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A B S T R A C T

Data interpolation is a fundamental problem in many applied mathematics and scientific computing fields.
This paper introduces a modified implicit local radial basis function interpolation method for scattered data
using polyharmonic splines (PS) with a low degree of polynomial basis. This is an improvement to the original
method proposed in 2015 by Yao et al.. In the original approach, only radial basis functions (RBFs) with
shape parameters, such as multiquadrics (MQ), inverse multiquadrics (IMQ), Gaussian, and Matern RBF are
used. The authors claimed that the conditionally positive definite RBFs such as polyharmonic splines 𝑟2𝑛 ln 𝑟
and 𝑟2𝑛+1 ‘‘failed to produce acceptable results’’.

In this paper, we verified that when polyharmonic splines together with a polynomial basis is used on the
interpolation scheme, high-order accuracy and excellent conditioning of the global sparse systems are gained
without selecting a shape parameter. The scheme predicts functions’ values at a set of discrete evaluation
points, through a global sparse linear system. Compared to standard implementation, computational efficiency
is achieved by using parallel computing. Applications of the proposed algorithms to 2D and 3D benchmark
functions on uniformly distributed random points, the Halton quasi-points on regular or Stanford bunny shape
domains, and an image interpolation problem confirmed the effectiveness of the method. We also compared
the algorithms with other methods available in the literature to show the superiority of using PS augmented
with a polynomial basis. High accuracy can be easily achieved by increasing the order of polyharmonic splines
or the number of points in local domains, when small order of polynomials are used in the basis. MATLAB
code for the 3D bunny example is shared on MATLAB Central File Exchange (Yao, 2023).
1. Introduction

Scattered data interpolation is a common and fundamental problem
in many scientific and engineering studies [1–7]. There has already
been so much work [8] in this area yet interpolation is still a difficult
and computationally expensive problem. Polynomial interpolation and
piece-wise polynomial splines have been generally used until 1971, Rol-
land Hardy introduced an interpolation method based on multiquadric
(MQ) radial basis function (RBF) [9]. Since then, many different RBF
interpolation schemes have been developed. A few different methods
can be found in [10–12], and a comparison of radial basis functions
methods can be found in [13].

Despite the simplicity, applicability to various kinds of problems,
and effectiveness of RBF-based methods, the resultant system of equa-
tions is often ill-conditioned when there is a large number of data
points. Apart from that, global interpolation methods based on RBFs
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suffer from typical drawbacks of a global method such as high memory
requirement and high computational cost. In fact, global RBF methods
produce a linear system of size large as the number of data points.
Generally, the costs of direct solution of such systems are (𝑁3) and
(𝑁2) memory usage. There are several methods that get around
these issues such as domain decomposition [14,15], accelerated iter-
ated approximate moving least squares [16], RBF-QR algorithms [17],
a compactly supported RBFs [18], radial basis function-finite differ-
ence method [19], and many others. One disadvantage of the domain
decomposition methods is that the domain discretization and joining
phase of the local interpolants are not easy to implement. Recently,
Hansen shared a toolbox ‘‘regtools’’ including regtoolsTSVD, Tikhonov,
and LSQR regularization methods for analysis and solution of discrete
ill-posed problems [20].
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The two methods proposed in [21] are fast localized RBF algorithms
for large-scale 2D scattered data interpolation. In these methods, an
interpolation is performed on each local influence domain and then
all the influence domains are combined into a sparse matrix with the
use of RBFs like Gaussian, MQ, Normalized MQ, and Matern. These
methods are categorized as implicit methods in such a way that the
interpolant is not explicitly defined by the numerical approximation,
instead the approximation at sets of discrete evaluation points is given.
We will continue to use such characterization throughout our work. On
the other hand, if the interpolation function is defined by the numerical
schemes, we call it an explicit method.

The authors in [21] claimed that the conditionally positive definite
RBFs such as polyharmonic splines 𝑟2𝑛 ln 𝑟 and 𝑟2𝑛+1 ‘‘failed to produce
acceptable results’’. However, in this paper, we verified that when
polyharmonic splines together with a polynomial basis is used on
the implicit interpolation scheme, high-order accuracy, and excellent
conditioning of the global sparse systems are gained without the need
for selecting a shape parameter. The performance of the proposed
algorithm is even more accurate than the most recent publication [7]
in 2023. Although [7] is a global interpolation scheme, our algorithms
are local.

One may argue the proposed algorithm is the same as the idea of
the Radial Basis Function-Finite Difference Method (RBF-FD) [19] when
applied to interpolation problems. However, there are fundamental
differences between the two methods: (1) Our method is an implicit
method, where only approximations at a set of discrete evaluation
points are produced, but RBF-FD is an explicit interpolation in which
an interpolation function is given by the numerical scheme; (2) Our
method constructs the local domains by searching within the interpo-
lation points or union of interpolation and evaluation points, but the
RBF-FD constructs local domains purely within the evaluation points.

In Section 2, we briefly introduced global RBF interpolation and the
positive-definiteness of the RBFs. In Section 3, we propose the localized
RBF interpolation methods for scattered data interpolation in R𝑑 , where
𝑑 is a positive integer. We categorize this algorithm as a Local Implicit
Interpolation using Polyharmonic Splines and Polynomials (LI2Poly2)
Algorithm 1 and Algorithm 2 based on two different ways of creating
local domains. Section 4 dedicates to numerical experiments carried
on with 2D scattered data followed by a few 3D experiments. Nu-
merical results are compared with the implicit local RBF method [21]
and the CS-RBF method. The performance of the proposed method is
demonstrated regarding accuracy, efficiency, and parameter selection.
In Section 5, we draw some conclusions on the usage of polyharmonic
spline basis in the proposed method and possible improvements.

2. Radial basis function interpolation

The problem of scattered data interpolation is, given a set of distinct
data points 𝐱𝑖 ∈ R𝑑 with associated data values 𝐲𝑖 ∈ R for 𝑖 = 1, 2,… , 𝑁 ,
find an interpolant function 𝑓 (𝐱) ∶ R𝑑 → R, satisfying 𝑓 (𝐱𝑖) = 𝐲𝑖, 𝑖 =
1,… , 𝑁 .

