

A Reproducing Kernel Method for Solving Singularly Perturbed Delay Parabolic Partial Differential Equations

 $_3$ Ruifeng Xie a , Jian Zhang a , Jing Niu a , Wen Li b and

 $_4$ Guangming Yao^c

 $\overline{2}$

^aHarbin Normal University 150025 Harbin, China

 b Department of Mathematics, Fordham University 10458 Bronx NY, USA

 c Department of Mathematics, Clarkson University 13699-5815 Potsdam NY, USA

5 E-mail(*corresp.*): njirwin@163.com;gyao@clarkson.edu

6 Received April 20, 2022; revised April 13, 2023; accepted 2023

 Abstract. In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular pertur-¹⁰ bation. The approximated solution $\tilde{g}_n(s, t)$ to the equations is formulated and proved
¹¹ the exact solution is uniformly convergent by the solution. Furthermore, the partial the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that ¹⁴ the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented ¹⁷ scheme.

- Keywords: delay parabolic equation, reproducing kernel method, collocation method, numerical solution. 18
- ¹⁹ AMS Subject Classification: 35K20; 46E23; 65L60.

²⁰ 1 Introduction

²¹ The solutions of delay parabolic PDEs with singular perturbation at a limiting ²² value of the singular parameter are different in character from the solutions of

Copyright (C) 2023 The Author(s). Published by Vilnius Gediminas Technical University
This is an Open Access article distributed under the terms of the Creative Commons Attribution Copyright \odot 2023 The Author(s). Published by Vilnius Gediminas Technical University License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 the general problem. This kind of PDEs are frequently used in varied forms of real-world applications, such as in the modeling of the human pupil-light reflex [\[22\]](#page-16-0), population dynamics in mathematical biology, medicine and oth-ers [\[1,](#page-14-0) [29,](#page-16-1) [32,](#page-17-0) [40\]](#page-17-1).

 The PDEs with singular perturbation have been broadly studied by many 28 scholars, including least squares method in $[2]$, finite difference scheme in $[4,26]$ $[4,26]$, Galerkin finite element method in [\[19\]](#page-16-3), domain decomposition scheme in [\[20\]](#page-16-4), 30 reproducing kernel method(RKM) in [\[12\]](#page-15-1) and others [\[6,](#page-15-2)[27,](#page-16-5)[30\]](#page-16-6). There are many references on numerical methods and numerical stability for delay differential α equations, such as [\[5,](#page-15-3) [15,](#page-15-4) [17\]](#page-16-7) to just list a few. Furthermore, finite difference schemes for PDEs with a time delay effect and a singular parameter are studied in 1D [\[3,](#page-15-5) [7,](#page-15-6) [14,](#page-15-7) [18\]](#page-16-8) and in 2D [\[9\]](#page-15-8) recently.

In this article, the following type of the singularly perturbed delay parabolic PDEs are considered by us

$$
\frac{\partial f(s,t)}{\partial t} - \varepsilon \frac{\partial^2 f(s,t)}{\partial s^2} + a(s,t)f(s,t) = F(s,t) - b(s,t)f(s,t-\tau), \quad (s,t) \in \Omega,
$$

\n
$$
f(0,t) = 0, \quad f(1,t) = 0, \quad t \in A_1,
$$

\n
$$
f(s,t) = \Psi(s,t), \quad (s,t) \in A_2,
$$
\n(1.1)

35 where $a(s,t) \geq 0$, $b(s,t) \geq \beta \geq 0$, $0 < \varepsilon \leq 1$, $\tau > 0$ and Ω , A_1 , A_2 are $\mathbf{1}_{36}$ [0, 1] \times [0, T], [0, T], [- τ , 0] \times [0, 1], respectively. The forcing terms, $F(s,t)$ and $\mathcal{F}(\mathcal{S},t)$ are sufficiently smooth bounded functions, such that Equation [\(1.1\)](#page-1-0) has a unique solution.

³⁹ A robust finite difference method for the singularly perturbed delay para- bolic PDEs are investigated by the authors in [\[3\]](#page-15-5). The focus of our paper, Equation [\(1.1\)](#page-1-0) is a special case of model introduced in [\[3\]](#page-15-5). Thus, the theorems $\frac{42}{42}$ of uniqueness of the solutions to Equation [\(1.1\)](#page-1-0) can be found in [\[3\]](#page-15-5). Addition- ally, we propose a RKM and collocation method to approximate the solutions to Equation [\(1.1\)](#page-1-0) that does not require a separate time discretization scheme. Thus, it is more robust in terms of the discretization of temporal space. The RKM has attracted the interest of many authors. Xu and Lin [\[38\]](#page-17-2) applied the RKM for solving the delay fractional differential equations. The RKM pro- posed by Geng and Cui [\[11\]](#page-15-9) can be used to solve presented the RKM to solve the nonlocal fractional boundary value problems, in addition to the partial integro-differential equation, multi-point boundary value problems and so on, see [\[8,](#page-15-10)[10,](#page-15-11)[13,](#page-15-12)[16,](#page-15-13)[21,](#page-16-9)[23,](#page-16-10)[24,](#page-16-11)[25,](#page-16-12)[28,](#page-16-13)[31,](#page-17-3)[33,](#page-17-4)[34,](#page-17-5)[35,](#page-17-6)[36,](#page-17-7)[37,](#page-17-8)[39,](#page-17-9)[41\]](#page-17-10) for more details. The $\frac{52}{2}$ aim of this article is to seek the approximate solutions of Equation [\(1.1\)](#page-1-0) by the RKM and collocation method. Significantly, the Smith orthogonal process is averted and the computational time is saved by this method. Furthermore, the trouble cased by the delay term is dealt with in the established RK-space. Thus, it does not cost any computational expenses. Moreover, we can see that problem (1.1) has boundary layer behavior, it is important to obtain a proper approximation of the solutions for values where the boundary layer behavior is very severe. Therefore, we apply adaptive RKM to overcome this problem. Structure of this thesis: a brief introduction is made with several applica-

 ble RK-spaces by us and its corresponding reproducing kernel function (RK-function) in Section 2. Section 3 presents a specific RKM and gives the approxi ϵ_{63} mated solution to Equation [\(1.1\)](#page-1-0). Furthermore, astringency and error estimate ⁶⁴ of the numerical scheme are presented in Section 4. In Section 5, numerical ⁶⁵ examples are discussed to verify the effectiveness of the proposed method.

⁶⁶ 2 Preliminaries

 σ In order to analyze the solution of Equation [\(1.1\)](#page-1-0), we will present several RK-⁶⁸ spaces in this section.

DEFINITION 1. Let $\mathbb{W}_1[0,1] = \{f(x) \mid f(x) \text{ be an absolutely continuous real-} \}$ valued function in [0,1], $f'(x) \in \mathbb{L}^2[0,1]$. In $\mathbb{W}_1[0,1]$, the $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ are characterized by

$$
\langle f, g \rangle_{\mathbb{W}_1} = f(0)g(0) + \int_0^1 f'(x)g'(x)dx, \ \forall \ f, \ g \in \mathbb{W}_1[0,1],
$$

$$
||f||_{\mathbb{W}_1} = \sqrt{\langle f, f \rangle_{\mathbb{W}_1}}, \ \forall \ f \in \mathbb{W}_1[0,1],
$$

⁶⁹ respectively.

 τ_0 Lemma 1. The functional space $\mathbb{W}_1[0,1]$ is a RK-space and its RK-function $K_1(x, y)$ has the following form

$$
K_1(x, y) = \begin{cases} x + 1, & x \le y, \\ y + 1, & x > y. \end{cases}
$$

72

77

73 *Proof.* Similar to [\[8\]](#page-15-10). \Box

DEFINITION 2. Let $\mathbb{W}_2[0,T] = \{f(x) \mid f'(x) \text{ be an absolutely continuous real-} \}$ valued function in [0, T], $f''(x) \in \mathbb{L}^2[0,T]$, $f(0) = 0$. The $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ are characterized by

$$
\langle f, g \rangle_{\mathbb{W}_2} = f'(0)g'(0) + \int_0^T f''(x)g''(x)dx, \ \forall \ f, \ g \in \mathbb{W}_2[0, T],
$$

$$
||f||_{\mathbb{W}_2} = \sqrt{\langle f, f \rangle_{\mathbb{W}_2}}, \ \forall \ f \in \mathbb{W}_2[0, T],
$$

⁷⁴ respectively.

