepChipRoy 2.065637
CarlosGimenezFL 2.061776
ByronDonalds 2.057915
LindseyGrahamSC 2.054054
MittRomney 2.023166
HawleyMO 2.023166
RepMcClintock 2.007722
RepDevinNunes 2.003861
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shortest path to opposing information. The narrow confidence intervals further validate 
the limited correlation coe#cients between key network metrics and CS. This highlights 
the uniqueness of CS as a metric for determining polarization based on network features.

Additionally, the degree distribution of the network was generated, Figure 6, to com-
pare to the CS distribution seen in Figure 5. This is to further confirm that CS is not being 
skewed in the same direction as degree.

By comparing Figure 5 and Figure 6, we can see that the density distributions for 
degree versus CS are also very di!erent. We believe these calculations and visuals 
confirm that CS is producing a novel ranking in comparison to well-known network 
metrics. CS is not replicable simply by using well-known network metrics.

5.2. Comparing results of sentiment analysis vs connectivity scores

Sentiment analysis has been widely used in political polarization studies (Alonso et al., 
2021; Del Vicario et al., 2017; Haselmayer & Jenny, 2017). Despite its popularity, 

Figure 5. Distribution of normalized connectivity scores, for 527 Congressmembers.

Table 4. Correlation coefficients (and corresponding confidence intervals using 95%) between 
relevant network metrics and CS. The only noteworthy correlation is between Shortest Path and 
CS, which is understandable given the large portion that Shortest Path contributes to each CS.
Network metric vs CS Correlation coefficient Confidence interval (95%)

Incoming edge count vs CS 0.0263 [−0.0592, 0.111]
Outgoing edge count vs CS −0.1796 [−0.261, −0.0956]
Degree (Incoming + Outgoing) vs CS −0.1238 [−0.207, −0.0388]
Shortest path to opposing subgroup vs CS 0.4940 [0.427, 0.556]
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sentiment analysis has some major shortcomings, e.g., biases in classification of text, con-
textual ambiguity, oversimplification of complex opinions to a restrictive scale, etc. 
(Medhat et al., 2014). Considering both its popularity and controversial shortcomings, 
we believe it is worthwhile to compare the results of the Connectivity method to the sen-
timent analysis since it can capture another aspect of a Congressmember’s behavior on 
Twitter: the content of their Tweets.

This study pulls the most recent 100 Tweets of 558 Congressmembers from the 116th 
Congress dataset using the Twitter API. The data is then exported and organized into the 
data frames, resulting in a total of 55,800 Tweets collected on 02/03/2023. We utilize the 
Python Natural Language Toolkit (NLTK) sentiment package and apply VADER 
(Valence Aware Dictionary and Sentiment Reasoner), a widely used tool for identifying 
the polarity and intensity of emotions. VADER analyzes each Tweet and returns scores in 
four categories: negative, neutral, positive, and compound.

The compound score, which ranges from –1 to +1, is assigned to each Tweet of each 
user in our dataset. A compound score closer to +1 signifies a higher level of positive sen-
timent, while closer to –1 indicates a higher level of negative sentiment. A compound 
score around 0 suggests a more neutral sentiment.

A ‘positivity’ average was calculated for all Tweets with compound scores greater than 
0 and a ‘negativity’ average was calculated for all Tweets with compound scores less than 
0. These average compound scores can be considered as a politician’s tendency toward 
extreme positivity or extreme negativity. The two average compound scores for each 
Congressmember are then normalized with respect to the dataset to facilitate the 

Figure 6. Degree distribution for 116th Congressmembers.

16 G. MADRAKI ET AL.



comparison. Finally, the di!erence between the normalized ‘positivity average’ and 
‘negativity average’ is considered for each Congressmember to measure their polarization 
level based on their recent 100 Tweets. This di!erence ranges from 0 to 2, so for consist-
ency and meaningful comparison between metrics, another round of normalization has 
been applied. This resulting measure will be referred to as ‘Sentiment Score’ and ranges 
between 0 and 1. A high Sentiment Score for a Congressmember means that s/he had 
tweeted some harsh contents (within their recent 100 Tweets) with extreme sentiments 
(positive and/or negative).

