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Abstract. In this article, we put forward an efficient method on the foundation of7

a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the8

solution of delay parabolic partial differential equations(PDEs) with singular pertur-9

bation. The approximated solution g̃n(s, t) to the equations is formulated and proved10

the exact solution is uniformly convergent by the solution. Furthermore, the partial11

differentiation of the approximated solution is also proved the partial derivatives of12

the exact solution is uniformly convergent by the solution. Meanwhile, we show that13

the accuracy of our method is in the order of T/n where T is the final time and n14

is the number of spatial (and time) discretization in the domain of interests. Three15

numerical examples are put forward to demonstrate the effectiveness of our presented16

scheme.17

Keywords: delay parabolic equation, reproducing kernel method, collocation method,

numerical solution.

18
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1 Introduction20

The solutions of delay parabolic PDEs with singular perturbation at a limiting21

value of the singular parameter are different in character from the solutions of22
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the general problem. This kind of PDEs are frequently used in varied forms23

of real-world applications, such as in the modeling of the human pupil-light24

reflex [22], population dynamics in mathematical biology, medicine and oth-25

ers [1, 29,32,40].26

The PDEs with singular perturbation have been broadly studied by many27

scholars, including least squares method in [2], finite difference scheme in [4,26],28

Galerkin finite element method in [19], domain decomposition scheme in [20],29

reproducing kernel method(RKM) in [12] and others [6,27,30]. There are many30

references on numerical methods and numerical stability for delay differential31

equations, such as [5, 15, 17] to just list a few. Furthermore, finite difference32

schemes for PDEs with a time delay effect and a singular parameter are studied33

in 1D [3,7, 14,18] and in 2D [9] recently.34

In this article, the following type of the singularly perturbed delay parabolic
PDEs are considered by us

∂f(s, t)

∂t
− ε∂

2f(s, t)

∂s2
+ a(s, t)f(s, t) = F (s, t)− b(s, t)f(s, t− τ), (s, t) ∈ Ω,

f(0, t) = 0, f(1, t) = 0, t ∈ A1,

f(s, t) = Ψ(s, t), (s, t) ∈ A2, (1.1)

where a(s, t) ≥ 0, b(s, t) ≥ β ≥ 0, 0 < ε ≤ 1, τ > 0 and Ω, A1, A2 are35

[0, 1]× [0, T ], [0, T ], [−τ, 0]× [0, 1], respectively. The forcing terms, F (s, t) and36

Ψ(s, t) are sufficiently smooth bounded functions, such that Equation (1.1) has37

a unique solution.38

A robust finite difference method for the singularly perturbed delay para-39

bolic PDEs are investigated by the authors in [3]. The focus of our paper,40

Equation (1.1) is a special case of model introduced in [3]. Thus, the theorems41

of uniqueness of the solutions to Equation (1.1) can be found in [3]. Addition-42

ally, we propose a RKM and collocation method to approximate the solutions43

to Equation (1.1) that does not require a separate time discretization scheme.44

Thus, it is more robust in terms of the discretization of temporal space. The45

RKM has attracted the interest of many authors. Xu and Lin [38] applied the46

RKM for solving the delay fractional differential equations. The RKM pro-47

posed by Geng and Cui [11] can be used to solve presented the RKM to solve48

the nonlocal fractional boundary value problems, in addition to the partial49

integro-differential equation, multi-point boundary value problems and so on,50

see [8,10,13,16,21,23,24,25,28,31,33,34,35,36,37,39,41] for more details. The51

aim of this article is to seek the approximate solutions of Equation (1.1) by52

the RKM and collocation method. Significantly, the Smith orthogonal process53

is averted and the computational time is saved by this method. Furthermore,54

the trouble cased by the delay term is dealt with in the established RK-space.55

Thus, it does not cost any computational expenses. Moreover, we can see that56

problem (1.1) has boundary layer behavior, it is important to obtain a proper57

approximation of the solutions for values where the boundary layer behavior is58

very severe. Therefore, we apply adaptive RKM to overcome this problem.59

Structure of this thesis: a brief introduction is made with several applica-60

ble RK-spaces by us and its corresponding reproducing kernel function (RK-61

function) in Section 2. Section 3 presents a specific RKM and gives the approxi-62
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mated solution to Equation (1.1). Furthermore, astringency and error estimate63

of the numerical scheme are presented in Section 4. In Section 5, numerical64

examples are discussed to verify the effectiveness of the proposed method.65

2 Preliminaries66

In order to analyze the solution of Equation (1.1), we will present several RK-67

spaces in this section.68

Definition 1. Let W1[0, 1] = {f(x) | f(x) be an absolutely continuous real-
valued function in [0, 1], f ′(x) ∈ L2[0, 1]}. In W1[0, 1], the 〈·, ·〉 and ‖ · ‖ are
characterized by

