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Abstract 
Modern virtual  machine (VM) management  software 
includes components that enable consolidation of VMs 
for power savings or load-balancing for performance. 
While the existing literature provides various methods 
for computing a better load-balanced, or consolidated 
goal state, it fails to adequately suggest the best path 
from  the  system's  current  state  to  the  desired  goal 
allocation.  This  paper  discusses  an  approach  to 
efficient path finding in VM placement plan generation 
for  cloud  computing  environments.  Initial  results 
indicate our prototype solution is viable for managing 
hundreds of VMs through the application of A* search.  

1. Motivation
In this paper, we present algorithms for automatic VM 
placement  and  relocation  as  achieved  through  non-
disruptive  live  guest  relocation.  There  are  several 
existing contributions to the literature in these areas, 
but an often-overlooked issue is just how does one get 
to an ideal goal assignment of VMs to hosts from some 
other starting state? This is our focus.  
    Researchers  have  frequently  suggested  novel 
techniques for determining how a collection of VMs 
should be matched to a set of physical hosts to satisfy a 
variety of sometimes competing goals including load-
balancing  or  consolidation  for  power  savings.  Since 
our  approach for  migration plan generation does not 
depend on any particular implementation of placement 
determination logic, the technique should be adaptable 
to a variety of possible placement engines.  
    Regardless  of  the  goal  state  chosen,  systems 
practitioners have to actually execute a migration plan 
that will take the system from the current state to the 
prescribed ideal state. They need to execute the series 
of individual VM live migrations in a specific  order 
and in a timely manner before they can derive any real 
value from research that suggests a goal state. Here we 
use the term convergence to mean the time required to 
go from some initial  VM to host  allocation to some 
other idealized allocation (consolidated, load-balanced, 
etc...).  Convergence  must  be  reached  quickly  while 
resource consumption during both plan generation and 
migration  needs  to  be  efficient  enough  to  support 
frequent  plan  generation.  Care  must  be  taken  that 

migration  plan  execution  remains  computationally 
practical even for moderate scale clouds.  
     Commercial efforts described in academic literature 
by  HP  and  VMWare  are  prime  examples  of  VM 
management software leveraging live guest migration 
[1][2].  Recent  commercial  products  like  IBM® 
Distributed  Resource  Scheduler®[3]  show  continued 
commercial  interest  in  creating viable  products  from 
this  line of  research.  However,  commercial  solutions 
described  thus  far  have  some  shortcomings  with 
respect to large scale optimization of VM placement.  
For instance, the paper by Heyser et al [1] use a clever 
algorithm  tailored  to  minimal  perturbation  to  the 
present solution in order to avoid massive reshuffling 
of VMs [1]. Their approach avoids the complexity of 
optimal path building at the expense of a potentially 
better  global  solution.  It  is  worth  noting  that  some 
research  into  similar  problems  focus  on  the  initial 
admission control decision of whether to allow a new 
VM  to  be  deployed  for  the  first  time  into  a  cloud 
resource pool [4]. As in [1], their goal is improvement, 
not achievement of globally optimal placement which 
makes the problem more tractable.  

Ad-hoc  approaches  to  consolidation  and  live 
migration  planning  run  into  resource  bottlenecks 
whereby some VMs are not allowed to co-reside on the 
same physical hardware for reasons including but not 
limited  to:  high-availability  concerns,   diverse 
networking  requirements,  specific  isolation 
requirements, legal mandates governing user data co-
location (which extend to the VMs hosting that data), 
and/or  various  instances  where  security  risks  are 
deemed  too  high  for  co-location  to  be  allowed. 
Furthermore, many academics mistakenly believe that 
enterprise cloud data centers avoid live migration due 
to complexities and simply prefer to shutdown/restart 
VMs  that  need  to  be  moved,  deferring  the  issue  of 
rebalancing to a degenerate admission control problem.  

2. Reconciling An Optimal VM  Placement 
Strategy With Current VM Allocations
Regardless  of  which  research  technique  is  used  to 
obtain  an  idealized  mapping  of  VMs  to  hosts,  and 
regardless  of  which  placement  policies  were  being 
enforced (consolidation, load-balancing) little has been 



published  about  techniques  for  generating  migration 
plans to move from a given state to an optimized state.  