It should be noted that there exists a potential bias arising from imbalanced usage of 
positive and negative sentiments among individual users. Based on the state of the art in 
the literature, bias seems like a common challenge within the context of sentiment analysis 
(as a subfield of text mining and Natural Language Processing) (Ebrahimi et al., 2017; 
Hutchinson et al., 2020; Parvin et al., 2021; Wankhade et al., 2022; Yahav et al., 2019). How-
ever, given that our study is not centered around sentiment analysis, but rather employs 
Sentiment Score as a comparative metric, we tolerate this bias. This study chose this simple 
sentiment metric (the Sentiment Score) under this assumption that the frequency and like-
lihood of usage of positive and negative sentiment are equivalent; while in the reality, users 
might have more reservation regarding using negative sentiment compared to positive.

These Sentiment Scores are represented in Figure 7 for a total of 507 Congressmem-
bers who are accounted for after data processing and filtering. The Sentiment Scores are 
then compared to the Connectivity Scores in Figure 8 and Figure 9 for 258 Democrats, 
249 Republicans in our dataset, respectively.

Figure 7. Distribution of Sentiment Scores of 507 members of 116th Congress.
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Figure 8. Comparing Sentiment to Connectivity Scores for 258 Democrats in the dataset.

Figure 9. Comparing Sentiment to Connectivity Scores for 258 Republicans in the dataset.
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The most apparent di!erence between Sentiment and Connectivity is their distri-
bution: Sentiment Scores, especially for Republicans, follow a near perfect normal dis-
tribution. However, the Connectivity analysis shows that most of these politicians are 
moderately polarized with the Connectivity Scores within 0.48ˇ 0.57. Part of this 
substantial di!erence may be the results of controversial limitations of sentiment 
analysis methods. For instance, the semi-normal distribution of the Sentiment Scores 
may derive from the amount of data points used (100 most recent Tweets for each 
Congressmember). Also, sentiment analysis results are often related to the temporal 
dynamics of social media. Sentiments can be transient and rapidly changing in 
response to events, news, or public discourse, making it challenging to accurately 
measure polarization over time. Finally, sentiment analysis focuses on sentiment of 
words individually instead of phrases and sentences which may result in analysis 
out of context.

5.3. Comparing connectivity scores versus real-world political polarization 
scores

The users in our dataset are well-known politicians and their real-world political polar-
ization behavior has been analyzed and quantified in the literature. Here, we will discuss 
how these politicians are measured for polarization based on real-world political Con-
gressional actions and compare it with their polarization behavior on social media 
using the Connectivity Score.

5.3.1. Ideology scores versus connectivity scores
GovTrack, publishing data on Congressmembers, has an interesting metric known as an 
Ideology value. This value shows a member’s frequency of sponsoring and co-sponsoring 
overlapping sets of bills and resolutions with other Congressmembers (GovTrack.us, 
2023). GovTrack performs Singular Value Decomposition on the co-sponsorship matrix 
to determine the major dimensions which best describe the data (Wall et al., 2003).

After exporting the Ideology value for 116th Congress from GovTrack, we normalized 
them by Equation (3) for 526 Congressmembers. We refer to these normalized GovTrack 
scores as Ideology Scores. The higher the Ideology Score for a user shows more polariz-
ation level.

Figure 10 showcases the di!erence in concentration between Democrats’ and Repub-
licans’ Ideology Scores. Republican scores are concentrated above the average. The higher 
average Ideology Scores for Republicans reveal that they are more likely to co-sponsor 
each other’s bills in comparison to Democrats who may not be as unified in their 
Congressional behavior.