The global radial basis function interpolant 𝑓 is given by

𝑓 (𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗𝜙(‖𝐱 − 𝐱𝑗‖), (1)

where 𝜙(𝑟) is a radial basis function with the 𝑟 = ‖𝐱 − 𝐱𝑗‖ ≥ 0 defined
as the Euclidean distance, and 𝐱𝑗 is the center of the RBF. Note that 𝑟
is the distance between point 𝐱 and the centers of the basis functions.

The unknown real coefficients 𝛼𝑗 , 𝑗 = 1, 2,… , 𝑁 are determined by
enforcing the interpolation condition 𝑓 (𝐱𝑖) = 𝐲𝑖 ∶

𝐲𝑖 = 𝑓 (𝐱𝑖) =
𝑁
∑

𝑗=1
𝛼𝑗𝜙(‖𝐱𝑖 − 𝐱𝑗‖), 𝑖 = 1, 2,… , 𝑁. (2)

The resulting 𝑁 ×𝑁 linear system of equations can be represented by
a matrix form
241

𝐴𝛼 = 𝑏,
Table 1
The dimension of the basis {𝑝1 , 𝑝2 ,… , 𝑝𝑞} where 𝑝𝑖 , 𝑖 = 1,… , 𝑞 are polynomials of degree
up to 𝑚 − 1 in 𝑑 dimension.
𝑚 − 1 𝑑 = 1 𝑑 = 2 𝑑 = 3

0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20
4 5 15 35
5 6 21 56
6 7 28 84

where 𝛼 = [𝛼1, 𝛼2,… , 𝛼𝑁 ]𝑇 , 𝑏 = [𝐲1, 𝐲2,… , 𝐲𝑁 ]𝑇 , and entries of 𝐴
are given by 𝑎𝑖,𝑗 = 𝜙(‖𝐱𝑖 − 𝐱𝑗‖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . The solution of the
bove interpolation problem exists and is unique, if and only if the
nterpolation matrix 𝐴 is nonsingular, which is true for certain choices
f RBFs that are positive definite.

heorem 2.1 ([12]). A real-valued continuous function 𝜙 is positive
efinite on R𝑑 if and only if it is even and
𝑁

𝑖=1

𝑁
∑

𝑗=1
𝛼𝑖𝛼𝑗𝜙(𝐱𝑖 − 𝐱𝑗 ) ≥ 0, (3)

or any𝑁 distinct data points 𝐱1,… , 𝐱𝑁 ∈ R𝑑 and 𝛼 = (𝛼1,… , 𝛼𝑁 )𝑇 ∈ R𝑁 .

Radially symmetric RBFs are clearly even functions. If 𝜙(𝑟) is a
ositive definite function, it can be proved that the interpolation matrix
is a positive definite matrix for any distinct points 𝐱1,… , 𝐱𝑁 making

t nonsingular. For example, Gaussian, inverse multiquadrics (IMQ),
atern, and compactly-supported RBFs (CS-RBFs) are positive definite

unctions [22,23]. Other commonly used RBFs such as multiquadrics
MQ) and polyharmonic splines (PS) on the other hand have only been
hown to be conditionally positive definite.

efinition 2.2 ([22]). A real-valued continuous even function 𝜙 is
alled conditionally positive definite of order 𝑚 on R𝑑 if
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝛼𝑖𝛼𝑗𝜙(𝐱𝑖 − 𝐱𝑗 ) ≥ 0, (4)

or any 𝑁 distinct data points 𝐱1,… , 𝐱𝑁 ∈ R𝑑 and 𝛼 = (𝛼1,… , 𝛼𝑁 )𝑇 ∈
𝑁 satisfying

𝑁

𝑗=1
𝛼𝑗𝑝(𝐱𝑗 ) = 0 (5)

or any real valued polynomial 𝑝 of degree at most 𝑚− 1. The function
is called strictly conditionally positive definite of order 𝑚 on R𝑑 if the

oints 𝐱1,… , 𝐱𝑁 ∈ R𝑑 are distinct, and 𝛼 ≠ 𝟎 implies strict inequality
n (4).

When using radial basis functions that are conditionally positive
efinite, one has to add polynomial basis functions of a certain maximal
egree to the interpolate function (1) as follows

̂(𝐱) =
𝑁
∑

𝑗=1
𝛼𝑗𝜙(‖𝐱 − 𝐱𝑗‖) +

𝑞
∑

𝑘=1
𝛽𝑘𝑝𝑘(𝐱) (6)

here {𝑝1, 𝑝2,… , 𝑝𝑞} forms a basis for 𝑑
𝑚−1, space of polynomials of

otal degree less than or equal to 𝑚−1 in 𝑑-variables, where 𝑞 =
(𝑑+𝑚−1

𝑑

)

.
ee Table 1 for some examples of the values of 𝑞 in 𝑑 dimension.

The new linear system is created by enforcing the interpolation
ondition 𝑓 (𝐱𝑖) = 𝐲𝑖 for 𝑖 = 1,… , 𝑁 . We also consider the following
dditional insolvency constraints for the polynomial part to guarantee
unique solution for the new linear system:

𝑁
∑

𝛼𝑗𝑝𝑘(𝐱𝑗 ) = 0, 𝑘 = 1,… , 𝑞. (7)

𝑗=1
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Thus, the following linear system can be achieved by combining the
interpolation condition and the additional insolvency constraints (7):
(

𝐴 𝑃 𝑇

𝑃 𝟎

)(

𝛼
𝛽

)

=
(

𝑏
𝟎

)

, (8)

where 𝛼 = [𝛼1, 𝛼2,… , 𝛼𝑁 ]𝑇 , 𝛽 = [𝛽1, 𝛽2,… , 𝛽𝑞]𝑇 , 𝑏 = [𝐲1, 𝐲2,… , 𝐲𝑁 ]𝑇 ,
and entries of 𝐴 are given by 𝑎𝑖,𝑗 = 𝜙(‖𝐱𝑖 − 𝐱𝑗‖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and
entries of 𝑃 are given by 𝑝𝑖,𝑗 = 𝑝𝑗 (𝐱𝑖), 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑞.
Once the unknown coefficients are obtained by solving the resulting
(𝑁 + 𝑞) × (𝑁 + 𝑞) linear system, the interpolations can be made.
Global interpolation methods based on RBF are easy to implement but,
when the number of collocation points within the domain is high, the
resulting matrix suffers from ill-conditioning and problems associated
with computational cost including storage and time. On the other hand,
adding polynomials in a global context can lead to other drawbacks
associated with polynomial interpolation. With the limitations of global
methods, formulations of localized methods offer an alternative for
large-scale realistic data. In the next section, we present two local
methods which have similar localization procedures as the generalized
finite difference method.