〈f, g〉W1
= f(0)g(0) +

∫ 1

0

f ′(x)g′(x)dx, ∀ f, g ∈W1[0, 1],

‖f‖W1
=
√
〈f, f〉W1

, ∀ f ∈W1[0, 1],

respectively.69

Lemma 1. The functional space W1[0, 1] is a RK-space and its RK-function70

K1(x, y) has the following form71

K1(x, y) =

{
x+ 1, x ≤ y,
y + 1, x > y.

72

Proof. Similar to [8]. ut73

Definition 2. Let W2[0, T ] = {f(x) | f ′(x) be an absolutely continuous real-
valued function in [0, T ], f ′′(x) ∈ L2[0, T ], f(0) = 0}. The 〈·, ·〉 and ‖ · ‖ are
characterized by

〈f, g〉W2
= f ′(0)g′(0) +

∫ T

0

f ′′(x)g′′(x)dx, ∀ f, g ∈W2[0, T ],

‖f‖W2
=
√
〈f, f〉W2 , ∀ f ∈W2[0, T ],

respectively.74

Lemma 2. The functional space W2[0, T ] is a RK-space and its RK-function75

K2(x, y) has the following form76

K2(x, y) =


−1

6
x3 + 1

2x
2y + xy, x ≤ y,

−1

6
y3 + 1

2y
2x+ xy, x > y.

77

Proof. Similar to [8]. ut78

Math. Model. Anal., 28(1):1–18, 2023.
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Definition 3. Let

W
′

2[−τ, T ] = {f(x) | −τ ≤ t ≤ 0, u(0) = 0, 0 ≤ t ≤ T, f(x) ∈W2[0, T ]}.

The 〈·, ·〉 and ‖ · ‖ are characterized by

〈f, g〉W′
2

= f
′

+(0)g
′

+(0) +

∫ T

0

f ′′(x)g′′(x)dx, ∀ f, g ∈W
′

2[−τ, T ],

‖f‖W′
2

=
√
〈f, f〉W′

2
, ∀ f ∈W

′

2[−τ, T ],

respectively.79

Lemma 3. The space W′

2[−τ, T ] is a RK-space and its RK-function K ′2(x, y)80

has the following form81

K
′

2(x, y) =

{
K2(x, y), 0 ≤ x, y ≤ T,
0, others.

82

Proof. Similar to [8]. ut83

Definition 4. Let W3[0, 1] = {f(x) | f ′′(x) be an absolutely continuous real
value function in [0, 1], f ′′′(x) ∈ L2[0, 1], f(0) = f(1) = 0}. The 〈·, ·〉 and ‖ · ‖
are characterized by

〈f, g〉W3 =

2∑
i=1

f i(0)vi(0) +

∫ 1

0

f ′′′(x)g′′′(x)dx, ∀ f, g ∈W3[0, 1],

‖f‖W3
=
√
〈f, f〉W3

, ∀ f ∈W3[0, 1],

respectively.84

Lemma 4. The functional space W3[0, 1] is a RK-space and its RK-function
K3(x, y) has the following form

K3(x, y)=



− 1

18720
(x− 1)y(156y4 + 6x2(y4 − 5y3 + 10y2 + 30y + 120)

−4x3(y4−5y3+10y2+30y+120)+x4(y4−5y3+10y2 + 30y + 120)

+12x(3y4 − 15y3 − 100y2 − 300y + 360)), x ≤ y,

− 1

18720
(y−1)x(30xy(y3−4y2+6y−120)+10x2y(y3−4y2

+6y−120) + 120y(y3 − 4y2 + 6y + 36)− 5x3y(y3 − 4y2

+6y + 36) + x4(y4 − 4y3 + 6y2 + 36y + 156)), x > y.