The Ideology Scores are then compared to the Connectivity Scores in Figure 11 and 
Figure 12 for Democratic and Republican Congressmembers, respectively. Figure 11
and Figure 12 show an obvious di!erence in the distribution of Ideology and Connec-
tivity Scores. In both figures, only a few Congressmembers have high Connectivity Scores 
(greater than 0.67), while there are more politicians with Ideology Scores greater than 
0.67. This means that Ideology method identifies more politicians as ‘extreme’ in 
terms of their polarization level compared to our method. This di!erence can be 
explained through the nature of input data of these two methods: Ideology Scores use 
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Figure 10. Distribution of Ideology Scores for 526 members of 116th Congress.

Figure 11. Comparison of the Ideology and Connectivity Scores for 269 Democratic Congressmembers.
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the co-sponsorship of bills data which likely has a larger political impact than connec-
tions data on Twitter, so polarized behavior of politicians in real world (co-sponsorship 
matrix) is bolder than social media.

5.3.2. Roll call scores versus connectivity scores
Voteview proposed a model to analyze politicians’ polarization level based on their roll 
call vote behavior referring to the ‘yea’ or ‘nay’ vote a Congressmember casts when pre-
sented with a measure (Desilver, 2022). The roll call votes are used within the Dynamic 
Weighted NOMINAI Three-step Estimation (DW-NOMINATE) model to create a two- 
dimensional spatial map. Closeness between Congressmembers in this spatial map rep-
resents a similarity in their voting records. The model has some shortcomings such as the 
‘mis-categorization’ of canonically Liberal Representatives Alexandria Ocasio-Cortez, 
Lauren Underwood, Rashida Tlaib, and Ilhan Omar as moderates (Lewis, 2022b). 
They explain that when a member votes against most of their party, their position will 
be greatly a!ected (Lewis, 2022a). Additionally, new Congressmembers have significantly 
less historical data which would otherwise stabilize their position.

We exported the DW-NOMINATE scores calculated based on roll call votes for 116th 
Congressmembers in October 2022, then normalized them by Equation (3) for accurate 
comparison. We will refer to these normalized values as Roll Call Scores. Figure 13 shows 
the Roll Call Scores for 527 Congressmembers. Higher scores (closer to 1) refer to higher 
levels of polarization.

Figure 12. Comparison the Ideology and Connectivity Scores for 257 Republican Congressmembers.

INFORMATION, COMMUNICATION & SOCIETY 21



Figure 13 reveals that the Roll Call Scores skew higher for Democrats than Republi-
cans. This is an interesting observation in comparison to Ideology Scores which said 
the opposite. Also, Republicans’ Roll Call Scores do not taper very much when approach-
ing the extremes of polarization scores. This may imply a wide distribution of roll call 
voting behavior in Republicans in comparison to Democrats.

The Roll Call Scores are compared to the Connectivity Scores in Figure 14 and 
Figure 15, for Democratic and Republican Congressmembers. In Figure 14, over 44% 
of Democrats show higher polarization behavior in their Twitter following behavior 
(Connectivity Score). However, using these politicians’ real-world Congressional behav-
ior, far fewer members show high level of polarization (with Roll Call Score greater than 
0.52).

In Figure 15, although distributions of Republican Roll Call Scores and Connectivity 
Scores are very di!erent, both for most members are between 0.24 and 0.71. However, 
similar analysis cannot be observed for Democrats (Figure 14). Therefore, Republicans’ 
polarization behavior is slightly more consistent within their social media and their real- 
world political role, compared to Democrats.

5.4. Discussion and analysis of results

Now, let’s compare all scores (Connectivity, Sentiment, Ideology, and Roll Call) for 116th 
Congressmembers to investigate potential correlations. This comparison is possible since 
all scores range between 0 and 1, with higher values indicating greater polarization and 

Figure 13. Distribution of the Roll Call Scores of the 527 Congressmembers.
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Figure 14. Comparing Roll Call Scores and Connectivity Scores for 269 Democrats.

Figure 15. Comparing Roll Call Scores and Connectivity Scores for 269 Republicans.
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lower values indicating neutrality. We generated a Pearson correlation matrix with heat 
map coloring in Figure 16.

