
Virtual Machine Migration Plan Generation Through A* Search

 Eli M. Dow <emdow@us.ibm.com> Jeanna N. Matthews <jnm@clarkson.edu>  
 IBM Research Clarkson University 
 

Abstract 
Modern virtual machine (VM) management software
includes components that enable consolidation of VMs
for power savings or load-balancing for performance.
While the existing literature provides various methods
for computing a better load-balanced, or consolidated
goal state, it fails to adequately suggest the best path
from the system's current state to the desired goal
allocation. This paper discusses an approach to
efficient path finding in VM placement plan generation
for cloud computing environments. Initial results
indicate our prototype solution is viable for managing
hundreds of VMs through the application of A* search.  

1. Motivation
In this paper, we present algorithms for automatic VM
placement and relocation as achieved through non-
disruptive live guest relocation. There are several
existing contributions to the literature in these areas,
but an often-overlooked issue is just how does one get
to an ideal goal assignment of VMs to hosts from some
other starting state? This is our focus.  
 Researchers have frequently suggested novel
techniques for determining how a collection of VMs
should be matched to a set of physical hosts to satisfy a
variety of sometimes competing goals including load-
balancing or consolidation for power savings. Since
our approach for migration plan generation does not
depend on any particular implementation of placement
determination logic, the technique should be adaptable
to a variety of possible placement engines.  
 Regardless of the goal state chosen, systems
practitioners have to actually execute a migration plan
that will take the system from the current state to the
prescribed ideal state. They need to execute the series
of individual VM live migrations in a specific order
and in a timely manner before they can derive any real
value from research that suggests a goal state. Here we
use the term convergence to mean the time required to
go from some initial VM to host allocation to some
other idealized allocation (consolidated, load-balanced,
etc...). Convergence must be reached quickly while
resource consumption during both plan generation and
migration needs to be efficient enough to support
frequent plan generation. Care must be taken that

migration plan execution remains computationally
practical even for moderate scale clouds.  
 Commercial efforts described in academic literature
by HP and VMWare are prime examples of VM
management software leveraging live guest migration
[1][2]. Recent commercial products like IBM®
Distributed Resource Scheduler®[3] show continued
commercial interest in creating viable products from
this line of research. However, commercial solutions
described thus far have some shortcomings with
respect to large scale optimization of VM placement.
For instance, the paper by Heyser et al [1] use a clever
algorithm tailored to minimal perturbation to the
present solution in order to avoid massive reshuffling
of VMs [1]. Their approach avoids the complexity of
optimal path building at the expense of a potentially
better global solution. It is worth noting that some
research into similar problems focus on the initial
admission control decision of whether to allow a new
VM to be deployed for the first time into a cloud
resource pool [4]. As in [1], their goal is improvement,
not achievement of globally optimal placement which
makes the problem more tractable.  

Ad-hoc approaches to consolidation and live
migration planning run into resource bottlenecks
whereby some VMs are not allowed to co-reside on the
same physical hardware for reasons including but not
limited to: high-availability concerns, diverse
networking requirements, specific isolation
requirements, legal mandates governing user data co-
location (which extend to the VMs hosting that data),
and/or various instances where security risks are
deemed too high for co-location to be allowed.
Furthermore, many academics mistakenly believe that
enterprise cloud data centers avoid live migration due
to complexities and simply prefer to shutdown/restart
VMs that need to be moved, deferring the issue of
rebalancing to a degenerate admission control problem.  

2. Reconciling An Optimal VM Placement
Strategy With Current VM Allocations
Regardless of which research technique is used to
obtain an idealized mapping of VMs to hosts, and
regardless of which placement policies were being
enforced (consolidation, load-balancing) little has been

published about techniques for generating migration
plans to move from a given state to an optimized state.  