⁷⁵ Lemma 2. The functional space $\mathbb{W}_2[0,T]$ is a RK-space and its RK-function $K_2(x, y)$ has the following form

$$
K_2(x,y) = \begin{cases} -\frac{1}{6}x^3 + \frac{1}{2}x^2y + xy, & x \le y, \\ -\frac{1}{6}y^3 + \frac{1}{2}y^2x + xy, & x > y. \end{cases}
$$

 P_{root} . Similar to [\[8\]](#page-15-10). \Box

Math. Model. Anal., 28(1):1–18, 2023.

DEFINITION 3. Let

$$
\mathbb{W}'_2[-\tau, T] = \{ f(x) \mid -\tau \le t \le 0, u(0) = 0, 0 \le t \le T, f(x) \in \mathbb{W}_2[0, T] \}.
$$

The $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ are characterized by

$$
\langle f, g \rangle_{\mathbb{W}'_2} = f'_+(0)g'_+(0) + \int_0^T f''(x)g''(x)dx, \ \forall \ f, \ g \in \mathbb{W}'_2[-\tau, T],
$$

$$
||f||_{\mathbb{W}'_2} = \sqrt{\langle f, f \rangle_{\mathbb{W}'_2}}, \ \forall \ f \in \mathbb{W}'_2[-\tau, T],
$$

⁷⁹ respectively.

82

Example 3. The space $\mathbb{W}'_2[-\tau, T]$ is a RK-space and its RK-function $K'_2(x, y)$ ⁸¹ has the following form

$$
K_2(x, y) = \begin{cases} K_2(x, y), & 0 \le x, y \le T, \\ 0, & others. \end{cases}
$$

83 *Proof.* Similar to [\[8\]](#page-15-10). \Box

DEFINITION 4. Let $\mathbb{W}_3[0,1] = \{f(x) \mid f''(x) \text{ be an absolutely continuous real} \}$ value function in [0, 1], $f'''(x) \in \mathbb{L}^2[0,1]$, $f(0) = f(1) = 0$. The $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ are characterized by

$$
\langle f, g \rangle_{\mathbb{W}_3} = \sum_{i=1}^2 f^i(0) v^i(0) + \int_0^1 f'''(x) g'''(x) dx, \ \forall \ f, \ g \in \mathbb{W}_3[0, 1],
$$

$$
||f||_{\mathbb{W}_3} = \sqrt{\langle f, f \rangle_{\mathbb{W}_3}}, \ \forall \ f \in \mathbb{W}_3[0, 1],
$$

⁸⁴ respectively.

Lemma 4. The functional space $\mathbb{W}_3[0,1]$ is a RK-space and its RK-function $K_3(x, y)$ has the following form

$$
K_{3}(x,y) = \begin{cases} \n-\frac{1}{18720}(x-1)y(156y^{4}+6x^{2}(y^{4}-5y^{3}+10y^{2}+30y+120) \\
-4x^{3}(y^{4}-5y^{3}+10y^{2}+30y+120)+x^{4}(y^{4}-5y^{3}+10y^{2}+30y+120) \\
+12x(3y^{4}-15y^{3}-100y^{2}-300y+360)), & x \leq y, \\
-\frac{1}{18720}(y-1)x(30xy(y^{3}-4y^{2}+6y-120)+10x^{2}y(y^{3}-4y^{2}) \\
+6y-120)+120y(y^{3}-4y^{2}+6y+36)-5x^{3}y(y^{3}-4y^{2} \\
+6y+36)+x^{4}(y^{4}-4y^{3}+6y^{2}+36y+156)), & x > y.\n\end{cases}
$$

EXECUTE BEFINITION 5. Assume $\Omega = [0, 1] \times [-\tau, T]$. Let $\mathbb{W}_{(3,2)}(\Omega) = \{f(s, t) \mid f_{sst}''' \text{ be }$ ⁸⁶ an absolutely continuous real-valued function in Ω , $f_{ssst}^{(5)} \in \mathbb{L}^2(\Omega)$, $f(s,0)$ s_7 $f(0, t) = f(1, t) = 0$. The $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ are characterized by

$$
\begin{split} \text{ss} \quad &\langle f, g \rangle_{\mathbb{W}_{(3,2)}} = \sum_{i=1}^{2} \int_{0}^{T} \frac{\partial^{2}}{\partial t^{2}} \frac{\partial^{i}}{\partial s^{i}} f(0, t) \frac{\partial^{2}}{\partial t^{2}} \frac{\partial^{i}}{\partial s^{i}} g(0, t) dt + \langle \frac{\partial}{\partial t} f(s, 0), \frac{\partial}{\partial t} g(s, 0) \rangle_{\mathbb{W}_{3}} \\ &+ \int_{0}^{T} \int_{\Omega} \frac{\partial^{3}}{\partial s^{3}} \frac{\partial^{2}}{\partial t^{2}} f(s, t) \frac{\partial^{3}}{\partial s^{3}} \frac{\partial^{2}}{\partial t^{2}} g(s, t) ds dt, \ \forall \ f, \ g \in \mathbb{W}_{3}[0, 1] \end{split}
$$

and

$$
||f||_{\mathbb{W}_3} = \sqrt{\langle f, f \rangle_{\mathbb{W}_3}}, \ \forall \ f \in \mathbb{W}_3[0,1],
$$

⁹⁰ respectively.

91 **Lemma 5.** The functional space $\mathbb{W}_{(3,2)}(\Omega)$ is a RK-space. Moreover,

 $\mathbb{W}_{(3,2)}(\varOmega)=\mathbb{W}_3[0,1]\otimes \mathbb{W}_2'[-\tau,T]$ and its RK-function $K_{(3,2)}(\bar{s},\bar{t},s,t)$ has the ⁹³ following form

$$
93 \quad Jottouity\, JOTm
$$

$$
K_{(3,2)}(\bar{s}, \bar{t}, s, t) = K_3(\bar{s}, s) K_2'(\bar{t}, t), \quad \forall (\bar{s}, s), (\bar{t}, t) \in \Omega.
$$

95 DEFINITION 6. Let $\Omega_1 = [0,1] \times [0,T]$. Let $\mathbb{W}_{(1,1)}(\Omega_1) = \{f(s,t) \mid f(s,t) \text{ be }$ ⁹⁶ an absolutely continuous real-valued function in $\Omega_1, f_{xt} \in L^2[\Omega_1]$. Then, ⁹⁷ W_(1,1)(Ω_1) is a RK-space and its RK-function $K_{(1,1)}(\bar{s},\bar{t},s,t)$ has the following ⁹⁸ form

$$
K_{(1,1)}(\bar{s},\bar{t},s,t) = K_1(\bar{s},s)K_1(\bar{t},t), \quad \forall (\bar{s},s), (\bar{t},t) \in \Omega.
$$

100 3 The RKM and collocation method for Equation (1.1)

The initial conditions of Equation [\(1.1\)](#page-1-0) are brought into the RK-spaces, we must homogenize Equation [\(1.1\)](#page-1-0). Let $g(s,t) = f(s,t) - \omega(s,t)$, where

$$
\omega(s,t) = \begin{cases} \Phi(s,t), & -\tau \le t \le 0, \\ \Phi(s,0), & 0 \le t \le T. \end{cases}
$$