Definition 5. Assume Ω = [0, 1]× [−τ, T ]. Let W(3,2)(Ω) = {f(s, t) | f ′′′

sst be85

an absolutely continuous real-valued function in Ω, f
(5)
ssstt ∈ L2(Ω), f(s, 0) =86

f(0, t) = f(1, t) = 0}. The 〈·, ·〉 and ‖ · ‖ are characterized by87

〈f, g〉W(3,2)
=

2∑
i=1

∫ T

0

∂2

∂t2
∂i

∂si
f(0, t)

∂2

∂t2
∂i

∂si
g(0, t)dt+ 〈 ∂

∂t
f(s, 0),

∂

∂t
g(s, 0)〉W3

88

+

∫ T

0

∫
Ω

∂3

∂s3
∂2

∂t2
f(s, t)

∂3

∂s3
∂2

∂t2
g(s, t)dsdt, ∀ f, g ∈W3[0, 1]89
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and
‖f‖W3

=
√
〈f, f〉W3

, ∀ f ∈W3[0, 1],

respectively.90

Lemma 5. The functional space W(3,2)(Ω) is a RK-space. Moreover,91

W(3,2)(Ω) = W3[0, 1]⊗W′

2[−τ, T ] and its RK-function K(3,2)(s̄, t̄, s, t) has the92

following form93

K(3,2)(s̄, t̄, s, t) = K3(s̄, s)K
′

2(t̄, t), ∀ (s̄, s), (t̄, t) ∈ Ω.94

Definition 6. Let Ω1 = [0, 1] × [0, T ]. Let W(1,1)(Ω1) = {f(s, t) | f(s, t) be95

an absolutely continuous real-valued function in Ω1, fxt ∈ L2[Ω1]}. Then,96

W(1,1)(Ω1) is a RK-space and its RK-function K(1,1)(s̄, t̄, s, t) has the following97

form98

K(1,1)(s̄, t̄, s, t) = K1(s̄, s)K1(t̄, t), ∀ (s̄, s), (t̄, t) ∈ Ω.99

3 The RKM and collocation method for Equation (1.1)100

The initial conditions of Equation (1.1) are brought into the RK-spaces, we
must homogenize Equation (1.1). Let g(s, t) = f(s, t)− ω(s, t), where

ω(s, t) =

{
Φ(s, t), − τ ≤ t ≤ 0,

Φ(s, 0), 0 ≤ t ≤ T.

Then, we can acquire a homogeneous system from Equation (1.1) as follows101

102 
g(s, t) = 0, τ ≤ t ≤ 0,

∂g

∂t
−ε∂

2g
∂s2 +ag + bg(s, t−τ) = F1(s, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

g(0, t) = 0, g(1, t) = 0, 0 ≤ t ≤ T,

(3.1)103

where

F1(s, t)=


ε
∂2

∂s2
Φ(s, 0)−a(s, t)Φ(s, 0)−b(s, t)Φ(s, t−τ)+F (s, t), 0 ≤ t ≤ τ,

ε
∂2

∂s2
Φ(s, 0)−a(s, t)Φ(s, 0)−b(s, t)Φ(s, 0)+F (s, t), t > τ.

Let B : W(3,2)(Ω)→W(1,1)(Ω1) be a differential operator such that104

Bg =
∂g

∂t
− ε∂

2g

∂s2
+ ag + bg(s, t− τ), for g(s, t) ∈W(3,2)(Ω).105

Then, Equation (3.1) can be converted into the following form106  g(s, t) = 0, − τ ≤ t ≤ 0,
Bg(s, t) = F1(s, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,
g(0, t) = g(1, t) = 0, 0 ≤ t ≤ T.

(3.2)107

Math. Model. Anal., 28(1):1–18, 2023.
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The operator B will be proved which is linear differential operator with108

boundedness in the remainder of this section. Then we will form a basis for109

the RK-space W(3,2)(Ω) fabricated in the previous section. Therefore, we will110

approximate the solution of Equation (3.2) by a function sequence in W(3,2)(Ω).111

Lemma 6. B : W(3,2)(Ω)→W(1,1)(Ω1) is a bounded linear operator.112

Proof. It is obvious that B is a linear operator. We can obtain the bounded-
ness if the following relation holds that

‖Bg(s, t)‖2W(1,1)
≤M‖g‖2W(3,2), M > 0.