3. Localized RBF interpolation based on polyharmonic splines

The two methods proposed in [21] are fast localized RBF algorithms
for large-scale 2D scattered data interpolation. In these methods, an
interpolation is performed on each local influence domain and then
all the influence domains are combined into a sparse matrix with
the use of RBFs like Gaussian, MQ, Normalized MQ, and Matern. All
of these RBFs come with a free shape parameter that needs to be
chosen carefully in the interpolation process. Yet, there is no practical
and theoretical procedure for choosing the optimal shape parameter
in applications except for some efforts made [24–27]. It is true that
smooth RBFs like MQ give more accurate results at smaller values
of the shape parameter 𝑐. But there is a trade-off between accuracy
and conditioning. As 𝑐 decreases function becomes flatter and accuracy
increases until numerical ill-conditioning steps in. There are ways to
improve the performance of MQ RBF methods, such as employing
fictitious nodes [28,29], pre-conditioning [15], etc [30–32].

We have improved two local methods in [21] by incorporating
shape parameter-free polyharmonic splines (PS RBF) together with
polynomial basis functions. This is an extension to the current methods,
achieving high accuracy without the need of selecting a shape param-
eter. It is known that when high-order polynomials are used in global
methods can lead to Runge’s phenomenon. Such effects are alleviated
simply in the local context as one is only interested in interpolation
within a small neighborhood.

For convenience, let us consider the interpolation problem in two-
dimensional spaces. Suppose we have a set of distinct scattered data
points {𝐱𝑖}𝑁𝑖=1 ⊂ R2 and their function values {𝑓 (𝐱𝑖)}𝑁𝑖=1 ⊂ R. Let
{𝐳𝑗}

𝑁𝑡
𝑗=1 ⊂ R2 be a set of evaluation points. We try to find the interpolant

𝑓 such that 𝑓 (𝐳𝑗 ) ≈ 𝑓 (𝐳𝑗 ), 𝑗 = 1,… , 𝑁𝑡 and 𝑓 (𝐱𝑖) = 𝑓 (𝐱𝑖), 𝑖 = 1,… , 𝑁 .
The polyharmonic splines in R𝑑 are defined as follows:

𝜙𝑑,𝑘(𝑟) =

{

𝑟2𝑘−𝑑 ln(𝑟), for 𝑑 even
𝑟2𝑘−𝑑 , for 𝑑 odd

where 2𝑘 > 𝑑, and with 𝑘 ∈ N. For example, in R2, 𝜙2,3(𝑟) = 𝑟4 log(𝑟),
then 𝑑 = 2, 𝑘 = 3, thus polynomials up to degree 2 or higher need to be
added to ensure the unique solvability.

3.1. LI2Poly2-Algorithm 1

For each 𝐱𝑖, we choose 𝑛 nearest evaluation points to 𝐱𝑖 to create
a local influence domain 𝛺𝑖 = {𝐳[𝑖]𝑗 }𝑛𝑗=1, in which 𝑗 = 1… 𝑛 denotes
for local indexing for each node in the 𝛺𝑖. Note that 𝑛 ≪ 𝑁 . In this
construction, each interpolation point has a local influence domain that
242
Fig. 1. Local influence domain of 𝐱𝑖 with five nearest evaluation points in Algorithm 1.

contains only 𝑛 evaluation points. Fig. 1 shows an example of local
domain construction with 𝑛 = 5.

Now let us focus on the RBF interpolation on the local domain 𝛺𝑖,
and let 𝐳 = 𝐳[𝑖]𝑗 ∈ 𝛺𝑖 for some 𝑗 ≤ 𝑛. Thus, 𝑓 (𝐳) can be written as
previously shown in (6) which is the following,

𝑓 (𝐳) =
𝑛
∑

𝑗=1
𝛼𝑗𝜙(‖𝐳 − 𝐳[𝑖]𝑗 ‖) +

𝑞
∑

𝑙=1
𝛼𝑛+𝑙 𝑝𝑙(𝐳).

where 𝜙 is chosen to be polyharmonic splines RBF and {𝑝1, 𝑝2,… , 𝑝𝑞}
forms a basis for polynomials up to degree less than or equal to 𝑚 − 1
in R𝑑 , 𝑞 =

(𝑑+𝑚−1
𝑑

)

. Notice that 𝑚 = 𝑘 − ⌈𝑑∕2⌉ + 1 is the order of
the conditionally positive definite polyharmonic splines 𝜙𝑑,𝑘 [33]. In
addition, the size of the local domain should be greater than the number
of polynomial basis functions 𝑞 =

(𝑑+𝑚−1
𝑑

)

for this to work. In this
example, the local domain size needs to be larger than 𝑞 =

(2+2
2

)

= 6 in
R2.

Collocation on the local domain of influence leads to the following
system:
𝑛
∑

𝑗=1
𝛼𝑗𝜙(‖𝐳

[𝑖]
𝑘 − 𝐳[𝑖]𝑗 ‖) +

𝑞
∑

𝑙=1
𝛼𝑛+𝑙 𝑝𝑙(𝐳

[𝑖]
𝑘 ) = 𝑓 (𝐳[𝑖]𝑘 ), 𝑘 = 1, 2,… 𝑛, (9)

𝑛
∑

𝑗=1
𝛼𝑗 𝑝𝑙(𝐳

[𝑖]
𝑘 ) = 0, 𝑙 = 1, 2,… 𝑞. (10)

Let the coefficient matrices on the first and second terms of the
left-hand side of (9) be 𝜱 and 𝑷 respectively. That is

𝜱 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜙(‖𝐳[𝑖]1 − 𝐳[𝑖]1 ‖) … 𝜙(‖𝐳[𝑖]1 − 𝐳[𝑖]𝑛 ‖)
𝜙(‖𝐳[𝑖]2 − 𝐳[𝑖]1 ‖) … 𝜙(‖𝐳[𝑖]2 − 𝐳[𝑖]𝑛 ‖)