¹⁰¹ Then, we can acquire a homogeneous system from Equation [\(1.1\)](#page-1-0) as follows 102

$$
{}_{103} \qquad \begin{cases} g(s,t) = 0, & \tau \le t \le 0, \\ \frac{\partial g}{\partial t} - \varepsilon \frac{\partial^2 g}{\partial s^2} + ag + bg(s, t-\tau) = F_1(s,t), & 0 \le x \le 1, \ 0 \le t \le T, \\ g(0,t) = 0, & g(1,t) = 0, \ 0 \le t \le T, \end{cases} \tag{3.1}
$$

where

$$
F_1(s,t) = \begin{cases} \varepsilon \frac{\partial^2}{\partial s^2} \Phi(s,0) - a(s,t) \Phi(s,0) - b(s,t) \Phi(s,t-\tau) + F(s,t), & 0 \le t \le \tau, \\ \varepsilon \frac{\partial^2}{\partial s^2} \Phi(s,0) - a(s,t) \Phi(s,0) - b(s,t) \Phi(s,0) + F(s,t), & t > \tau. \end{cases}
$$

104 Let $\mathcal{B}: \mathbb{W}_{(3,2)}(\Omega) \to \mathbb{W}_{(1,1)}(\Omega_1)$ be a differential operator such that

$$
\mathfrak{B}g = \frac{\partial g}{\partial t} - \varepsilon \frac{\partial^2 g}{\partial s^2} + ag + bg(s, t - \tau), \quad \text{ for } g(s, t) \in \mathbb{W}_{(3,2)}(\Omega).
$$

¹⁰⁶ Then, Equation [\(3.1\)](#page-4-0) can be converted into the following form

$$
\begin{cases}\ng(s,t) = 0, & -\tau \le t \le 0, \\
\mathcal{B}g(s,t) = F_1(s,t), & 0 \le x \le 1, \ 0 \le t \le T, \\
g(0,t) = g(1,t) = 0, & 0 \le t \le T.\n\end{cases}
$$
\n(3.2)

Math. Model. Anal., 28(1):1–18, 2023.

¹⁰⁸ The operator B will be proved which is linear differential operator with ¹⁰⁹ boundedness in the remainder of this section. Then we will form a basis for 110 the RK-space $\mathbb{W}_{(3,2)}(\Omega)$ fabricated in the previous section. Therefore, we will 111 approximate the solution of Equation [\(3.2\)](#page-4-1) by a function sequence in $\mathbb{W}_{(3,2)}(\Omega)$.

112 **Lemma 6.** $\mathcal{B}: \mathbb{W}_{(3,2)}(\Omega) \to \mathbb{W}_{(1,1)}(\Omega_1)$ is a bounded linear operator.

Proof. It is obvious that B is a linear operator. We can obtain the boundedness if the following relation holds that

$$
\|\mathcal{B}g(s,t)\|_{\mathbb{W}_{(1,1)}}^2 \le M \|g\|_{\mathbb{W}(3,2)}^2, \quad M > 0.
$$

Utilization of the reproducing property of RK-function $K_{(3,2)}(\bar{s},\bar{t},s,t)$, we can get

$$
g(s,t) = \langle g(\cdot,\cdot), K_{(3,2)}(s,t,\cdot,\cdot) \rangle_{(3,2)},
$$

\n
$$
\partial_{s}^{i} \partial_{t}^{j} \mathcal{B}g(s,t) = \langle g(\cdot,\cdot), \partial_{s}^{i} \partial_{t}^{j} \mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) \rangle_{(3,2)}, i, j = 0, 1.
$$

Hence, we utilize $\partial_{s^i}^i \partial_t^j$ $t_i^j \mathcal{B}g(s,t)$ and the continuity of $K_{(3,2)}(s,t,\cdot,\cdot)$ as well as the Schwarz inequality, one can be written

$$
\partial_{s^i}^i \partial_{t^j}^j \mathcal{B}g(s,t) \mid = \langle g(\cdot, \cdot), \partial_{s^i}^i \partial_{t^j}^j \mathcal{B}K_{(3,2)}(s,t, \cdot, \cdot) \rangle_{\mathbb{W}_{(3,2)}} \mid
$$

\n
$$
\leq \|g\|_{\mathbb{W}_{(3,2)}} \|\partial_{s^i}^i \partial_{t^j}^j \mathcal{B}K_{(3,2)}(s,t, \cdot, \cdot) \|_{\mathbb{W}_{(3,2)}} \leq M_{i,j} \|g\|_{\mathbb{W}_{(3,2)}}.
$$

Make use of the inner product and the norm of $\mathbb{W}_{(3,2)}(\Omega)$, we can get that

$$
\begin{split} &\|\mathcal{B}g(s,t)\|_{\mathbb{W}_{(1,1)}}^2=\langle\mathcal{B}g(s,t),\mathcal{B}g(s,t)\rangle_{\mathbb{W}_{(1,1)}}=\int_0^T\left(\frac{\partial}{\partial t}\mathcal{B}g(0,t)\right)^2dt\\ &+\langle\mathcal{B}g(s,0),\mathcal{B}g(0,t)\rangle_{\mathbb{W}_1}+\int\!\!\!\int_{\Omega_1}\!\!\left(\frac{\partial}{\partial s}\frac{\partial}{\partial t}\mathcal{B}g(s,t)\right)^2dsdt=\int_0^T\!\!\left(\frac{\partial}{\partial t}\mathcal{B}g(0,t)\right)^2dt\\ &+\left(\mathcal{B}g(0,0)\right)^2+\int_0^1\!\left(\frac{\partial}{\partial s}\mathcal{B}g(s,0)\right)^2ds+\int\!\!\!\int_{\Omega_1}\!(\frac{\partial}{\partial s}\frac{\partial}{\partial t}\mathcal{B}g(s,t))^2dsdt\\ &\leq \int_0^T\!\!M_0^2\|g\|_{\mathbb{W}_{(3,2)}}^2dt+M_1^2\|g\|_{\mathbb{W}_{(3,2)}}^2+\int_0^1\!\!M_2^2\|g\|_{\mathbb{W}_{(3,2)}}^2ds+\int\!\!\!\int_{\Omega}\!M_3^2\|g\|_{\mathbb{W}_{(3,2)}}^2dsdt\\ &=(M_0^2+M_1^2+M_2^2T+M_3^2T)\|g\|_{\mathbb{W}_{(3,2)}}^2. \end{split}
$$

That is,

$$
\|\mathcal{B}g(s,t)\|_{\mathbb{W}_1}^2 \leq M \|g\|_{\mathbb{W}_{(3,2)}}^2,
$$

¹¹³ where $M = M_0^2 + M_1^2 + M_2^2T + M_3^2T$. Thus, the linear operator B is bounded 114 as well. \square

Lemma 7. Let

$$
\Phi_i(s,t) = K_{(1,1)}(s_i, t_i, s, t), \quad \Psi_i(s,t) = \mathcal{B}^* \Phi_i(s,t),
$$

as suppose that $\{(s_i,t_i)\}_{i=1}^{\infty}$ is dense on Ω , where \mathcal{B}^* is the conjugate operator of B and $K_{(1,1)}$ is the RK-function of $\mathbb{W}_{(1,1)}(\Omega_1)$. Then,

$$
\Psi_i(s,t) = \mathcal{B}K_{(3,2)}(s_i,t_i,s,t).
$$

Proof. Owing to the properties of the RK-function, we can get that

$$
\Psi_i(s,t) = \langle \mathcal{B}^* K_{(1,1)}(s_i, t_i, \cdot, \cdot), K_{(3,2)}(s, t, \cdot, \cdot) \rangle_{\mathbb{W}_{(3,2)}} \n= \langle K_{(1,1)}(s_i, t_i, \cdot, \cdot), \mathcal{B} K_{(3,2)}(s, t, \cdot, \cdot) \rangle_{\mathbb{W}_{(1,1)}} = \mathcal{B} K_{(3,2)}(s_i, t_i, s, t).
$$

115 This concludes the Lemma. \square

116 Remark 1. By the Lemma above, we can get that

$$
\Psi_i(s,t) = \frac{\partial K_2'(t_i,t)}{\partial t_i} K_3(s_i,s) - \varepsilon \frac{\partial^2 K_3(s_i,s)}{\partial s_i^2} K_2'(t_i,t) \n+ a(s,t) K_3(s_i,s) K_2'(t_i,t) + b(s,t) K_3(s_i,s) K_2'(t_i,t-\tau).
$$

Notice that the RK-functions K_2' and K_3 are symmetric, it follows that

$$
\langle \Psi_i(s,t), \Psi_j(s,t) \rangle = (\mathcal{B}\Psi_i(s,t))(s_j, t_j)
$$

=
$$
\frac{\partial \Psi_i(s,t)}{\partial t_j} - \varepsilon \frac{\partial^2 \Psi_i(s,t)}{\partial x_j^2} + a(s,t)\Psi_i(s,t) + b(s,t)\Psi_i(s,t-\tau).
$$

118 Now we are ready to define a basis for the RK-space $\mathbb{W}_{(3,2)(\Omega)}$.

119 **Theorem 1.** The sequence $\{\Psi_i(s,t)\}_{i=1}^{\infty}$ is linearly independent in $\mathbb{W}_{(3,2)}(\Omega)$ ¹²⁰ as suppose that $\{(s_i,t_i)\}_{i=1}^{\infty}$ is dense on Ω .