Utilization of the reproducing property of RK-function K(3,2)(s̄, t̄, s, t), we can
get

g(s, t) = 〈g(·, ·),K(3,2)(s, t, ·, ·)〉(3,2),
∂isi∂

j
tjBg(s, t) = 〈g(·, ·), ∂isi∂

j
tjBK(3,2)(s, t, ·, ·)〉(3,2), i, j = 0, 1.

Hence, we utilize ∂isi∂
j
tjBg(s, t) and the continuity of K(3,2)(s, t, ·, ·) as well as

the Schwarz inequality, one can be written

∂isi∂
j
tjBg(s, t) |= 〈g(·, ·), ∂isi∂

j
tjBK(3,2)(s, t, ·, ·)〉W(3,2)

|

≤ ‖g‖W(3,2)
‖∂isi∂

j
tjBK(3,2)(s, t, ·, ·)‖W(3,2)

≤Mi,j‖g‖W(3,2)
.

Make use of the inner product and the norm of W(3,2)(Ω), we can get that

‖Bg(s, t)‖2W(1,1)
= 〈Bg(s, t),Bg(s, t)〉W(1,1)

=

∫ T

0

(
∂

∂t
Bg(0, t)

)2

dt

+ 〈Bg(s, 0),Bg(0, t)〉W1
+

∫∫
Ω1

(
∂

∂s

∂

∂t
Bg(s, t)

)2

dsdt=

∫ T

0

(
∂

∂t
Bg(0, t)

)2

dt

+ (Bg(0, 0))2+

∫ 1

0

(
∂

∂s
Bg(s, 0)

)2

ds+

∫∫
Ω1

(
∂

∂s

∂

∂t
Bg(s, t))2dsdt

≤
∫ T

0

M2
0 ‖g‖2W(3,2)

dt+M2
1 ‖g‖2W(3,2)

+

∫ 1

0

M2
2 ‖g‖2W(3,2)

ds+

∫∫
Ω

M2
3 ‖g‖2W(3,2)

dsdt

= (M2
0 +M2

1 +M2
2T +M2

3T )‖g‖2W(3,2)
.

That is,
‖Bg(s, t)‖2W1

≤M‖g‖2W(3,2)
,

where M = M2
0 +M2

1 +M2
2T +M2

3T . Thus, the linear operator B is bounded113

as well. ut114

Lemma 7. Let

Φi(s, t) = K(1,1)(si, ti, s, t), Ψi(s, t) = B∗Φi(s, t),

as suppose that {(si, ti)}∞i=1 is dense on Ω, where B∗ is the conjugate operator
of B and K(1,1) is the RK-function of W(1,1)(Ω1). Then,

Ψi(s, t) = BK(3,2)(si, ti, s, t).
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Proof. Owing to the properties of the RK-function, we can get that

Ψi(s, t) = 〈B∗K(1,1)(si, ti, ·, ·),K(3,2)(s, t, ·, ·)〉W(3,2)

= 〈K(1,1)(si, ti, ·, ·),BK(3,2)(s, t, ·, ·)〉W(1,1)
= BK(3,2)(si, ti, s, t).

This concludes the Lemma. ut115

Remark 1. By the Lemma above, we can get that116

Ψi(s, t) =
∂K

′

2(ti, t)

∂ti
K3(si, s)− ε

∂2K3(si, s)

∂si2
K

′

2(ti, t)

+a(s, t)K3(si, s)K
′

2(ti, t) + b(s, t)K3(si, s)K
′

2(ti, t− τ).

117

Notice that the RK-functions K
′

2 and K3 are symmetric, it follows that

〈Ψi(s, t),Ψj(s, t)〉 = (BΨi(s, t))(sj , tj)

=
∂Ψi(s, t)

∂tj
− ε∂

2Ψi(s, t)

∂xj2
+ a(s, t)Ψi(s, t) + b(s, t)Ψi(s, t− τ).