An interesting observation in Figure 16 is that the Connectivity Scores have a positive 
correlation with both Roll Call and Ideology Scores. This implies a similarity between 
politicians’ social media following and their real-world political interactions (e.g., bill 
voting and co-sponsoring a bill). The highest correlation exists between Roll Call and 
Ideology (0.51), which is intuitive given both focus on politicians’ real-world behavior. 
Politicians’ Roll Call Score (bill-voting behavior) has more correlation to the Connec-
tivity Score (social media following), 0.24, than the Ideology Score (bill co-sponsorship 
behavior), 0.17.

On the other hand, the Sentiment Scores have negative correlation coe#cients with 
each of the other scores, meaning that the sentiment expressed in politicians’ Tweets 
results in a very di!erent polarization analysis compared to other methods. This may 
be due to sentiment analysis limitations discussed in Section 5.2.

Figure 16. Pearson correlation matrix for connectivity, sentiment, ideology, and roll call scores.
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Moreover, analysis of a single party across all four scores may yield a new perspective. 
Thus the Pearson correlation matrix was recalculated using only Republican scores, 
Figure 17, and only Democratic scores, Figure 18. In Figure 17, the correlation between 
Connectivity and other scores decreased across the board when focusing on Republicans’ 
data. The correlation between Republican Connectivity and Ideology Scores decreased by 
130% (from 0.17 to 0.072). The similar trajectory occurs to Republican Connectivity and 
Roll Call. This implies that Republicans show a di!erent polarization behavior when fol-
lowing politicians on Twitter versus when they politically interact (e.g., co-sponsoring 
bills and voting in the Congress).

Beyond correlation with Connectivity, in Figure 17, there is a notable 47% decrease in 
the correlation between Republican Sentiment and Roll Call Scores. This emphasizes the 
di!erences between polarization analysis of politicians’ Tweets versus voting behavior 
analysis. For Democrats in Figure 18, their Twitter following behavior (Connectivity), 
bill-voting behavior (Roll Call), and bill co-sponsorship behavior (Ideology) are all 

Figure 17. Pearson correlation matrix for scores belonging to Republican users.
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significantly more correlated than Republicans. Beyond Connectivity, almost all other 
correlation coe#cients calculated for Democrats (in Figure 18) moved in the more posi-
tive direction. In Figure 16, Figure 17, and Figure 18, Sentiment Scores do not show any 
positive correlation with other scores.

Now, we ranked the politicians in our sample based on their polarization level using all 
four scores to see if the scores agreed on the specific ranking of any individual politician. 
We analyzed the scores to identify the top 10% most polarized politicians across each 
score. Given the lack of correlation between Sentiment and other scores, the Sentiment 
Scores are excluded. The results show that there are four politicians, all Republican, who 
are in the top 10% across the three scores (Connectivity, Roll Call, and Ideology). Their 
scores are listed below in Table 5.

In comparison to expectations, Representative Brian Babin ranking highly is expected 
given his most recent behavior in the 2020 election (Otten et al., 2022).

Figure 18. Pearson correlation matrix for scores belonging to Democratic users.
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Finally, we summarized di!erent aspects of these four scores in Table 6. As for the 
limitations (Table 6, the fifth row), it is noteworthy that social media content is sub-
ject to more frequent and potentially significant variation (which is relevant to Senti-
ment) in comparison to the number of following/followers (which is relevant to 
Connectivity).

Table 5. Politicians ranked as top 10% most polarized by Connectivity, Roll Call, and Ideology.
Name Party Normalized Connectivity Normalized Roll Call Normalized Ideology

Representative Brian Babin R 1.00 0.722 0.853
Representative Greg Steube R 0.632 0.685 0.899
Senator Mike Braun R 0.630 0.834 0.947
Representative Ralph Norman R 0.625 0.884 1.00

Table 6. A summary for connectivity, sentiment, ideology, and roll call scores.
Aspects Connectivity Sentiment Ideology Roll Call

The input 
metadata 
(per 
politician)