Proof. If we can obtain that $\{\Psi_i(s,t)\}_{i=1}^m$ is linearly independent for any $m \geq$ 1, this conclusion is obvious. Actually, if ${c_i}_{i=1}^m$ satisfies that

$$
\sum_{i=1}^{m} c_i \Psi_i(s, t) = 0,
$$

taking $\alpha_k(s,t)$ such that

$$
\alpha_k(x_l, t_l) = \begin{cases} 1, & l = k, \\ 0, & l \neq k, \end{cases}
$$

121 where $\alpha_k(s,t) \in \mathbb{W}_{(3,2)}(\Omega)$, for each $l = 1, 2, \ldots, m$, then we can obtain that

122

$$
0 = \langle \alpha_k(s,t), \sum_{i=1}^m c_i \Psi_i(s,t) \rangle_{\mathbb{W}_{(3,2)}} = \sum_{i=1}^m c_i \langle \alpha_k(s,t), \Psi_i(s,t) \rangle_{\mathbb{W}_{(3,2)}}
$$

=
$$
\sum_{i=1}^m c_i \alpha_k(s_i,t_i) = c_k, \ k = 1,2,\dots,m.
$$

Hence, we can arrive at a conclusion that $\{\Psi_i(s,t)\}_{i=1}^m$ is linearly independent 124 for all $m \geq 0$. Therefore, $\{\Psi_i(s,t)\}_{i=1}^{\infty}$ is linearly independent in $\mathbb{W}_{(3,2)}(\Omega)$. 125

¹²⁶ The main theorem in this paper is given below. This theorem provides an 127 approximated solution to Equation [\(3.2\)](#page-4-1) in the RK-space $\mathbb{W}_{(3,2)}(\Omega)$.

128 **Theorem 2.** Let $S_n = span{\Psi_1(s,t), \Psi_2(s,t), \cdots, \Psi_n(s,t)}$ and $P_n : \mathbb{W}_{(3,2)}(\Omega) \to S_n$ be the orthogonal projection operator of $\mathbb{W}_{(3,2)}(\Omega)$ onto

130 S_n . If $g(s, t)$ is the solution of Equation [\(3.2\)](#page-4-1), then, $\tilde{g}_n(s, t) = P_n g$ satisfies

$$
\langle \tilde{g}_n, \Psi_i \rangle = F_1(s_i, t_i), \ i = 1, 2, \dots, n. \tag{3.3}
$$

¹³² Furthermore,

$$
\widetilde{g}_n(s,t) = \sum_{j=1}^n a_j \Psi_j(s,t) \tag{3.4}
$$

is an approximate solution, where a_1, a_2, \ldots, a_n are undetermined constants, which can be determined by

$$
\begin{pmatrix}\n\langle \Psi_1, \Psi_1 \rangle & \langle \Psi_2, \Psi_1 \rangle & \cdots & \langle \Psi_n, \Psi_1 \rangle \\
\langle \Psi_1, \Psi_2 \rangle & \langle \Psi_2, \Psi_2 \rangle & \cdots & \langle \Psi_n, \Psi_2 \rangle \\
\vdots & \vdots & \vdots & \vdots \\
\langle \Psi_1, \Psi_n \rangle & \langle \Psi_2, \Psi_n \rangle & \cdots & \langle \Psi_n, \Psi_n \rangle\n\end{pmatrix}\n\begin{pmatrix}\na_1 \\
a_2 \\
\vdots \\
a_n\n\end{pmatrix}\n=\n\begin{pmatrix}\nF_1(s_1, t_1) \\
F_1(s_2, t_2) \\
\vdots \\
F_1(s_n, t_n)\n\end{pmatrix}.
$$

Proof. Owing to the properties of the RK-function and the self-conjugation of the operator P_n , it can be shown that

$$
\langle P_n g, \Psi_i \rangle = \langle g, P_n \Psi_i \rangle \Psi \text{ self-conjugate}
$$

= $\langle g, \Psi_i \rangle \Psi$ orthogonal projection
= $\langle g, \mathcal{B}^* \Phi_i \rangle$ Definition of Ψ_i
= $\langle \mathcal{B} g, \Phi_i \rangle = \mathcal{B} g(s_i, t_i) = F_1(s_i, t_i).$

134 To gain the approximated solution \tilde{g}_n in the form of Equation [\(3.4\)](#page-7-0), we substitute Equation (3.4) into Equation (3.3). Through collocation process, we substitute Equation (3.4) into Equation (3.3) . Through collocation process, we ¹³⁶ have that

$$
\sum_{j=1}^{n} a_j \langle \Psi_j(s, t), \Psi_i(s, t) \rangle = F_1(s, t), \ \forall \ i = 1, \dots, n. \tag{3.5}
$$

¹³⁸ Rewrite the above system in a matrix form, we have that

$$
\mathbf{Ga} = \mathbf{F_1},\tag{3.6}
$$

where

$$
\mathbf{G} = \begin{pmatrix} \langle \Psi_1, \Psi_1 \rangle & \langle \Psi_2, \Psi_1 \rangle & \cdots & \langle \Psi_n, \Psi_1 \rangle \\ \langle \Psi_1, \Psi_2 \rangle & \langle \Psi_2, \Psi_2 \rangle & \cdots & \langle \Psi_n, \Psi_2 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \Psi_1, \Psi_n \rangle & \langle \Psi_2, \Psi_n \rangle & \cdots & \langle \Psi_n, \Psi_n \rangle \end{pmatrix},
$$

$$
\mathbf{a} = (a_1 a_2 \cdots a_n)^T, \quad \mathbf{F_1} = (F_1(s_1, t_1) F_1(s_2, t_2) \cdots F_1(s_n, t_n))^T.
$$

140 Then, we have that $\mathbf{a} = \mathbf{G}^{-1} \mathbf{F}_1$ as required. \Box

¹⁴¹ Algorithm:

- 142 Step 1. Calculating the RK-functions $K_{(1,1)}(\bar{s},\bar{t},s,t)$ and $K_{(3,2)}(\bar{s},\bar{t},s,t)$;
- 143 Step 2. Structuring a bounded linear operator B;
- 144 Step 3. Structuring Ψ_i and the projection operator P_n ;
- ¹⁴⁵ Step 4. Setting up Equation [\(3.5\)](#page-7-2) in the light of the projection operator, ¹⁴⁶ and expressed as matrix form;
- ¹⁴⁷ Step 5. Finding the corresponding coefficients in Equation [\(3.6\)](#page-7-3).

¹⁴⁸ Consider the domain $\Omega = [0, 1] \times [0, T]$. Instead of using fixed collocation 149 points on the domain Ω , we realize that an adaptive collocation points cross ¹⁵⁰ domain during the layer are critical to certain situations. We observe that ¹⁵¹ there is a connection between the points that had a larger error of f_n and the 152 points that had larger errors of F. This motivates us to use the error of F as ¹⁵³ an indicator for adding points.

 $\frac{1}{154}$ In practice, we first select a set A of n points uniformly across the domain. ¹⁵⁵ By applying our proposed RKM to obtain an approximating solution. We then 156 choose a different set B of $2n$ points randomly as test points. We calculate $157 \quad Bf_n - F$ at the above 2n points of B and pick n points that give the highest ¹⁵⁸ error in predicting F. We add this set of points to previous collocation points ¹⁵⁹ and using the RKM again to obtain an approximation f_{2n} . This procedure is ¹⁶⁰ important, as it not only prevents us from losing the accuracy of the solution ¹⁶¹ across the entire domain but also helps us to focus more points on the boundary ¹⁶² layer.