Now we are ready to define a basis for the RK-space W(3,2)(Ω).118

Theorem 1. The sequence {Ψi(s, t)}∞i=1 is linearly independent in W(3,2)(Ω)119

as suppose that {(si, ti)}∞i=1 is dense on Ω.120

Proof. If we can obtain that {Ψi(s, t)}mi=1 is linearly independent for any m ≥
1, this conclusion is obvious. Actually, if {ci}mi=1 satisfies that

m∑
i=1

ciΨi(s, t) = 0,

taking αk(s, t) such that

αk(xl, tl) =

{
1, l = k,

0, l 6= k,

where αk(s, t) ∈W(3,2)(Ω), for each l = 1, 2, . . . ,m, then we can obtain that121

0 = 〈αk(s, t),
m∑
i=1

ciΨi(s, t)〉W(3,2)
=

m∑
i=1

ci〈αk(s, t),Ψi(s, t)〉W(3,2)

=
m∑
i=1

ciαk(si, ti) = ck, k = 1, 2, . . . ,m.
122

Hence, we can arrive at a conclusion that {Ψi(s, t)}mi=1 is linearly independent123

for all m ≥ 0. Therefore, {Ψi(s, t)}∞i=1 is linearly independent in W(3,2)(Ω).124

ut125

The main theorem in this paper is given below. This theorem provides an126

approximated solution to Equation (3.2) in the RK-space W(3,2)(Ω).127

Math. Model. Anal., 28(1):1–18, 2023.
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Theorem 2. Let Sn = span{Ψ1(s, t),Ψ2(s, t), · · · ,Ψn(s, t)} and128

Pn : W(3,2)(Ω) → Sn be the orthogonal projection operator of W(3,2)(Ω) onto129

Sn. If g(s, t) is the solution of Equation (3.2), then, g̃n(s, t) = Png satisfies130

〈g̃n,Ψi〉 = F1(si, ti), i = 1, 2, . . . , n. (3.3)131

Furthermore,132

g̃n(s, t) =
n∑
j=1

ajΨj(s, t) (3.4)133

is an approximate solution, where a1, a2, . . . , an are undetermined constants,
which can be determined by

〈Ψ1,Ψ1〉 〈Ψ2,Ψ1〉 · · · 〈Ψn,Ψ1〉
〈Ψ1,Ψ2〉 〈Ψ2,Ψ2〉 · · · 〈Ψn,Ψ2〉

...
...

...
...

〈Ψ1,Ψn〉 〈Ψ2,Ψn〉 · · · 〈Ψn,Ψn〉



a1
a2
...
an

 =


F1(s1, t1)
F1(s2, t2)

...
F1(sn, tn)

 .

Proof. Owing to the properties of the RK-function and the self-conjugation
of the operator Pn, it can be shown that

〈Png,Ψi〉 = 〈g, PnΨi〉 Ψ self-conjugate

= 〈g,Ψi〉 Ψ orthogonal projection

= 〈g,B∗Φi〉 Definition of Ψi

= 〈Bg,Φi〉 = Bg(si, ti) = F1(si, ti).

To gain the approximated solution g̃n in the form of Equation (3.4), we134

substitute Equation (3.4) into Equation (3.3). Through collocation process, we135

have that136

n∑
j=1

aj〈Ψj(s, t),Ψi(s, t)〉 = F1(s, t), ∀ i = 1, . . . , n. (3.5)137

Rewrite the above system in a matrix form, we have that138

Ga = F1, (3.6)139

where

G =


〈Ψ1,Ψ1〉 〈Ψ2,Ψ1〉 · · · 〈Ψn,Ψ1〉
〈Ψ1,Ψ2〉 〈Ψ2,Ψ2〉 · · · 〈Ψn,Ψ2〉

...
...

...
...

〈Ψ1,Ψn〉 〈Ψ2,Ψn〉 · · · 〈Ψn,Ψn〉

 ,

a =
(
a1a2 · · · an

)T
, F1 =

(
F1(s1, t1)F1(s2, t2) · · ·F1(sn, tn)

)T
.

Then, we have that a = G−1F1 as required. ut140
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Algorithm:141

Step 1. Calculating the RK-functions K(1,1)(s̄, t̄, s, t) and K(3,2)(s̄, t̄, s, t);142

Step 2. Structuring a bounded linear operator B;143

Step 3. Structuring Ψi and the projection operator Pn;144

Step 4. Setting up Equation (3.5) in the light of the projection operator,145

and expressed as matrix form;146

Step 5. Finding the corresponding coefficients in Equation (3.6).147

Consider the domain Ω = [0, 1] × [0, T ]. Instead of using fixed collocation148

points on the domain Ω, we realize that an adaptive collocation points cross149

domain during the layer are critical to certain situations. We observe that150

there is a connection between the points that had a larger error of fn and the151

points that had larger errors of F . This motivates us to use the error of F as152