 A naïve migration plan generation solution considers
only the present mapping of VMs to hosts along with
the idealized mapping of VMs to hosts. One can easily
conceive of a loop which identifies the original host for
each VM and the idealized destination host for that
same VM. Sometimes, however, it is simply not
possible to begin executing migrations according to the
naive scheme. Constraints such as hypervisor low
memory conditions, VM:VM anti-colocation
constraints, and VM:Host anti-colocation constraints
quickly foil such schemes in anything beyond a trivial
cloud computing environment.  1

 For instance, at no point in a migration plan should
a host be over constrained for resources such as
memory, CPU, disk I/O or networking I/O. System
administrators might be willing to overcommit each of
those resources with different tolerances for resource
over-constraint depending on the particular resource in
question. Furthermore, the disk and networking I/O
categories can be partitioned into read and write / read
and transmit activities independently. From this split,
we control the level of over constraint on each
separately while also maintaining a cumulative I/O
over-constraint. As you can imagine, there is a variety
of means to inadvertently over-constrain a host when
moving VMs around dynamically.  
 What is needed is a means for finding an optimal
path from the current (start) state to the optimized
(goal) state, according to a set of valid transition rules
(these rules encode the various user defined over-
constraint, and anti-colocation policies discussed
earlier) that must be enforced at each interim step.  
 This scenario lends itself to the application of the
well-studied A* search algorithm [5] which is itself an
extension of the well known Dijkstra’s Algorithm with
the addition of heuristics. A* has been applied in a
wide selection of problem domains from video game
non-player character movement over a map [6] to
autonomous robot path finding in the real world [7].  
 The A* algorithm effectively keeps a list of potential
states to be considered (the OPEN list), along with
states that have been known to be encountered
previously along with a measure of their fitness. The
OPEN list is a data structure used in the A* algorithm

that describes viable partial solutions to the overall
problem. At each stage of the A* algorithm the OPEN
list represents which partial paths need to be expanded
one level deeper, and thereby lists the partial solutions
which get to live on until the next iteration of the
algorithm. The fitness values are composed of the
optimally computed cost of entering that state in
addition to the heuristic estimation of distance from
that state to the goal state. Since each iteration of the
A* algorithm expands existing valid states into
subsequent “next” states, there is a branch out effect
that is governed by the number of valid states that can
be generated from any current given state. For
example, if A* is applied to simple 2D chessboard
style environments in which a valid move is one
position in any direction on the board for any interior,
non-edge, position yielding a maximum of 8 possible
immediately reachable transition states (North, South,
East, West and the four diagonal positions assuming
diagonal moves are valid state transitions). In this case
the count of the number of valid state transitions yields
a branching factor of 8. The nominal A* approach has
been shown to be effective in path finding through
environments of this kind, and has found success in a
variety of computer games [6].  
 The application of A* to the VM placement/
convergence problem is different in a number of
important ways. In this problem domain, we consider a
state to be some mapping of VMs to hosts. A valid
state transition is the application of any valid VM
migration to some other host.  
 Whenever A* is applied to a new problem domain, a
another critical step is the selection of functions H(x)
and G(x) that guide the implementation. Intuitively,
H(x) reflects the cost of a transition from one state to
another and G(x) reflects an upper bound on the
estimated cost of reaching the goal state from some
new state. Each candidate path from an origin/initial
VM layout to an idealized goal state is evaluated
according to a function F(x) = H(x) + G(x).

2.1. Validation of A*-derived Migration Plan Generation
To validate the output of our A*-derived migration
plan, we simulated the effect of the actions prescribed
on the starting state sequentially, validating that no
constraints are violated at each iteration. This helped us

 To enforce co-location and anti-colocation policy, we opted to leverage the concept of virtual machine contracts 1

[8]. Our implementation of co-location and anti-colocation contracts were the addition of small XML stanzas to the
existing virtual machine XML definition files. Upon achieving some success with constructing optimal consolidation
plans, we then set out to construct an algorithm for high performance live migration plan generation.

demonstrate correctness of our implementation with
respect to selecting viable heuristics used within our
computation of H(x) and G(x). In addition, this allowed
us to construct a what-if mode similar to that espoused
in the VMware paper [2]. In other words, we use the
simulation approach to verify our algorithms, but we
believe the simulator could also be used generally to
enable system administrators to be able to forecast the
results of an arbitrary migration on an arbitrary VM to
host mapping. Practically speaking, data center
operators could use our simulator to observe the
recommended migration plan in action before they
execute it. This would allow them to increase their
trust and confidence in the automated VM allocation/
migration strategy for some time before they trust an
autonomously managed migration control system.