¹⁶³ 4 Convergence and error estimation

164 Theorem 3. As defined in Equation (3.4) , $g(s,t)$ is uniformly convergent by $165 \quad \widetilde{g}_n(s,t).$

Proof. Obviously, $\|\tilde{g}_n - g\| \to 0$ holds as $n \to \infty$. Like that, $\tilde{g}_n(x)$ is the approximate solution of Equation [\(3.2\)](#page-4-1). By the following inequalities

$$
\|\widetilde{g}_n(s,t) - g(s,t)\| = \|\langle \widetilde{g}_n - g, K_{(3,2)} \rangle\| \le \|\widetilde{g}_n - g\| \|K_{(3,2)}\|, \|K_{(3,2)}\| \le M
$$

is since $K_{(3,2)}$ is continuous on [0, 1], where M is a real number and $M > 0$, we ¹⁶⁷ can draw a conclusion that $g(s, t)$ is uniformly convergent by $\widetilde{g}_n(s, t)$ on [0, 1].
¹⁶⁸ \Box

Theorem 4. The partial derivatives of the exact solution $\partial_{t_i}^i \partial_s^j$ 169 **Theorem 4.** The partial derivatives of the exact solution $\partial_{t_i}^i \partial_{s_j}^j g(s,t)$ are uni- $\it{formly~convergent~by~} \partial^i_{t^i} \partial^j_s$ $\sum_{i,j}$ formly convergent by $\partial_{t_i}^i \partial_{s_j}^j \widetilde{g}_n(s,t)$, whenever $i = 0,1$ and $j = 0,1,2$, where $\partial_{t^i}^i\partial_s^j$ $\partial_{t}^{i} \partial_{s^{j}}^{j} \widetilde{g}_{n}(s,t)$ are the partial derivatives of the numerical solution $\widetilde{g}_{n}(s,t)$.

Proof. Since $\mathbb{W}_{(3,2)}$ is a Hilbert space, obviously, $\|\widetilde{g}_n-g\| \to 0$ holds as $n \to \infty$. Again, since

$$
\|\partial_{t^i}^i \partial_{s^j}^j g(s,t) - \partial_{t^i}^i \partial_{s^j}^j \widetilde{g}_n(s,t)\| \n= \|\langle g(y,s) - \widetilde{g}_n(y,s), \partial_{t^i}^i \partial_{s^j}^j BK_{(3,2)}(s,t,y,s)\rangle\|_{\mathbb{W}_{(3,2)}}\n\n\le \|g - \widetilde{g}_n\|_{\mathbb{W}_{(3,2)}} \|\partial_{t^i}^i \partial_{s^j}^j BK_{(3,2)}(s,t,y,s)\|_{\mathbb{W}_{(3,2)}} \le M_{i,j} \|g - \widetilde{g}_n\|_{\mathbb{W}_{(3,2)}},
$$

hence $\partial_{t_i}^i \partial_s^j$ $\tilde{g}_{s^j}\tilde{g}_n(s,t)$ converges uniformly to $\partial_t^i \partial_s^j$ 172 hence $\partial_{t_i}^i \partial_{s_j}^j \widetilde{g}_n(s,t)$ converges uniformly to $\partial_{t_i}^i \partial_{s_j}^j g(s,t)$. \Box

173 Next, we will give an error analysis on the approximated solution \tilde{g}_n to the true solution *a* for Equation (3.2). true solution g for Equation [\(3.2\)](#page-4-1).

Theorem 5. Let a dense subset of the domain Ω be $S = \{(s_1, t_1), (s_2, t_2), \ldots\}$. Then,

$$
\mathcal{B}g(s_j,t_j)=\mathcal{B}\widetilde{g}_n(s_j,t_j),\quad (s_j,t_j)\in S, j\leq n.
$$

Proof. Owing to the properties of the RK-function and the self-conjugation of the operator P_n , we can get that

$$
\mathcal{B}\widetilde{g}_n(s_j, t_j) = \langle \widetilde{g}_n(\cdot, \cdot), \mathcal{B}K_{(3,2)}(s_j, t_j, \cdot, \cdot) \rangle \n= \langle \widetilde{g}_n(\cdot, \cdot), \Psi_j(\cdot, \cdot) \rangle \text{ Definition of } \Psi \n= \langle P_n g(\cdot, \cdot), \Psi_j(\cdot, \cdot) \rangle P_n \text{ self-conjugation} \n= \langle g(\cdot, \cdot), P_n \Psi_j(\cdot, \cdot) \rangle = \langle g(\cdot, \cdot), \Psi_j(\cdot, \cdot) \rangle \n= \langle g(\cdot, \cdot), \mathcal{B}K_{(3,2)}(s_j, t_j, \cdot, \cdot) \rangle = \mathcal{B}\langle g(\cdot, \cdot), K_{(3,2)}(s_j, t_j, \cdot, \cdot) \rangle = \mathcal{B}g(s_j, t_j).
$$

 175

¹⁷⁶ The error estimation of the approximated solution, through the following the-177 orem, constructed by our RK-space $\mathbb{W}_{(3,2)}(\Omega)$, \widetilde{g}_n .

Theorem 6. Recall T is the final time of interests, n is the sum of points in the domain Ω . Then,

$$
||g(s,t)-\widetilde{g}_n(s,t)||=\mathcal{O}(T/n).
$$

Proof. For $\forall n \in N$ and $(s,t) \in \Omega$, take $(s_i,t_i) \in S$, $j \leq n$, where $S =$ $\{(s_1, t_1), (s_2, t_2), \ldots\}$, such that $|s - s_j| \leq 1/n$ and $|t - t_j| \leq T/n$. By Equation [\(5\)](#page-9-0), we can arrive at

$$
\mathcal{B}\widetilde{g}_n(s,t) - \mathcal{B}g(s,t) = \mathcal{B}\widetilde{g}_n(s,t) - \mathcal{B}\widetilde{g}_n(s_j,t_j) - (\mathcal{B}g(s,t) - \mathcal{B}\widetilde{g}_n(s_j,t_j))
$$

\n
$$
= \langle \widetilde{g}_n(\cdot,\cdot), \mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) - \mathcal{B}K_{(3,2)}(s_j,t_j,\cdot,\cdot) \rangle
$$

\n
$$
- \langle g(\cdot,\cdot), \mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) - \mathcal{B}K_{(3,2)}(s_j,t_j,\cdot,\cdot) \rangle
$$

\n
$$
= \langle \widetilde{g}_n(\cdot,\cdot) - g(\cdot,\cdot), \mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) - \mathcal{B}K_{(3,2)}(s_j,t_j,\cdot,\cdot) \rangle.
$$

Furthermore, based on the reversible property of the operator B, we have that

$$
\widetilde{g}_n(s,t) - g(s,t) = \langle \widetilde{g}_n - v, \mathcal{B}^{-1}(\mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) - \mathcal{B}K_{(3,2)}(s_j,t_j,\cdot,\cdot)) \rangle
$$

\n
$$
\leq \|\mathcal{B}^{-1}\| \|\widetilde{g}_n(s,t) - g(s,t)\| \|\mathcal{B}K_{(3,2)}(s,t,\cdot,\cdot) - \mathcal{B}K_{(3,2)}(s_j,t_j,\cdot,\cdot) \|.
$$

From the defintion of $K_{(3,2)}(s,t,\bar{s},\bar{t})$, it can be seen that $BK_{(3,2)}(s,t,\cdot,\cdot)$ is differentiable with respect to (s, t) . Utilizing the mean value theorem with regard to s and t , respectively, we can get that

$$
\mathcal{B}K_{(3,2)}(s_i, t_i, s, t) - \mathcal{B}K_{(3,2)}(s_j, t_j, \cdot, \cdot) \n= \frac{\partial}{\partial \xi} \mathcal{B}K_{\xi, \eta}(\cdot, \cdot)(s - s_j) + \frac{\partial}{\partial \eta} \mathcal{B}K_{\xi, \eta}(\cdot, \cdot)(t - t_j).
$$