an indicator for adding points.153

In practice, we first select a set A of n points uniformly across the domain.154

By applying our proposed RKM to obtain an approximating solution. We then155

choose a different set B of 2n points randomly as test points. We calculate156

Bfn − F at the above 2n points of B and pick n points that give the highest157

error in predicting F . We add this set of points to previous collocation points158

and using the RKM again to obtain an approximation f2n. This procedure is159

important, as it not only prevents us from losing the accuracy of the solution160

across the entire domain but also helps us to focus more points on the boundary161

layer.162

4 Convergence and error estimation163

Theorem 3. As defined in Equation (3.4), g(s, t) is uniformly convergent by164

g̃n(s, t).165

Proof. Obviously, ‖g̃n − g‖ → 0 holds as n → ∞. Like that, g̃n(x) is the
approximate solution of Equation (3.2). By the following inequalities

‖g̃n(s, t)− g(s, t)‖ = ‖〈g̃n − g,K(3,2)〉‖ ≤ ‖g̃n − g‖‖K(3,2)‖, ‖K(3,2)‖ ≤M

since K(3,2) is continuous on [0, 1], where M is a real number and M > 0, we166

can draw a conclusion that g(s, t) is uniformly convergent by g̃n(s, t) on [0, 1].167

ut168

Theorem 4. The partial derivatives of the exact solution ∂iti∂
j
sjg(s, t) are uni-169

formly convergent by ∂iti∂
j
sj g̃n(s, t), whenever i = 0, 1 and j = 0, 1, 2, where170

∂iti∂
j
sj g̃n(s, t) are the partial derivatives of the numerical solution g̃n(s, t).171

Math. Model. Anal., 28(1):1–18, 2023.



10 R. Xie, J. Zhang, J. Niu, W. Li and G. Yao

Proof. Since W(3,2) is a Hilbert space, obviously, ‖g̃n−g‖ → 0 holds as n→∞.
Again, since

‖∂iti∂
j
sjg(s, t)− ∂iti∂

j
sj g̃n(s, t)‖

= ‖〈g(y, s)− g̃n(y, s), ∂iti∂
j
sjBK(3,2)(s, t, y, s)〉‖W(3,2)

≤ ‖g − g̃n‖W(3,2)
‖∂iti∂

j
sjBK(3,2)(s, t, y, s)‖W(3,2)

≤Mi,j‖g − g̃n‖W(3,2)
,

hence ∂iti∂
j
sj g̃n(s, t) converges uniformly to ∂iti∂

j
sjg(s, t). ut172

Next, we will give an error analysis on the approximated solution g̃n to the173

true solution g for Equation (3.2).174

Theorem 5. Let a dense subset of the domain Ω be S = {(s1, t1), (s2, t2), . . .}.
Then,

Bg(sj , tj) = Bg̃n(sj , tj), (sj , tj) ∈ S, j ≤ n.

Proof. Owing to the properties of the RK-function and the self-conjugation
of the operator Pn, we can get that

Bg̃n(sj , tj) = 〈g̃n(·, ·),BK(3,2)(sj , tj , ·, ·)〉
= 〈g̃n(·, ·),Ψj(·, ·)〉 Definition of Ψ

= 〈Png(·, ·),Ψj(·, ·)〉 Pn self-conjugation

= 〈g(·, ·), PnΨj(·, ·)〉 = 〈g(·, ·),Ψj(·, ·)〉
= 〈g(·, ·),BK(3,2)(sj , tj , ·, ·)〉 = B〈g(·, ·),K(3,2)(sj , tj , ·, ·)〉 = Bg(sj , tj).

ut175

The error estimation of the approximated solution, through the following the-176

orem, constructed by our RK-space W(3,2)(Ω), g̃n.177

Theorem 6. Recall T is the final time of interests, n is the sum of points in
the domain Ω. Then,

‖g(s, t)− g̃n(s, t)‖ = O (T/n) .

Proof. For ∀ n ∈ N and (s, t) ∈ Ω, take (sj , tj) ∈ S, j ≤ n, where S =
{(s1, t1), (s2, t2), . . .}, such that | s− sj |≤ 1/n and | t− tj |≤ T/n. By Equa-
tion (5), we can arrive at

Bg̃n(s, t)−Bg(s, t) = Bg̃n(s, t)−Bg̃n(sj , tj)− (Bg(s, t)−Bg̃n(sj , tj))

= 〈g̃n(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)〉
− 〈g(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)〉
= 〈g̃n(·, ·)− g(·, ·),BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)〉.