⋮ ⋮ ⋮
𝜙(‖𝐳[𝑖]𝑛 − 𝐳[𝑖]1 ‖) … 𝜙(‖𝐳[𝑖]𝑛 − 𝐳[𝑖]𝑛 ‖)

⎞

⎟

⎟

⎟

⎟

⎠

, and

𝐏 =
⎛

⎜

⎜

⎝

1 𝑥1 𝑦1 … 𝑦𝑚−11
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑦𝑛 … 𝑦𝑚−1𝑛

⎞

⎟

⎟

⎠

. (11)

Then we can introduce a block matrix from for the system (9)–(10) as
follows:
(

𝜱 𝑷
𝑷 𝑇 𝟎

)

𝜶[𝒊] =
(

𝐟𝑛
𝟎

)

, (12)

where 𝜶[𝒊] = [𝛼1, 𝛼2,… , 𝛼𝑛+𝑞]𝑇 , 𝐟𝑛 = [𝑓 (𝐳[𝑖]1 ), 𝑓 (𝐳[𝑖]2 ),… , 𝑓 (𝐳[𝑖]𝑛 )]𝑇 . Let
the coefficient matrix in (12) be 𝜳 . Then the unknown coefficients in
(9)–(10) can be expressed as

𝜶[𝒊] = 𝜳−1
(

𝐟𝑛
𝟎

)

. (13)

Therefore, for 𝑖 = 1,… , 𝑁 ,

𝑓 (𝐱𝐢) =
𝑛
∑

𝛼𝑗𝜙(‖𝐱𝑖 − 𝐳[𝑖]𝑗 ‖) +
𝑞
∑

𝛼𝑛+𝑙 𝑝𝑙(𝐱𝑖),

𝑗=1 𝑙=1



Engineering Analysis with Boundary Elements 156 (2023) 240–250K. Rubasinghe et al.
Fig. 2. Local influence domain consists of seven nearest points to 𝑥𝑖 in Algorithm 2.

= 𝜱(𝐱𝑖)𝜶[𝒊]

= 𝜱(𝐱𝑖)𝜳−1
(

𝐟𝑛
𝟎

)

= 𝜦𝑛+𝑞(𝐱𝑖)
(

𝐟𝑛
𝟎

)

= 𝜦𝑛(𝐱𝑖)𝐟𝑛, (14)

where

𝜱(𝐱𝑖) =
[

𝜙(‖𝐱𝑖 − 𝐳[𝑖]1 ‖),… , 𝜙(‖𝐱𝑖 − 𝐳[𝑖]𝑛 ‖), 1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2,… ,

𝑥𝑚, 𝑥𝑚−1𝑦,… , 𝑥𝑦𝑚−1, 𝑦𝑚
]

,

and 𝜦𝑛+𝑞(𝐱𝑖) = 𝜱(𝐱𝑖)𝜳−1. Note that 𝜦𝑛(𝐱𝑖) is obtained by omitting last
𝑞 elements of the vector 𝜦𝑛+𝑞(𝐱𝑖).

The system (14) can be reformulated to an 𝑁 × 𝑁𝑡 sparse system
easily by extending local 𝐟𝑛 to a global ̂𝐟𝑁𝑡

= [𝑓 (𝐳1), 𝑓 (𝐳2),… , 𝑓 (𝐳𝑁𝑡
)]𝑇 .

This can be done by inserting zeros to 𝜦𝒏(𝐱𝒊) based on the mapping
between 𝐟𝑛 and ̂𝐟𝑁𝑡

. It follows that

𝐟 (𝐱𝐢) = 𝜦𝑵 𝒕
(𝐱𝒊)𝐟𝑁𝑡

(15)

where 𝜦𝑵 𝒕
(𝐱𝒊) is a vector that is obtained by adding zeros into 𝜦𝑛(𝐱𝑖)

appropriate at places.
For example, assume 𝑁𝑡 = 50, 𝑛 = 3, and 𝛺𝑖 = {𝐳[𝑖]1 , 𝐳[𝑖]2 , 𝐳[𝑖]3 } =

{𝐳12, 𝐳20, 𝐳23}. Then we need to insert 47 zeros into 𝜦𝒏(𝐱𝒊), while only
keeping non zero values at 12th, 20th and 23rd positions. i.e, 𝜦𝑵 𝒕

(𝐱𝒊) =
[0, 0,… , #

⏟⏟⏟
12𝑡ℎ

, 0, 0,… , 0, #
⏟⏟⏟

20𝑡ℎ

, 0, 0, #
⏟⏟⏟
23𝑟𝑑

, 0, 0,… , 0
⏟⏟⏟

50𝑡ℎ

]. By solving

(15), the unknown approximation function values at 𝑁𝑡 evaluation
points, 𝑓 (𝐳𝑗 ), 𝑗 = 1, 2,… , 𝑁𝑡 can be found. This can be done using any
direct or iterative methods for solving systems of linear equations given
that 𝑁𝑡 ≤ 𝑁 . The proposed algorithm works for any dimension 𝑑 like
many other RBF-based methods.

3.2. LI2Poly2-Algorithm 2

Algorithm 2 is developed with the idea of taking all the interpo-
lation points and evaluation points in each local neighborhood into
consideration for the interpolation at a single point. In this construc-
tion, each interpolation point will have a local influence domain that
contains both evaluation points and interpolation points, total into 𝑛.
Fig. 2 shows an example of local domain construction with 𝑛 = 7.