2.2. Test Cases
We constructed a number of test cases to illustrate the
performance impact of our A* algorithm under realistic
scenarios that an automated VM orchestration system
might encounter. In each of our cloud modeling
scenarios, VMs were initially distributed using
strategies that emulate potential data center VM
allocations (e.g., random, consolidated, or load-
balanced placement). Tests varied in the nature of the
initial condition and the resulting VM distribution. For
each test, we measured runtime, memory consumption,
performance, and ensured correctness while varying
the number of hosts and VMs simulated.  

3. Early Results and Experimentation
To support our investigations into the suitability of this
approach, we systematically ran over 1,000 simulations
on an IBM Blade Server® with 96GB RAM, and 24
logical CPU cores (Intel Xeon E5-2640). The
simulations varied in VM counts, host counts, initial
VM distribution mechanism, desired migration policy
(consolidation, load balancing, etc…), all while
checking each step in the solution generation process
for correctness to validate the work presented here.
Our largest (in terms of managed objects) experiment
simulated 200 hosts and 1,760 VMs (a consolidation
ratio of 8.8:1). The largest simulated consolidation
ratio was 9:1 while the lowest was 3:1. The mean
solution generation time across all experiments was 1
minute and 24 seconds, with a standard and deviation
of 3 minutes and 12 seconds. The longest A* solution
time that completed ran for just over 25 minutes, and
90% of solutions were generated in less than 4
minutes. As expected, we experimentally observed
runtime correlates highly with RAM consumption.

4. Conclusion
In this paper, we introduced a novel means for creating
an optimal path from an arbitrary initial VM to host
mapping onto a goal-state mapping through the
application of A*. This approach is complementary to
placement algorithms that consider migration planning
but is justifiably done separately as a means to isolate
the mechanism of migration planning from VM
placement policy. Simulations indicate efficient
implementations of A* are viable for moderate-sized
data centers. An extended version of this work
including more complete implementation details and
the solution parallelization is forthcoming.  

5. References
[1] Hyser, C., Mckee, B., Gardner, R., Watson, B.J.:
Autonomic vir-tual machine placement in the data
center. HP Labs Tech Report HPL-2007-189, Feb 2007

[2] Gulati, Ajay, et al. "VMware distributed resource
management: Design, implementation, and lessons
learned." VMware Technical Journal 1.1 : 45-64. 2012

[3] IBM United States Software Announcement
213-590, dated December 10, 2013. Available online:
http://www-01.ibm.com/common/ssi/rep_ca/0/897/
ENUS213-590/ENUS213-590.PDF

[4] Tantawi, A. N. “A Scalable Algorithm for
Placement of Virtual Clusters in Large Data Centers,”
in Proceedings of the 2012 IEEE 20th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems,
Washington, DC, USA, 2012, pp. 3–10.

[5] Hart, P. E.; Nilsson, N. J.; Raphael, B. "A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths". IEEE Transactions on Systems Science
and Cybernetics SSC4 4 (2): 100–107. 1968

[6] Algfoor, Z. A., Sunar, M. S., & Kolivand, H. “A
comprehensive study on pathfinding techniques for
robotics and video games.” International Journal of
Computer Games Technology, 2015.

[7] C. Popirlan, M. Dupac, “An Optimal Path
Algorithm for Autonomous Searching Robots.”,
Annals of University of Craiova, Math. Comp. Sci.
Ser. Vol. 36(1), pp. 37-48, (2009)

[8] Matthews, J., Garfinkel, Tal., Hoff, C., Wheeler, J.
Virtual machine contracts for datacenter and cloud
computing environments. In Proceedings: 1st
workshop on Automated control for datacenters and
clouds (ACDC '09). ACM, New York, NY, USA,
25-30.

NOTE: IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies.