Furthermore, based on the reversible property of the operator B, we have that

g̃n(s, t)−g(s, t)=〈g̃n−v,B−1(BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·))〉
≤ ‖B−1‖‖g̃n(s, t)− g(s, t)‖‖BK(3,2)(s, t, ·, ·)−BK(3,2)(sj , tj , ·, ·)‖.
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From the defintion of K(3,2)(s, t, s̄, t̄), it can be seen that BK(3,2)(s, t, ·, ·)
is differentiable with respect to (s, t). Utilizing the mean value theorem with
regard to s and t, respectively, we can get that

BK(3,2)(si, ti, s, t)−BK(3,2)(sj , tj , ·, ·)

=
∂

∂ξ
BKξ,η(·, ·)(s− sj) +

∂

∂η
BKξ,η(·, ·)(t− tj).

Thus,

g̃n(s, t)−g(s, t) ≤ ‖B−1‖‖g̃n(s, t)−g(s, t)‖s−sj‖
∂

∂ξ
BKξ,η(·, ·)‖+‖B−1‖‖g̃n(s, t)

− g(s, t)‖t− tj‖
∂

∂η
BKξ,η(·, ·)‖ ≤ 1

n
‖B−1‖‖g̃n(s, t)− g(s, t)‖‖ ∂

∂ξ
BKξ,η(·, ·)‖

+
T

n
‖B−1‖‖g̃n(s, t)− g(s, t)‖‖ ∂

∂η
BKξ,η(·, ·)‖.

Since both ‖ ∂∂ξBKξ,η(·, ·)‖ and ‖ ∂∂ηBKξ,η(·, ·)‖ are bounded, and ‖g̃n(s, t) −
g(s, t)‖ → 0, we conclude that

g(s, t)− g̃n(s, t) = O (T/n) .

ut178

5 Numerical results179

In this section, we present some numerical experiments to verify our theoretical
findings. We operate our programs in MATHEMATICA 13.0. In all examples,
we first use a uniform meshes of n points on Ω. We compute the error en =
fn − f in different type norms. For convenience, we denote

‖en‖20 :=

∫
Ω

(f(s, t)−fn(s, t))
2

dsdt, ‖en‖21,t :=

∫
Ω

(∂tf(s, t)−∂tfn(s, t))
2

dsdt,

‖en‖21,s :=

∫
Ω

(∂sf(s, t)− ∂sfn(s, t))
2

dsdt,

‖en‖22,s :=

∫
Ω

(∂ssf(s, t)− ∂ssfn(s, t))
2

dsdt.

Example 1. Let us examine the singularly perturbed delay differential equation
as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [0, 1]× [−τ, 0],

∂f(s, t)

∂t
− ε∂

2f(s, t)

∂s2
= −e−0.05f(s, t−τ)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = 0, f(1, t) = 0, t ∈ [0, 2],

where τ = 0.05, and the source function is provided by

F (s, t) = e−(t+s/
√
ε) (−s(s− 1) + 2(2s− 1)

√
ε− 2ε

)
.

Math. Model. Anal., 28(1):1–18, 2023.
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The initial data is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = s(s− 1)e−(t+s/
√
ε).

The profiles of the approximate solution and the absolute errors when n =180

64 with ε = 2−2 are shown in Figure 1.181

a) The approximating solution, b) The absolute error

Figure 1. Example 1 – a) the approximating solution and b) the absolute error with
ε = 2−2 and τ = 0.05.

Table 1 is listed the absolute errors regarding different values of the singu-182

larity perturbed parameter ε and different values of spatial points n.183

Table 1. Errors and convergence orders of adaptive RKM for Example 1.