Thus,

$$
\widetilde{g}_n(s,t) - g(s,t) \le ||\mathcal{B}^{-1}|| \|\widetilde{g}_n(s,t) - g(s,t)\|_{\mathcal{S}} - s_j \|\frac{\partial}{\partial \xi} \mathcal{B} K_{\xi,\eta}(\cdot,\cdot)\| + \|\mathcal{B}^{-1}\| \|\widetilde{g}_n(s,t) - g(s,t)\|t - t_j\|\frac{\partial}{\partial \eta} \mathcal{B} K_{\xi,\eta}(\cdot,\cdot)\| \le \frac{1}{n} \|\mathcal{B}^{-1}\| \|\widetilde{g}_n(s,t) - g(s,t)\| \|\frac{\partial}{\partial \xi} \mathcal{B} K_{\xi,\eta}(\cdot,\cdot)\| + \frac{T}{n} \|\mathcal{B}^{-1}\| \|\widetilde{g}_n(s,t) - g(s,t)\| \|\frac{\partial}{\partial \eta} \mathcal{B} K_{\xi,\eta}(\cdot,\cdot)\|.
$$

Since both $\|\frac{\partial}{\partial \xi} BK_{\xi,\eta}(\cdot,\cdot)\|$ and $\|\frac{\partial}{\partial \eta} BK_{\xi,\eta}(\cdot,\cdot)\|$ are bounded, and $\|\widetilde{g}_n(s,t)$ $g(s, t)$ \rightarrow 0, we conclude that

$$
g(s,t) - \widetilde{g}_n(s,t) = \mathcal{O}(T/n).
$$

 178

¹⁷⁹ 5 Numerical results

In this section, we present some numerical experiments to verify our theoretical findings. We operate our programs in MATHEMATICA 13.0. In all examples, we first use a uniform meshes of n points on Ω . We compute the error $e_n =$ $f_n - f$ in different type norms. For convenience, we denote

$$
||e_n||_0^2 := \int_{\Omega} (f(s, t) - f_n(s, t))^2 \, dsdt, \ ||e_n||_{1,t}^2 := \int_{\Omega} (\partial_t f(s, t) - \partial_t f_n(s, t))^2 \, dsdt,
$$

$$
||e_n||_{1,s}^2 := \int_{\Omega} (\partial_s f(s, t) - \partial_s f_n(s, t))^2 \, dsdt,
$$

$$
||e_n||_{2,s}^2 := \int_{\Omega} (\partial_{ss} f(s, t) - \partial_{ss} f_n(s, t))^2 \, dsdt.
$$

Example 1. Let us examine the singularly perturbed delay differential equation as follows:

$$
f(s,t) = \Psi(s,t), \quad (s,t) \in [0,1] \times [-\tau,0],
$$

\n
$$
\frac{\partial f(s,t)}{\partial t} - \varepsilon \frac{\partial^2 f(s,t)}{\partial s^2} = -e^{-0.05} f(s,t-\tau) + F(s,t), \quad (s,t) \in [0,1] \times (0,2],
$$

\n
$$
f(0,t) = 0, \quad f(1,t) = 0, \quad t \in [0,2],
$$

where $\tau = 0.05$, and the source function is provided by

$$
F(s,t) = e^{-\left(t+s/\sqrt{\varepsilon}\right)} \left(-s(s-1) + 2(2s-1)\sqrt{\varepsilon} - 2\varepsilon\right).
$$

Math. Model. Anal., 28(1):1–18, 2023.

The initial data is given by $\Psi(s,t)$ which can be calculated from the exact solution

$$
f(s,t) = s(s-1)e^{-(t+s/\sqrt{\varepsilon})}.
$$

¹⁸⁰ The profiles of the approximate solution and the absolute errors when $n =$ ¹⁸¹ 64 with $\epsilon = 2^{-2}$ are shown in Figure [1.](#page-11-0)

Figure [1](#page-10-0). Example $1 - a$) the approximating solution and b) the absolute error with $\epsilon = 2^{-2}$ and $\tau = 0.05$.

¹⁸² Table [1](#page-11-1) is listed the absolute errors regarding different values of the singu-¹⁸³ larity perturbed parameter ϵ and different values of spatial points n.

ϵ	$\it n$	$ e_n _0$	order	$ e_n _{1,t}$	order	$ e_n _{1,s}$	order	$ e_n _{2,s}$	order
2^{-2}	16	1.49E-3		$6.85E-3$		$4.83E - 3$		2.47E-2	
	64	$3.36E - 4$	2.14	$2.25E-3$	1.60	$1.23E-3$	1.97	$6.25E - 3$	1.98
	256	7.74E-5	2.13	$6.39E-4$	1.84	$3.01E - 4$	1.99	1.57E-3	1.99
	1024	$1.85E-5$	2.05	1.68E-4	1.93	$7.51E-5$	1.99	$3.93E - 4$	2.00
2^{-4}	16	$1.55E-3$		$7.22E-3$		8.39E-3		$8.61E-2$	
	64	$3.40E - 4$	2.19	1.80E-3	2.00	1.48E-3	2.50	2.07E-2	2.06
	256	$7.65E-5$	2.15	$4.55E - 4$	1.98	$2.83E - 3$	2.38	4.97E-3	2.05
	1024	$1.82E-5$	2.08	$1.14E-4$	1.99	$6.84E - 4$	2.04	$1.21E-3$	2.04
2^{-6}	16	5.39E-3		$2.01E-2$		2.79E-2		$2.65E-1$	
	64	$1.26E - 3$	2.07	5.19E-3	1.95	$7.21E-3$	1.95	$7.01E-2$	1.91
	256	$3.04E - 4$	2.05	$1.30E-3$	2.00	$1.83E - 3$	1.98	1.81E-2	1.95
	1024	$7.51E-5$	2.02	$3.24E-4$	1.99	$4.58E - 4$	2.00	$4.62E - 3$	1.97

Table 1. Errors and convergence orders of adaptive RKM for Example [1.](#page-10-0)

¹⁸⁴ It can be shown clearly that the proposed numerical method converges ¹⁸⁵ with orders of $\mathcal{O}(h^2)$ under \mathbb{L}^2 norm, H^1 seminorm and H^2 seminorm, which ¹⁸⁶ is consistent with traditional RKM. The computational accuracy is decreasing 187 when ϵ is getting smaller. Figure [2](#page-12-0) shows the the profiles of the approximated ¹⁸⁸ solution and the absolute errors when $n = 256$ with $\epsilon = 2^{-8}$. As we can see from Figure [2,](#page-12-0) the proposed algorithm can handle $\epsilon = 2^{-8}$ with fairly accurate ¹⁹⁰ approximations.

Figure 2. Example $1 - a$ $1 - a$) the approximating solution and b) the absolute error with $\epsilon = 2^{-8}$ and $\tau = 0.05$.

Example 2. Let us examine the equation as follows:

$$
f(s,t) = \Psi(s,t), \quad (s,t) \in [-\tau, 0] \times [0,1],
$$

\n
$$
\frac{\partial f(s,t)}{\partial t} - \varepsilon \frac{\partial^2 f(s,t)}{\partial s^2} = -2f(s,t-\tau) + F(s,t), \quad (s,t) \in [0,1] \times (0,2],
$$

\n
$$
f(0,t) = 0, \quad f(1,t) = 0, \quad t \in [0,2],
$$

where $\tau = 0.01$, and the source function is provided by

$$
F(s,t) = e^{-\left(t+s/\sqrt{\varepsilon}\right)}\left(2s(s-1)^2(-1+e^{0.01})+2(3s^2-4s+1)\sqrt{\varepsilon}-2(s-2)\varepsilon\right).
$$

The initial data is given by $\Psi(s,t)$ which can be calculated from the exact solution

$$
f(s,t) = s(s-1)^2 e^{-(t+s/\sqrt{\varepsilon})}.
$$

Table 2. Errors and convergence orders of adaptive RKM for Example [2.](#page-11-2)

¹⁹¹ Listed in Table [2](#page-12-1) are numerical results of Example [2](#page-11-2) obtained by our pro-¹⁹² posed RKM. By applying the adaptive strategies, we obtain a similar conver-¹⁹³ gence results as Example [1.](#page-10-0) The profiles of the approximated solution and

¹⁹⁴ the absolute errors when with $\epsilon = 2^{-2}(n = 64)$ and $\epsilon = 2^{-8}(n = 256)$ are 195 shown Figures [3](#page-13-0) and [4,](#page-13-1) respectively. As ϵ gets smaller, the accuracy remains ¹⁹⁶ at the similar order of magnitudes. Nevertheless, our adaptive RKM improve ¹⁹⁷ the accuracy compared with the traditional RKM.