 A naïve migration plan generation solution considers 
only the present mapping of VMs to hosts along with 
the idealized mapping of VMs to hosts. One can easily 
conceive of a loop which identifies the original host for 
each  VM and  the  idealized  destination  host  for  that 
same  VM.  Sometimes,  however,  it  is  simply  not 
possible to begin executing migrations according to the 
naive  scheme.  Constraints  such  as  hypervisor  low 
memory  conditions,  VM:VM  anti-colocation 
constraints,  and  VM:Host  anti-colocation  constraints 
quickly foil such schemes in anything beyond a trivial 
cloud computing  environment.    1

     For instance, at no point in a migration plan should 
a  host  be  over  constrained  for  resources  such  as 
memory,  CPU,  disk  I/O  or  networking  I/O.  System 
administrators might be willing to overcommit each of 
those resources with different tolerances for resource 
over-constraint depending on the particular resource in 
question.  Furthermore,  the  disk  and  networking  I/O 
categories can be partitioned into read and write / read 
and transmit activities independently. From this split, 
we  control  the  level  of  over  constraint  on  each 
separately  while  also  maintaining  a  cumulative  I/O 
over-constraint. As you can imagine, there is a variety 
of means to inadvertently over-constrain a host when 
moving VMs around dynamically.  
    What is needed is a means for finding an optimal 
path  from  the  current  (start)  state  to  the  optimized 
(goal) state, according to a set of valid transition rules 
(these  rules  encode  the  various  user  defined  over-
constraint,  and  anti-colocation  policies  discussed 
earlier) that must be enforced at each interim step.  
    This scenario lends itself to the application of the 
well-studied A* search algorithm [5] which is itself an 
extension of the well known Dijkstra’s Algorithm with 
the  addition  of  heuristics.  A* has  been  applied  in  a 
wide selection of problem domains from video game 
non-player  character  movement  over  a  map  [6]  to 
autonomous robot path finding in the real world [7].  
    The A* algorithm effectively keeps a list of potential 
states  to  be  considered  (the  OPEN list),  along  with 
states  that  have  been  known  to  be  encountered 
previously along with a measure of their fitness. The 
OPEN list is a data structure used in the A* algorithm 

that  describes  viable  partial  solutions  to  the  overall 
problem. At each stage of the A* algorithm the OPEN 
list represents which partial paths need to be expanded 
one level deeper, and thereby lists the partial solutions 
which  get  to  live  on  until  the  next  iteration  of  the 
algorithm.  The  fitness  values  are  composed  of  the 
optimally  computed  cost  of  entering  that  state  in 
addition  to  the  heuristic  estimation  of  distance  from 
that state to the goal state.  Since each iteration of the 
A*  algorithm  expands  existing  valid  states  into 
subsequent “next” states, there is a branch out effect 
that is governed by the number of valid states that can 
be  generated  from  any  current  given  state.  For 
example,  if  A*  is  applied  to  simple  2D  chessboard 
style  environments  in  which  a  valid  move  is  one 
position in any direction on the board for any  interior, 
non-edge, position yielding a maximum of 8 possible 
immediately reachable transition states (North, South, 
East,  West  and the four  diagonal  positions assuming 
diagonal moves are valid state transitions).  In this case 
the count of the number of valid state transitions yields 
a branching factor of 8. The nominal A* approach has 
been  shown  to  be  effective  in  path  finding  through 
environments of this kind, and has found success in a 
variety of computer games [6].  
   The  application  of  A*  to  the  VM  placement/
convergence  problem  is  different  in  a  number  of 
important ways. In this problem domain, we consider a 
state  to  be  some mapping of  VMs to  hosts.  A valid 
state  transition  is  the  application  of  any  valid  VM 
migration to some other host.  
    Whenever A* is applied to a new problem domain, a 
another critical step is the selection of functions H(x) 
and  G(x)  that  guide  the  implementation.  Intuitively, 
H(x) reflects the cost of a transition from one state to 
another  and  G(x)  reflects  an  upper  bound  on  the 
estimated cost  of  reaching the  goal  state  from some 
new state.  Each candidate path from an origin/initial 
VM  layout  to  an  idealized  goal  state  is  evaluated 
according to a function F(x) = H(x) + G(x).