For each 𝐱𝑖, we choose the nearest 𝑛1 evaluation points and 𝑛2
interpolation points which adds up to 𝑛 to create a local influence
domain 𝛺𝑖 = {𝐳[𝑖]𝑗 }𝑛1𝑗=1

⋃

{𝐱[𝑖]𝑗 }𝑛2𝑗=1. The local interpolation procedure
presented in Algorithm 1 resulted in (15) should be changed to account
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for the changes in Algorithm 2. The resulting system of linear equations
is size 𝑁 × (𝑁𝑡 +𝑁) and is underdetermined as follows,

𝐟 (𝐱𝐢) = 𝜦𝑵 𝒕+𝑵 (𝐱𝑖)
( ̂𝐟𝑁𝑡

𝐟𝐍

)

, 𝑖 = 1,… , 𝑁 (16)

where 𝐟𝐍 = [𝑓 (𝐱1),… , 𝑓 (𝐱𝑁 )]𝑇 . In order to solve this system, the system
has been reformulated to a 2𝑁 × (𝑁𝑡 +𝑁) system as follows
(

𝜦𝑵 𝒕+𝑵
𝟎𝑁×𝑁𝑡

𝐈𝑁×𝑁

)( ̂𝐟𝑁𝑡
𝐟𝐍

)

=
(

𝐟𝐍
𝐟𝐍

)

. (17)

The approximated function values ̂𝐟𝑁𝑡
can be obtained by solving (17)

using any system-solving technique.
The efficiency of the method can be illustrated by considering its

asymptotic computational complexity. For both algorithms, we need to

Step 1. For each interpolation point, we need to calculate the
coefficient matrix in (14) by

◦ first, build kd-tree among the all 𝑁𝑡 evaluation points for
Algorithm 1 or for all 𝑁𝑡 evaluation points and 𝑁 interpo-
lation points for Algorithm 2;

◦ second, find 𝑛 nearest neighbors of all 𝑁 interpolation
points using the kd-tree created above;

◦ third, solve small local systems of size (𝑛+𝑞)× (𝑛+𝑞), where
there are 𝑁 such systems;

Step 2. Solve a sparse system of size 𝑁 ×𝑁 , in which 𝑛 unknowns
in each equation.

Fig. 3 shows detailed computational complexity associated with
both algorithms. Note that there are 𝑁𝑡 evaluation points, 𝑁 interpo-
lation points, and 𝑞 is the number of polynomial basis. Thus, there are
𝑁 small systems of size (𝑛 + 𝑞) × (𝑛 + 𝑞) in Algorithm 1. The cost for
solving these 𝑁 small systems is (𝑁(𝑛 + 𝑞)3). However, 𝑛, 𝑞 ≪ 𝑁 in
practice. Hence, the computational complexity in time for Algorithm 1
is ((𝑁𝑡 + 𝑛𝑁)𝑙𝑜𝑔(𝑁𝑡)) + (𝑁(𝑛 + 𝑞)3) +(𝑁𝑛2) and the computational
complexity of Algorithm 2 is (((𝑛 + 1)𝑁 +𝑁𝑡)𝑙𝑜𝑔(𝑁 +𝑁𝑡)) + (𝑁(𝑛 +
𝑞)3) + ((𝑁 +𝑁𝑡)𝑛2).

In the next section, we demonstrate the accuracy and efficiency
of the proposed method using two-dimensional data intensively and
some results from the three-dimensional data as well. The stability of
the method is also inspected by studying the condition number of the
interpolation matrices and global sparse matrices.

4. Numerical results

To illustrate the effectiveness of the method on scattered data, we
consider examples of two and three dimensions on both regular and
irregular domains. Recall the following key parameters/notations:

𝑁 : the number of interpolation points
𝑁𝑡: number of evaluation (test) points
𝑛 : the number of points in the local domain of influence
𝑚 : the degree of highest-order polynomials
𝑘 : the order of PS.

Numerical results are compared with the exact function values and
the accuracy of the method is measured in terms of root mean squared
error (𝜖𝑟𝑚𝑠) and the maximum absolute error (𝜖𝑚𝑎𝑥), whose are given by

𝜖𝑟𝑚𝑠 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑓𝑖 − 𝑓𝑖)2, 𝜖𝑚𝑎𝑥 =

𝑁
max
𝑖=1

|𝑓𝑖 − 𝑓𝑖| (18)

where 𝑓𝑖 = 𝑓 (𝐱𝑖) is the approximated value of 𝑓𝑖 = 𝑓 (𝐱𝑖). The condition
number of the interpolation matrix 𝐴 is defined as

cond(𝐴) = ‖𝐴‖2‖𝐴
−1
‖2 =

𝜎𝑚𝑎𝑥 (19)

𝜎𝑚𝑖𝑛
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Fig. 3. Computational complexity in time with regards LI2Poly2 Algorithm 1 and Algorithm 2.
Fig. 4. Franke’s benchmark test function 𝐹1 [34] on the left, and the root mean squared errors, 𝜖𝑟𝑚𝑠, versus average distance between nodes, ℎ, for 𝐹1.
where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the largest and smallest singular values of
A. In our numerical experiments, we choose the interpolation points
to be evenly distributed, while the evaluation points (test points) are
randomly distributed Halton quasi-points with the constraint of 𝑁𝑡 <
𝑁 . In a case of 𝑁 ≤ 𝑁𝑡, we split the evaluation points into subsets and
perform the interpolation separately. We will explain how interpolation
is done in such cases later in this section.

All numerical experiments have been performed in MATLAB on a
MacBook Pro with a 3.2 GHz Apple M1 processor and 16 GB memory.
The algorithm code has been parallelized using the Matlab Parallel
Computing Toolbox for improving the performance. Moreover, con-
struction of the local domains by searching the nearest evaluation
points has been done using the Matlab built-in function knnsearch from
the statistics and machine learning toolbox.

Example 4.1. In the first example, we investigate the performances
of the proposed methods on Franke’s six test functions [34] on the unit
square [0, 1] × [0, 1]. For simplicity, we mainly show details on the test
function 𝐹1, the algorithms behave in a similar way on all other five
test functions. The test function 𝐹1 is provided as follows.

𝐹 (𝑥, 𝑦) = 3 exp
(

−1 (

(9𝑥 − 2)2 + (9𝑦 − 2)2
)

)
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1 4 4
+ 3
4
exp

(

− 1
49

(9𝑥 + 1)2 − 1
10

(9𝑦 + 1)2
)

+ 1
2
exp

(

−1
4
(

(9𝑥 − 7)2 + (9𝑦 − 3)2
)

)

− 1
5
exp

(

−(9𝑥 − 4)2 − (9𝑦 − 7)2
)

.

The left of Fig. 4 shows the profile of test function 𝐹1. On the right
of Fig. 4, the rate of convergence is displayed for the two proposed
algorithms and the reference implicit method, with respect to spatial
discretization. From the figure, it can be seen that Algorithm 2 has the
highest convergence rate with the highest accuracy.