Figure 3. Example $2 - a$ $2 - a$) the approximating solution and b) the absolute error with $\epsilon = 2^{-2}$ and $\tau = 0.01$.

Figure 4. Example [2](#page-11-2) – a) the approximating solution and b) the absolute error with 2^{-8} and $\tau = 0.01$.

Example 3. Let us compare the equation in [\[3\]](#page-15-5) as follows:

$$
f(s,t) = \Psi(s,t), \quad (s,t) \in [-\tau, 0] \times [0,1],
$$

\n
$$
\frac{\partial f(s,t)}{\partial t} - \varepsilon \frac{\partial^2 f(s,t)}{\partial s^2} = -2e^{-1}f(s,t-1) + F(s,t), \quad (s,t) \in [0,1] \times (0,2],
$$

\n
$$
f(0,t) = e^{-1}, \quad f(1,t) = e^{-(t+1/\sqrt{\varepsilon})}, \quad t \in [0,2].
$$

The initial date is given by $\Psi(s,t)$ which can be calculated from the exact solution

$$
f(s,t) = e^{-\left(t+s/\sqrt{\varepsilon}\right)}.
$$

 Listed in Table [3](#page-14-2) are numerical results of Example [3](#page-13-2) obtained by our proposed RKM and the finite difference methods in [\[3\]](#page-15-5). From the Table, we can see that our RKM method is litte bit more accurate than the method in [\[3\]](#page-15-5). This also shows that the RKM proposed in this paper is meaningful.

ϵ	\boldsymbol{n}	parameter-robust FDMs in [3]	our proposed RKM
	64	2.158E-3	1.335E-3
2^{-6}	256	5.138E-4	3.179E-4
	1024	1.268E-4	7.948E-5
	64	2.628E-3	1.594E-3
2^{-8}	256	5.449E-4	3.785E-4
	1024	1.287E-4	$9.463E - 5$
	64	4.718E-3	2.947E-3
2^{-14}	256	8.212E-4	7.017E-4
	1024	1.576E-4	1.754E-4

Table 3. The comparision of maximum errors for Example [3.](#page-13-2)

6 Conclusions

 In this post, a significant method was proposed by us that using RK-spaces and collocation method to solve delay parabolic PDEs with singular perturbation. We defined three basic RK-spaces with their inner product and norms. Fur- thermore, an approximated solution to the delay parabolic PDEs with singular ²⁰⁷ perturbation were approximated by the RK-space $\mathbb{W}_{(3,2)(\Omega)}$. In addition, we verified that the exact solution is uniformly convergent by the approximated solution. Error estimates for the presented numerical algorithm were estab-lished.

 All the discussions and proofs are based on [0, 1] in one dimensional space. 212 However, those results can be easily extended to other closed interval in \mathcal{R} . Furthermore, the absolute errors of the approximated solution is in the order of $_{214}$ T/n which can be understood as the time step size in our numerical algorithm. Notice that we do not have any special time discretization in our algorithm. In other words, the time domain is treated the same way as the spatial domain, which is much easier than other traditional methods that use finite different scheme for time discretization and another spatial discretization scheme.

Acknowledgements

- This study was supported by
- 1. National Natural Science Funds of China under Grant No.12101164;
- 2. General support from Heilongjiang Postdoctoral Fund LBH-Z22256;
- 3. Heilongjiang Higher Education Reform Project SJGZ20210095.

References

 [1] R.P. Agarwal, M. Bohner and W.-T.Li. Nonoscillation and oscilla- tion theory for functional differential equations. CRC Press, 2004. [https://doi.org/10.1201/9780203025741.](https://doi.org/10.1201/9780203025741)

 [2] M. Ahmadinia and Z. Safari. Numerical solution of singularly per-turbed boundary value problems by improved least squares method.

- Journal of Computational and Applied Mathematics, 331:156–165, 2018. [https://doi.org/10.1016/j.cam.2017.09.023.](https://doi.org/10.1016/j.cam.2017.09.023)
- [3] A.R. Ansari, S.A. Bakr and G.I. Shishkin. A parameter-robust finite differ- ence method for singularly perturbed delay parabolic partial differential equa- 2^{34} tions. *Journal of computational and applied mathematics*, **205**(1):552–566, 2007. [https://doi.org/10.1016/j.cam.2006.05.032.](https://doi.org/10.1016/j.cam.2006.05.032)
- [4] K. Bansal, P. Rai and K.K. Sharma. Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift ar-²³⁸ guments. Differential Equations and Dynamical Systems, $25(2):327-346$, 2017. [https://doi.org/10.1007/s12591-015-0265-7.](https://doi.org/10.1007/s12591-015-0265-7)
- [5] A. Bellen and M. Zennaro. Numerical methods for delay differential equations. Oxford university press, 2013.
- [6] J.B. Burie, A. Calonnec and A. Ducrot. Singular perturbation analysis of trav- elling waves for a model in phytopathology. Mathematical Modelling of Natural Phenomena, 1(1):49–62, 2006. [https://doi.org/10.1051/mmnp:2006003.](https://doi.org/10.1051/mmnp:2006003)
- [7] P.P Chakravarthy and K. Kumar. A novel method for singularly perturbed delay differential equations of reaction-diffusion type. Differential Equations and Dynamical Systems, 29(3):723–734, 2021.
- [8] M.G. Cui and Y.Z. Lin. Nonlinear numerical analysis in the RK-space. Oxford university press, 2013.
- [9] A. Das and S. Natesan. Parameter-uniform numerical method for singu- larly perturbed 2D delay parabolic convection–diffusion problems on Shishkin mesh. Journal of Applied Mathematics and Computing, 59(1):207–225, 2019. [https://doi.org/10.1007/s12190-018-1175-y.](https://doi.org/10.1007/s12190-018-1175-y)
- [10] H. Du and J.H. Shen. Reproducing kernel method of solving singular integral equation with cosecant kernel. Journal of Mathematical Analysis and Applica-tions, 348(1):308–314, 2008. [https://doi.org/10.1016/j.jmaa.2008.07.037.](https://doi.org/10.1016/j.jmaa.2008.07.037)
- [11] F. Geng and M. Cui. A reproducing kernel method for solving nonlocal fractional boundary value problems. Applied Mathematics Letters, 25(5):818–823, 2012. [https://doi.org/10.1016/j.aml.2011.10.025.](https://doi.org/10.1016/j.aml.2011.10.025)
- [12] F. Geng, Z. Tang and Y. Zhou. Reproducing kernel method for singularly per- turbed one-dimensional initial-boundary value problems with exponential ini- $_{262}$ tial layers. *Qualitative Theory of Dynamical Systems*, $17(1):177-187$, 2018. [https://doi.org/10.1007/s12346-017-0242-3.](https://doi.org/10.1007/s12346-017-0242-3)
- [13] F.Z. Geng and X.Y. Wu. A novel kernel functions algorithm for solving impul- sive boundary value problems. Applied Mathematics Letters, 134:108318, 2022. [https://doi.org/10.1016/j.aml.2022.108318.](https://doi.org/10.1016/j.aml.2022.108318)
- [14] V. Gupta, M. Kumar and S. Kumar. Higher order numerical approximation for time dependent singularly perturbed differential-difference convection-diffusion equations. Numerical Methods for Partial Differential Equations, 34(1):357–380, 2018. [https://doi.org/10.1002/num.22203.](https://doi.org/10.1002/num.22203)
- [15] J. In't Houtk. Stability analysis of Runge–Kutta methods for systems of delay differential equations. *IMA journal of numerical analysis*, $17(1):17-27$, 1997. [https://doi.org/10.1093/imanum/17.1.17.](https://doi.org/10.1093/imanum/17.1.17)
- [16] Y. Jia, M. Xu, Y. Lin and D. Jiang. An efficient technique based on least- squares method for fractional integro-differential equations. Alexandria Engi-neering Journal, 2022.