2.1. Validation of A*-derived  Migration Plan Generation
To  validate  the  output  of  our  A*-derived  migration 
plan, we simulated the effect of the actions prescribed 
on  the  starting  state  sequentially,  validating  that  no 
constraints are violated at each iteration. This helped us 

 To enforce co-location and anti-colocation policy, we opted to leverage the concept of virtual machine contracts 1

[8]. Our implementation of co-location and anti-colocation contracts were the addition of small XML stanzas to the 
existing virtual machine XML definition files. Upon achieving some success with constructing optimal consolidation 
plans, we then set out to construct an algorithm for high performance live migration plan generation.



demonstrate  correctness  of  our  implementation  with  
respect  to selecting viable heuristics used within our 
computation of H(x) and G(x). In addition, this allowed 
us to construct a what-if mode similar to that espoused 
in the VMware paper [2].  In other words, we use the 
simulation approach to verify our algorithms, but we 
believe the simulator could also be used generally to 
enable system administrators to be able to forecast the 
results of an arbitrary migration on an arbitrary VM to 
host  mapping.  Practically  speaking,  data  center 
operators  could  use  our  simulator  to  observe  the 
recommended  migration  plan  in  action  before  they 
execute  it.  This  would  allow  them  to  increase  their 
trust and confidence in the automated VM allocation/
migration  strategy for some time before they trust an 
autonomously managed migration  control system. 

2.2. Test Cases
We constructed a number of test cases to illustrate the 
performance impact of our A* algorithm under realistic 
scenarios that an automated VM orchestration system 
might  encounter.  In  each  of  our  cloud  modeling 
scenarios,  VMs  were  initially  distributed  using 
strategies  that  emulate  potential  data  center  VM 
allocations  (e.g.,  random,  consolidated,  or  load-
balanced placement). Tests varied in the nature of the 
initial condition and the resulting VM distribution. For 
each test, we measured runtime, memory consumption, 
performance,  and  ensured  correctness  while  varying 
the number of hosts and VMs simulated.  

3. Early Results and Experimentation
To support our investigations into the suitability of this 
approach, we systematically ran over 1,000 simulations 
on an IBM Blade Server® with 96GB RAM, and 24 
logical  CPU  cores  (Intel  Xeon  E5-2640).  The 
simulations varied in VM counts,  host  counts,  initial 
VM distribution mechanism, desired migration policy 
(consolidation,  load  balancing,  etc…),  all  while 
checking each step in the solution generation process 
for  correctness  to  validate  the  work  presented  here. 
Our largest (in terms of managed objects) experiment 
simulated 200 hosts and 1,760 VMs (a consolidation 
ratio  of  8.8:1).  The  largest  simulated  consolidation 
ratio  was  9:1  while  the  lowest  was  3:1.  The  mean 
solution generation time across all experiments was 1 
minute and 24 seconds, with a standard and deviation 
of 3 minutes and 12 seconds.  The longest A* solution 
time that completed ran for just over 25 minutes, and 
90%  of  solutions  were  generated  in  less  than  4 
minutes.  As  expected,  we  experimentally  observed 
runtime correlates highly with RAM consumption.

4. Conclusion
In this paper, we introduced a novel means for creating 
an optimal path from an arbitrary initial  VM to host 
mapping  onto  a  goal-state  mapping  through  the 
application of A*. This approach is complementary to 
placement algorithms that consider migration planning 
but is justifiably done separately as a means to isolate 
the  mechanism  of  migration  planning  from  VM 
placement  policy.  Simulations  indicate  efficient 
implementations of A* are viable for  moderate-sized 
data  centers.  An  extended  version  of  this  work 
including  more  complete  implementation  details  and 
the solution parallelization is forthcoming.  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