One of the main advantage of PS is that it does not have a shape
parameter that needs to be determined during the interpolation process.
However, we still need to select other parameters such as the order of
the PS RBF (𝑘), the order of the polynomial basis (𝑚), and the number of
local points (𝑛). Since both algorithms behave similar and Algorithm 2
performs better in terms of accuracy without loss of computational
efficiency, we examine the performance of Algorithm 1 (the worse case
scenario) as we vary 𝑘, 𝑚, and 𝑛. Note that the findings presented here
are comparable to those of Algorithm 2.

From the left of Fig. 5, we can see that interpolation error decreases
as the number of interpolation points increases, and three separate lines
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Fig. 5. RMS errors versus 𝑁 (left) and maximum condition number of local interpolation matrices versus 𝑁 (right) for various 𝑛 on 𝐹1 with 𝑘 = 4, 𝑚 = 3 in Example 4.1 using
lgorithm 1.
Fig. 6. Left: maximum errors versus the order of PS 𝑘 for 𝑁 = 1002, 𝑁𝑡 = 9000, 𝑛 = 30 and 𝑚 = 6 using different test functions and Algorithm 1. Middle: maximum errors versus
the polynomial order 𝑚 for 𝑁 = 1002, 𝑁𝑡 = 9000, 𝑛 = 30 and 𝑘 = 4 using different test functions. Right: CPU time (in seconds) versus 𝑚 for test function 𝐹1 using Algorithm 1 in
Example 4.1.
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indicate that one may obtain even more accurate results by increasing
the number of points in the local domains. From the right of Fig. 5, we
observe that the ill-conditioning grows as the number of interpolation
points increases, although the error decreases with increasing 𝑁 as
shown in the left of Fig. 5.

The left of Fig. 6 indicates that the accuracy does not change
significantly when the order of PS changes (about one order of mag-
nitude differences). In the middle of Fig. 6, it indicates that when the
order of the polynomial basis 𝑚 increases, the accuracy improves. Yet,
one would not need to increase the order of the basis too much as
it will lead to a high computational cost as evident from the right
of Fig. 6. However, we can reduce the simulation time significantly
by using parallel computing while calculating the weights associated
with each node in the global sparse system. For instance, when using
𝑘 = 4, 𝑚 = 6, 𝑁 = 40,000 for 𝐹1, the CPU time is reduced from
1050 s to 250 s. Note that the results from Franke’s test functions
𝐹4 and 𝐹5 [34] are also included, and the test functions are presented
below for reference: 𝐹4(𝑥, 𝑦) = 1

3 exp
[

− 81
16

(

(

𝑥 − 1
2

)2
+
(

𝑦 − 1
2

)2
)]

nd 𝐹5(𝑥, 𝑦) =
1
3 exp

[

− 81
4

(

(

𝑥 − 1
2

)2
+
(

𝑦 − 1
2

)2
)]

. Due to the relative
smoothness of those two functions in comparison with 𝐹1, the accuracy
f interpolation results from those two functions is much better than
hose from 𝐹1.

To validate the stability of the methods, we examine the sensitivity
f the algorithms with respect to the locations of the points. Here we
onsider the perturbed grid points provided by

𝑖̃ = 𝑥𝑖 + 𝜌𝑥𝑟𝑎𝑛𝑑𝑖 𝛿𝑥

𝑦𝑖 = 𝑦𝑖 + 𝜌𝑦𝑟𝑎𝑛𝑑𝑖 𝛿𝑦

here (𝑥𝑖, 𝑦𝑖) ∈ (0, 1)2 are uniformly distributed grid points. Let 𝜌
enote the degree of randomness and 𝛿𝑥, 𝛿𝑦 are the shortest distance
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between two points in 𝑥 and 𝑦 directions. Lastly, 𝑥𝑟𝑎𝑛𝑑𝑖 , 𝑦𝑟𝑎𝑛𝑑𝑖 are uni-
ormly distributed random numbers in (0, 1). Fig. 7 shows the RMS error

obtained using Algorithm 1 and Algorithm 2 on the left and on the right,
respectively, for various degrees of randomness. When 𝜌 is zero, the
oints are evenly distributed and as 𝜌 increases, the interpolation points
ecome more distorted. However, the error does not change much for
ll three test functions. Hence, the stability with regard to the point
istribution is validated.

Table 2 shows the condition number of the global sparse matrix,
nd the maximum condition number of all local collocation matrices
hen using PS of order 𝑘 = 4 and 𝑚 = 6, 𝑛 = 30 on 𝐹1 for two
lgorithms. This case was chosen mainly because this is a general
ase when reasonable accuracy and efficiency are achieved. Clearly,
he small collocation matrices have higher condition numbers when
he number of interpolation points and evaluation points increases,
ven becoming ill-conditioned in many cases. However, the global
parse matrices always have excellent condition numbers regardless of
hich algorithm and what parameters are used. When dealing with ill-

onditioned small local systems, we would recommend a singular value
ecomposition, TSVD, or pre-conditioning techniques [20].

Furthermore, when comparing the CPU time, Algorithm 1 demon-
trates greater efficiency compared to Algorithm 2. By examining the
PU time of the proposed methods, the most time-consuming part of
he algorithms is identified as the construction of the local matrices
hile the final sparse system solving time is negligible. The algorithm
nnsearch in MATLAB for nearest-neighbor classification is not the most
fficient such algorithm. The highly efficient kd-tree algorithm [35] can
e used if desired computational efficiency is needed.

The algorithms introduced in this paper are very much similar to
he global RBF interpolation methods using CS-RBF. The Wendland’s
S-RBFs were first introduced in [36], which is piecewise polynomial



Engineering Analysis with Boundary Elements 156 (2023) 240–250K. Rubasinghe et al.

a

Fig. 7. Sensitivity respect to points distribution: RMS errors versus 𝜌 with 𝑁 = 1002 , 𝑁𝑡 = 902, and 𝑛 = 30 using PS of order 𝑘 = 4 and polynomial basis of order 𝑚 = 6 in
Example 4.1.
Table 2
Condition numbers and CPU time for Algorithm 1 and Algorithm 2 using PS of order 𝑘 = 4 and 𝑚 = 6, 𝑛 = 30 on 𝐹1 in
Example 4.1.