Twitter connection 
adjacency matrix & party 
affiliation

Tweet content Bill co-sponsorship 
adjacency matrix

Bill-voting adjacency 
matrix

Sensitivity to 
Data 
Variation

Stable (Twitter following 
data is relatively stable 
comparing to content)

Sensitive 
(dependent on 
the size of logged 
data/content)

Semi-stable (stable for longer-term politicians)

Replication Doable: access to users’ 
connections data

Difficult: dependent 
on dynamic 
content & lack of 
access to content

Doable, but large dataset required

Range of non- 
normalized 
score

[1, +1) 
e.g., the higher score 
means more polarized

[0, 1] 
e.g., the higher 
score means 
more polarized

[0, 1] 
e.g., 0: ‘most 
politically 
left’; 1: ‘most 
politically right’

[ˇ1, 1] 
e.g., -1: more 
economically 
liberal; 1: more 
economically 
conservative

Limitation • Subject to potential 
variation depending on 
dynamic trends 

• Requires knowledge of 
node belongness to sub- 
graph (party affiliation) 

• Less effective for sparse 
network

• Subject to 
potential 
variation 
depending on 
dynamic trends 

• Bias in data 
collection and 
algorithm 
training 

• Focus on words 
out of context 

• Massive size input 
data

• Sensitive without large dataset 
• Applicable to only politicians and no other 

polarized network

Advantage • Extendable to other 
polarized networks 
(beyond political), e.g., 
Network of fans of rival 
sports teams, pro/anti 
vaccination, pro/anti 
celebrity trials, etc. 

• Scalability to larger 
network due to using 
small memory storage for 
input data

• Extendable to 
other polarized 
networks (beyond 
political)

• Based on real-world behavioral data 
• Good at separating politicians into political sub- 

groups
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5.4.1. The impact of availability of data on social media
The availability and access to data on social media platforms have consistently posed 
obstacles to research in the field of polarized networks, driven by factors such as platform 
policies, user privacy concerns, and the high costs associated with obtaining users’ data. 
Two situations might occur regarding the data availability on social media platforms: 

(1) When more data is available (including metadata and content), then multi-dimen-
sional investigation of network is more beneficial (Xiao et al., 2020). This means, ide-
ally, multiple methods can be used simultaneously (Connectivity Score along with 
content-based analysis, with di!erent type of input data) to enhance our comprehen-
sion of di!erent dimensions of social media polarization and overcome some limit-
ations of using each method in isolation.

(2) When dealing with limited data availability on platforms, the applicability of methods 
relying on minimal input data becomes crucial. The Connectivity Algorithm stands out 
by requiring relatively less input data compared to Sentiment and other content-based 
methods in the literature. Its input parameters include only the following/follower 
relationship between users in the network. Notably, on many platforms, the number 
of followers/following is public data, even for private accounts, whereas accessing con-
tent can be impossible for private accounts on most platforms. This characteristic 
makes the application of the Connectivity Algorithm more practical and adaptable 
in scenarios with restricted content access. The ease of collecting relationship (follow-
ing/follower) data is dependent on density of the network considered.

5.4.2. Computational e!ciency of algorithms
This section brie"y compares the e#ciency of our algorithm to sentiment analysis. 
Unlike content-based methods (including sentiment analysis), which demand large 
amounts of memory storage while logging the entire corpus (including the content 
and related metadata), our algorithm does not require the whole corpus as input data 
(Wankhade et al., 2022). In terms of computational complexity, our algorithm’s runtime 
depends on the size of the network, whereas sentiment analysis’s runtime is contingent 
on both the complexity of the training model used and the size of the corpus. The 
computational di!erences can be elaborated as follows.

The shortest path calculation in our Connectivity Algorithm utilizes a priority queue 
data structure (refer to set Q, Lines 9 and 18, Connectivity Algorithm) to keep track of 
visited nodes and find the distance from the center. In this calculation, all nodes 
(users) and edges (connections between nodes) are eventually visited. Therefore, the 
time complexity of this shortest path calculation is O(|Ei| + |Ni| log |Ni|) for graph 
Gi(Ni, Ei) demonstrating that the computational time of our algorithm increases with 
the size of the network (number of users) and the number of connections (edges).