- [17] Y.F. Jin, J. Jiang, C.M. Hou and D.H. Guan. New difference scheme for gen- eral delay parabolic equations. Journal of Information &Computational Science, **9**(18):5579–5586, 2012.
- [18] A. Kaushik and M. Sharma. A robust numerical approach for singularly perturbed time delayed parabolic partial differential equa- tions. Computational Mathematics and Modeling, $23(1):96-106$, 2012 . [https://doi.org/10.1007/s10598-012-9122-5.](https://doi.org/10.1007/s10598-012-9122-5)
- [19] S. Kumar and B.V.R. Kumar. A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differen- tial equation. Applied Mathematics and Computation, 293:508–522, 2017. [https://doi.org/10.1016/j.amc.2016.08.031.](https://doi.org/10.1016/j.amc.2016.08.031)
- [20] S. Kumar and S.C.S. Rao. A robust overlapping Schwarz domain decomposi- tion algorithm for time-dependent singularly perturbed reaction–diffusion prob- lems. Journal of computational and applied mathematics, 261:127–138, 2014. [https://doi.org/10.1016/j.cam.2013.10.053.](https://doi.org/10.1016/j.cam.2013.10.053)
- [21] X.Y. Li and B.Y. Wu. A kernel regression approach for identification of first order differential equations based on functional data. Applied Mathematics Letters, 127:107832, 2022. [https://doi.org/10.1016/j.aml.2021.107832.](https://doi.org/10.1016/j.aml.2021.107832)
- [22] A. Longtin and J.G. Milton. Complex oscillations in the human pupil light reflex ²⁹⁶ with "mixed" and delayed feedback. *Mathematical Biosciences*, $90(1-2):183-199$, 1988. [https://doi.org/10.1016/0025-5564\(88\)90064-8.](https://doi.org/10.1016/0025-5564(88)90064-8)
- [23] J. Niu, Y. Jia and J. Sun. A new piecewise reproducing kernel function algo- rithm for solving nonlinear Hamiltonian systems. Applied Mathematics Letters, 136:108451, 2023. [https://doi.org/10.1016/j.aml.2022.108451.](https://doi.org/10.1016/j.aml.2022.108451)
- [24] J. Niu, L. Sun, M. Xu and J. Hou. A reproducing kernel method for solving heat conduction equations with delay. Applied Mathematics Letters, 100:106036, 2020. [https://doi.org/10.1016/j.aml.2019.106036.](https://doi.org/10.1016/j.aml.2019.106036)
- [25] J. Niu, M. Xu and G. Yao. An efficient reproducing kernel method for solv- ing the Allen–Cahn equation. Applied mathematics letters, 89:78–84, 2019. [https://doi.org/10.1016/j.aml.2018.09.013.](https://doi.org/10.1016/j.aml.2018.09.013)
- [26] R. Nageshwar Rao and P. Pramod Chakravarthy. Fitted numerical meth- ods for singularly perturbed one-dimensional parabolic partial differential equations with small shifts arising in the modelling of neuronal vari- ability. Differential Equations and Dynamical Systems, 27(1):1–18, 2019. [https://doi.org/10.1007/s12591-017-0363-9.](https://doi.org/10.1007/s12591-017-0363-9)
- [27] H.-G. Roos, M. Stynes and L. Tobiska. Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, volume 24. Springer Science & Business Media, 2008.
- [28] H. Sahihi, S. Abbasbandy and T. Allahviranloo. Computational method based on reproducing kernel for solving singularly perturbed differential-difference equa- tions with a delay. Applied Mathematics and Computation, 361:583–598, 2019. [https://doi.org/10.1016/j.amc.2019.06.010.](https://doi.org/10.1016/j.amc.2019.06.010)
- [29] S.H. Saker. New oscillation criteria for second-order nonlinear neutral delay 320 difference equations. Applied Mathematics and Computation, 142(1):99–111, 2003. [https://doi.org/10.1016/S0096-3003\(02\)00286-2.](https://doi.org/10.1016/S0096-3003(02)00286-2)
- [30] G.I. Shishkin. Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems. Mathematical Modelling and Analysis, $10(4):393-412$, 2005. [https://doi.org/10.3846/13926292.2005.9637296.](https://doi.org/10.3846/13926292.2005.9637296)
- [31] L. Sun, J. Niu and J. Hou. A high order convergence collocation method based on the reproducing kernel for general interface problems. Applied Mathematics Letters, 112:106718, 2021. [https://doi.org/10.1016/j.aml.2020.106718.](https://doi.org/10.1016/j.aml.2020.106718)
- [32] J. Wu. Theory and applications of partial functional differential equations, vol-ume 119. Springer Science & Business Media, 1996.
- 330 [33] M. Xu, R. Lin and Q. Zou. A C^0 linear finite element method for a second order ³³¹ elliptic equation in non-divergence form with Cordes coefficients. Numerical Methods for Partial Differential Equations, 2022.
- [34] M. Xu and C. Shi. A Hessian recovery-based finite difference method for biharmonic problems. Applied Mathematics Letters, 137:108503, 2023. [https://doi.org/10.1016/j.aml.2022.108503.](https://doi.org/10.1016/j.aml.2022.108503)
- [35] M. Xu, E. Tohidi, J. Niu and Y. Fang. A new reproducing kernel- based collocation method with optimal convergence rate for some classes of BVPs. Applied Mathematics and Computation, 432(1):127343, 2022. [https://doi.org/10.1016/j.amc.2022.127343.](https://doi.org/10.1016/j.amc.2022.127343)
- [36] M. Xu, L. Zhang and E. Tohidi. A fourth-order least-squares based reproducing kernel method for one-dimensional elliptic inter- face problems. Applied Numerical Mathematics, 162:124–136, 2021. [https://doi.org/10.1016/j.apnum.2020.12.015.](https://doi.org/10.1016/j.apnum.2020.12.015)
- [37] M. Xu, L. Zhang and E. Tohidi. An efficient method based on least-squares tech-345 nique for interface problems. Applied Mathematics Letters, 136:108475, 2022. [https://doi.org/10.1016/j.aml.2022.108475.](https://doi.org/10.1016/j.aml.2022.108475)
- [38] M.-Q. Xu and Y.-Z. Lin. Simplified reproducing kernel method for fractional differential equations with delay. *Applied Mathematics Letters*, **52**:156–161, 2016. [https://doi.org/10.1016/j.aml.2015.09.004.](https://doi.org/10.1016/j.aml.2015.09.004)
- [39] Y. Yu, J. Niu, J. Zhang and S. Ning. A reproducing kernel method for non- linear C-q-fractional IVPS. Applied Mathematics Letters, 125:107751, 2022. [https://doi.org/10.1016/j.aml.2021.107751.](https://doi.org/10.1016/j.aml.2021.107751)
- [40] B.-G. Zhang and X. Deng. Oscillation of delay differential equations on time scales. Mathematical and Computer Modelling, $36(11-13):1307-1318$, 2002. [https://doi.org/10.1016/S0895-7177\(02\)00278-9.](https://doi.org/10.1016/S0895-7177(02)00278-9)
- [41] J. Zhang and J. Niu. Lobatto-reproducing kernel method for solving a linear sys-³⁵⁷ tem of second order boundary value problems. Journal of Applied Mathematics and Computing, 63:3631–3653, 2021. [https://doi.org/10.1007/s12190-021-01685-](https://doi.org/10.1007/s12190-021-01685-9) [9.](https://doi.org/10.1007/s12190-021-01685-9)