Algorithm 1 Algorithm 2

(𝑁,𝑁𝑡) (502 , 2000) (1502 , 20000) (502 , 2000) (1502 , 20000)
Condition No. of sparse matrix 2.89E+03 4.81E+04 3.78E+03 8.13E+06
Maximum condition No. of local matrices 1.89E+14 2.8405E+20 3.96E+18 1.04E+22
CPU time (s) 1.71 75.60 3.09 166.37
w

Table 3
Comparison of CS-RBF method and the proposed methods with 𝑘 = 4, 𝑚 = 3, 𝑛 = 30 for
function 𝐹1 in Example 4.1.
𝑁 𝑁𝑡 CS-RBF Proposed Algorithm1 Proposed Algorithm2

𝜖𝑟𝑚𝑠 CPU time 𝜖𝑟𝑚𝑠 CPU time 𝜖𝑟𝑚𝑠 CPU time

1002 9000 7.66E−07 186.0 6.00E−08 15.10 4.02E−08 30.27
1502 20000 2.01E−07 1454.8 8.34E−09 71.2 5.26E−09 136.57

basis such as 𝜙(𝑟) = (1− 𝑟)4+(4𝑟+1). Interpolation with CS-RBFs globally
also resulted in a global sparse system [37]. Thus, we examine our
algorithms against CS-RBFs interpolation. It is worth mentioning that
the CS-RBF interpolation is still a global method since the interpolation
matrix is created using CS-RBFs with all interpolation points as the
centers. Table 3 shows performance in terms of accuracy and efficiency.
In this example, PS of order 4 is used with a polynomial basis of order
3. From previous analysis, we know that we can improve the accuracy
using a higher-order of polynomial basis or more neighboring points.
With slightly higher accuracy, we still able to be much more efficient
in terms of computational time.

Table 4 shows that the interpolations achieved with PS RBF have
better accuracy than the other RBFs, Algorithm 1 is utilized to interpo-
late the test function 𝐹6 =

1
9

[

64 − 81
(

(

𝑥 − 1
2

)2
+
(

𝑦 − 1
2

)2
)]

− 1
2 . The

Leave-One-Out-Cross-Validation method (LOOCV) [25] is employed to
determine the best shape parameter associated with RBFs with shape
parameters to ensure that we choose the ‘‘optimal’’ value to the best of
our ability. In LOOCV, we aim to fit data several times using a different
training set (all but one data point) and testing set (one of the data
points) each time, then calculating the test root mean squared error to
be the average of all of the test.

Example 4.2. In this example, we further investigate the performance
of the proposed Algorithm 1 using the function:

𝐹7(𝑥, 𝑦) =
√

𝑥2 + 𝑦2 + 0.2, (20)

which has a singularity and is more challenging to interpolate.

Fig. 8 shows the profile of 𝐹7 in [−1, 1] × [−1, 1] on the left, and
profile of absolute error for test function 𝐹 on the right, where
246

7

Table 4
Comparison of 𝜖𝑟𝑚𝑠 and 𝜖𝑚𝑎𝑥 using various RBF with 𝑁 = 1002, 𝑁𝑡 = 9000 and 𝑛 = 30
for 𝐹6 Example 4.1.

RBF 𝜖𝑟𝑚𝑠 𝜖𝑚𝑎𝑥 𝑐

Gaussian 2.15E−13 4.06E−12 4.994
MQ 1.17E−12 2.97E−11 3.208
IMQ 3.29E−13 9.93E−12 2.629
Matern (order 2) 1.71E−12 3.43E−11 1.909
PS4 3.22E−14 6.26E−13 –

Table 5
RMS errors and CPU time of 𝐹7 interpolated with 𝑁 = 22, 500, 𝑛 = 30 and various
𝑁𝑡 (𝑁 < 𝑁𝑡) in Example 4.2.
𝑁𝑡 No. of subsets 𝜖𝑟𝑚𝑠 CPU time

30,000 2 2.70E−05 126.32
40,000 2 2.19E−05 151.40
50,000 3 2.14E−05 196.44
60,000 3 2.06E−05 220.11

𝑘 = 4, 𝑚 = 6, 𝑁 = 1502, 𝑁𝑡 = 20,000 and 𝑛 = 30. The absolute
error is reasonably accurate, and it can be improved by employing more
points in the local domains. The proposed method can certainly be
successfully used for the interpolation of challenging functions without
implementing any special treatments such as grid refinements.

We noticed that the higher the number of evaluation points, 𝑁𝑡,
the greater the accuracy of the algorithms, but 𝑁𝑡 ≤ 𝑁 . However,

hen there 𝑁𝑡 > 𝑁 , we can extract sub-samples of dimension 𝑁̄𝑡 ≪ 𝑁
which can be interpolated group by group using the proposed method.
These subsets need to be extracted as uniformly as possible from the
domain to avoid any discontinuity between interpolated values (see
Fig. 9). We implement this for the function 𝐹7 with 𝑁 = 22,500, and
various 𝑁𝑡 that are higher than the given 𝑁 . As shown in Table 5, the
proposed method can maintain a similar level of accuracy for all the
cases despite the number of evaluation points. An increase in the CPU
time is expected as the number of sub-samples gets higher. However,
this algorithm is suitable for parallel implementation as these groups
are chosen independently, thus computer running time can be reduced
significantly.
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Fig. 8. Profile of test function 𝐹7 on the left and absolute errors of interpolation with 𝑁 = 1502 , 𝑁𝑡 = 20, 000, 𝑛 = 30, 𝑘 = 4, 𝑚 = 6 on the right in Example 4.2.
Fig. 9. Set of evaluation points and consistently distributed two sets of interpolation
points.

Example 4.3. Interpolation is one of the common methods used to
enhance image quality. In this example, 256 × 256 pixels 2D gray-scale
Lena image shown on the left of Fig. 10 is enhanced. The enhanced
512 × 512 pixels image is shown on the right. Note that the enhanced
image is obtained by using Algorithm 1 with PS of order 𝑘 = 1, a
polynomial of order 𝑚 = 0, and 𝑛 = 3. As the set of evaluation points
is higher than the interpolation points in this problem, interpolation
is performed group-wise. By maintaining a low order of polynomial
basis and restricting the size of the local domains, we achieved visible
improvements to the image while keeping the computational time low.