For sentiment analysis, achieving more accuracy necessitates increasing the training data 
size and complicating the training model, leading to an exponential rise in the computational 
complexity of the sentiment analysis model. High-end graphics processing units (GPUs) 
may be required to train a model with a huge corpus. Even using less computationally costly 
learning algorithms such as SVM (Support Vector Machine) and NB (Naïve Bayes) for senti-
ment analysis has its disadvantages, such as long training times for large datasets and reliance 
on assumptions like attributes are mutually independent (Wankhade et al., 2022).
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6. Conclusion and future work

This study proposes a novel methodology for quantifying polarization of users on social 
media networks, focusing on network structure rather than content analysis. We model 
polarized networks as a directed graph where nodes and directed edges denoted users 
and following/follower connections between them. It is assumed that the two sub-graphs 
(referring to contrary polarized groups) are already identified. We proposed a practical 
algorithm that can be applied to each sub-graph and calculate a Connectivity Score 
for each node solely based on its following/follower connections. This score can 
represent the polarization level of the node, providing a base for comparison against 
other nodes.

We applied our algorithm individually to Democratic and Republican sub-graphs of 
the 116th Congressmembers Twitter network, and the results were compared to three 
other existing methods used to quantify polarization: Sentiment Score, Ideology Score, 
and Roll Call Score. In the case of Independents, Congressmembers were grouped 
with the party they associate and caucus with historically. This is to ensure accurate pol-
itical ideology grouping and reduce potential bias. Our analysis demonstrated that polar-
ization behavior on social media can be defined by examining users’ connections. 
Additionally, we confirmed that users’ real political behavior has some re"ection on 
how they make connections on social media (observing a meaningful correlation 
between Connectivity and Ideology or Roll Call Scores). Moreover, we observed that 
Democrats’ Twitter following behavior (Connectivity), bill-voting behavior (Roll Call), 
and bill co-sponsorship behavior (Ideology) are all significantly more correlated than 
Republicans.

We contribute to the literature through the following advantages: (1) the main 
required input data for our algorithm is users’ connections which are often public, 
quick to obtain on most platforms, and does not require much storage which can 
make it scalable for larger network. (2) Our method is based on objective data between 
users, unlike content-based methods which need to deal with language capacity, 
interpretation, and biases related to training. (3) We analyze the network for polarization 
at the user level, rather than the community or network level. (4) Our approach may 
require less input data compared to existing content- based approaches.

Finally, we recommend utilizing multiple methods (CS along with content-based 
analysis for nuanced opinions, community detection when community division is not 
known a priori (Blondel et al., 2008), or Guerra’s network and community level metrics 
(Guerra et al., 2021)) which can enhance our comprehension of di!erent dimensions of 
social media polarization and overcome some limitations of using each method in iso-
lation. One example could be defining polarization at all layers: (1) at the network 
level, (2) at the community level, and (3) at the user level using CS. Using our method 
could pave the way for structural solutions to mitigate social media polarization, i.e., 
modifying the ‘connection suggestion’ of social media platforms which will be a future 
direction for this study.

Notes
1. X is still commonly referred to by its prior name Twitter, and will be throughout this paper 

to maintain continuity (Ivanova, 2023).
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2. Operator ‘=’ denotes equivalence between the left- and right-hand side of the operator, while 
‘←’ is used to denote that the value on the right side of the operator is assigned to the item on 
the left. Furthermore, the initial value of all parameters and variables is set as 0, except sn, 
which is initially set as +∞ for all n∈Ni (Line 2).

3. Since 1935, meetings of Congress, dubbed ‘nth Congress’, last for two years, starting and 
ending at noon on January 3rd of subsequent odd-numbered years (unless law designates 
a starting or ending date other than January 3rd). For instance, the 116th Congress ran 
between 3 January 2019 and 3 January 2021 (US Senate, 2023).
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