Example 4.4. The purpose of this example is to test Algorithm 1
on three-dimensional space. We use a computational domain of the
Stanford Bunny, which is more challenging and irregular. The boundary
data points for this domain are available at the website of the Stanford
Computer Graphics Laboratory [38]. Algorithm 1 was tested on func-
tion 𝐻 in (21), which is a trivariate test function used in [13]. The
function plotted on the bunny surface can be found in Fig. 11 (right):

𝐻(𝑥, 𝑦, 𝑧) = 1
3
exp

[

−81
16

(

(𝑥 − 0.5)2 + (𝑦 − 0.5)2 + (𝑧 − 0.5)2
)

]

. (21)

In our numerical simulations, 𝑁 = 4234 of interpolation points
which consist of 2345 interior points and 1889 boundary points are
used to interpolate 𝑁𝑡 = 1143 of test points. The computational domain
with interpolation points lying on the boundary surface is shown in
Fig. 11 (left). Since the original bunny data scale is too small for
this application, the coordinates of bunny points are multiplied by 10.
Algorithm 1 is employed with PS of order 𝑘 = 4, the polynomial basis of
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order 𝑚 = 3, and 𝑛 = 55. Fig. 12 (left) shows the profile of the absolute
errors on the surface of the Bunny and Fig. 12 (right) further confirms
that the absolute errors in the interior of the bunny remain as low as
the order of 5. The largest absolute error in all evaluation points is
within an order of 10−5, with the majority of evaluation points having
absolute errors less than 10−6 (which can be found in the tallest bar
in the histogram). It verifies the method’s high accuracy despite the
complexity of the domain.

On the left of Fig. 13, it shows the maximum absolute errors, 𝜖𝑚𝑎𝑥,
versus the number of points in local domains, 𝑛. Note that the range
of the number of points in local domains is large, spanning from 25 to
1000. Regardless of the size of 𝑛, the algorithm consistently improves
in accuracy. Thus, the greater the number of points in local domains,
the higher the accuracy of the algorithm. However, we recommend
choosing 𝑛 to be less than 200, as larger values result in increased
computational time (as shown on the right of Fig. 13).

Fig. 14 shows the maximum absolute errors using Algorithm 1
when 4234 interpolation points and 1143 evaluation points are used in
Example 4.4. The left of Fig. 14 plots 𝜖𝑚𝑎𝑥 versus the polynomial order
𝑚 when the number of points in local domains is chosen as 𝑛 = 85 and
𝑛 = 120. It can be seen from the figure that the order of the polynomials
basis, 𝑚 should not be too large. The algorithm easily achieves an
accuracy of order 5 when 𝑚 is as small as 2.

On the right of Fig. 14, the plot displays 𝜖𝑚𝑎𝑥 versus the order of PS,
𝑘 when the number of points in local domains is chosen as 𝑛 = 25, 45,
and 𝑛 = 85. Please note the following: (1) as we discussed before,
increasing the number of local points improves the accuracy, hence we
did not present results for 𝑛 = 120; (2) 𝑚 = 3, 𝑛 = 45 is sufficient
to achieve reasonable accuracy, so the effect of the order of PS is not
evident; (3) when 𝑛 = 25, 𝑘 has to be small. In this case, the best
accuracy is obtained only when 𝑘 = 1.

Thus, we recommend using enough number of points in local do-
mains to achieve high accuracy while keeping the order of polynomial
basis small. In addition, the order of PS does not need to be high as it
does not significantly affect the accuracy when a sufficient number of
local points is used.

MATLAB code for this example is shared on MATLAB Central File
Exchange [39].

5. Conclusion

In this paper, we improved two implicit localized RBF interpola-
tion methods using polyharmonic splines and a polynomial basis for
scattered data interpolation that was proposed in [21]. The method
uses evaluation points or a combination of evaluation and interpolation
points as the search domain to create local domains of influences
for each interpolation point. The resulting linear system is a sparse
system with the evaluation points’ function values as the unknowns.
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Fig. 10. Profile of the original Lena image on the left and the enhanced Lena image on the right inExample 4.3.

Fig. 11. Profile of the computational domain (Stanford Bunny) with the set of interpolation points on the boundary (left) and the profile of 𝐻 function on the surface of the
bunny (right) in Example 4.4.

Fig. 12. The profile of the absolute errors on the surface of the bunny (left) and frequency or count of data points in the interior of the bunny whose absolute error are within
each range (right) in Example 4.4.
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Fig. 13. The maximum absolute error, 𝜖𝑚𝑎𝑥 versus parameter 𝑛 on the left, and corresponding CPU time on the right in Example 4.4, where 𝑁 = 4234, 𝑁𝑡 = 1143.
Fig. 14. The maximum absolute error, 𝜖𝑚𝑎𝑥 versus parameter 𝑚 on the left, parameter 𝑘 on the right in Example 4.4, where 𝑁 = 4234, 𝑁𝑡 = 1143.
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he original paper claims the method ‘‘does not produce reasonable
esults when using the polyharmonic splines’’. However, we discovered
n this paper, the claims are not true.

The interpolation with polyharmonic splines and low order poly-
omials can be solved with great accuracy and efficiency. The higher
he order of polyharmonic splines or the number of points in local
omains, the better the accuracy becomes, under the assumption that
he points in local domains are sufficient. Detailed conclusions are
rawn below: (1) RBFs such as polyharmonic splines and polynomials
ontain no shape parameter and produce higher accuracy compared
o other RBFs; (2) Algorithm 1 is based on the construction of local
nfluence domains entirely from the evaluation points and Algorithm 2
akes both interpolation and evaluation points into consideration. Both
lgorithms were found to be very attractive, easy to use in 2D and 3D
roblems, and mostly able to overcome the downsides of global RBF
nterpolation using polyharmonic splines and polynomial basis; (3) The
omputational complexities of Algorithm 1 and Algorithm 2 are very
lose. Additionally, Algorithm 2 is more accurate than Algorithm 1 but
e mainly focused on Algorithm 1 due to its minor improvement of
fficiency.

In summary, our proposed interpolation algorithms can deal with
igh-dimensional data interpolation on complicated domains, without
he hassle of searching for shape parameters and without loss of accu-
acy and can be parallelized easily. This is a great improvement in terms
f computational efficiency. Future work concerns deeper theoretical
nalysis of the convergence analysis and error estimates. In addition,
e aim to further reduce the computational complexity of Algorithm 2
nd apply it to classification problems.
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