ε n ‖en‖0 order |en|1,t order |en|1,s order |en|2,s order

2−2

16 1.49E-3 6.85E-3 4.83E-3 2.47E-2
64 3.36E-4 2.14 2.25E-3 1.60 1.23E-3 1.97 6.25E-3 1.98
256 7.74E-5 2.13 6.39E-4 1.84 3.01E-4 1.99 1.57E-3 1.99
1024 1.85E-5 2.05 1.68E-4 1.93 7.51E-5 1.99 3.93E-4 2.00

2−4

16 1.55E-3 7.22E-3 8.39E-3 8.61E-2
64 3.40E-4 2.19 1.80E-3 2.00 1.48E-3 2.50 2.07E-2 2.06
256 7.65E-5 2.15 4.55E-4 1.98 2.83E-3 2.38 4.97E-3 2.05
1024 1.82E-5 2.08 1.14E-4 1.99 6.84E-4 2.04 1.21E-3 2.04

2−6

16 5.39E-3 2.01E-2 2.79E-2 2.65E-1
64 1.26E-3 2.07 5.19E-3 1.95 7.21E-3 1.95 7.01E-2 1.91
256 3.04E-4 2.05 1.30E-3 2.00 1.83E-3 1.98 1.81E-2 1.95
1024 7.51E-5 2.02 3.24E-4 1.99 4.58E-4 2.00 4.62E-3 1.97

It can be shown clearly that the proposed numerical method converges184

with orders of O(h2) under L2 norm, H1 seminorm and H2 seminorm, which185

is consistent with traditional RKM. The computational accuracy is decreasing186

when ε is getting smaller. Figure 2 shows the the profiles of the approximated187

solution and the absolute errors when n = 256 with ε = 2−8. As we can see188

from Figure 2, the proposed algorithm can handle ε = 2−8 with fairly accurate189

approximations.190
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a) The approximating solution, b) The absolute error

Figure 2. Example 1 – a) the approximating solution and b) the absolute error with
ε = 2−8 and τ = 0.05.

Example 2. Let us examine the equation as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [−τ, 0]× [0, 1],

∂f(s, t)

∂t
− ε∂

2f(s, t)

∂s2
= −2f(s, t−τ)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = 0, f(1, t) = 0, t ∈ [0, 2],

where τ = 0.01, and the source function is provided by

F (s, t)=e−(t+s/
√
ε) (2s(s− 1)2(−1 + e0.01)+2(3s2−4s+1)

√
ε−2(s−2)ε

)
.

The initial data is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = s(s− 1)2e−(t+s/
√
ε).

Table 2. Errors and convergence orders of adaptive RKM for Example 2.

ε n ‖en‖0 order |en|1,t order |en|1,s order |en|2,s order

2−2

16 9.87E-3 2.81E-2 3.32E-2 1.08E-1
64 2.82E-3 1.68 7.98E-3 1.81 9.45E-3 1.81 3.13E-2 1.79
256 7.95E-4 1.83 2.07E-3 1.94 2.51E-3 1.92 8.65E-3 1.86
1024 2.05E-4 1.95 5.22E-4 1.99 6.54E-4 1.93 2.23E-3 1.96

2−4

16 2.16E-2 8.01E-2 8.64E-2 5.51E-1
64 6.26E-3 1.79 2.25E-2 1.83 2.53E-2 1.77 1.58E-1 1.80
256 1.64E-3 1.93 6.02E-3 1.90 6.90E-3 1.88 4.29E-2 1.88
1024 4.21E-4 1.97 1.55E-3 1.96 1.85E-3 1.90 1.12E-2 1.94

2−6

16 5.24E-2 2.62E-1 2.59E-1 2.38E-0
64 1.49E-2 1.82 7.34E-2 1.84 7.10E-2 1.87 6.74E-1 1.82
256 4.05E-3 1.88 1.98E-2 1.89 1.89E-2 1.91 1.79E-1 1.91
1024 1.04E-3 1.96 5.15E-3 1.94 4.83E-3 1.97 4.71E-2 1.93

Listed in Table 2 are numerical results of Example 2 obtained by our pro-191

posed RKM. By applying the adaptive strategies, we obtain a similar conver-192

gence results as Example 1. The profiles of the approximated solution and193

Math. Model. Anal., 28(1):1–18, 2023.
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the absolute errors when with ε = 2−2(n = 64) and ε = 2−8(n = 256) are194

shown Figures 3 and 4, respectively. As ε gets smaller, the accuracy remains195

at the similar order of magnitudes. Nevertheless, our adaptive RKM improve196

the accuracy compared with the traditional RKM.197

a) The approximating solution, b) The absolute error

Figure 3. Example 2 – a) the approximating solution and b) the absolute error with
ε = 2−2 and τ = 0.01.

a) The approximating solution, b) The absolute error

Figure 4. Example 2 – a) the approximating solution and b) the absolute error with 2−8

and τ = 0.01.

Example 3. Let us compare the equation in [3] as follows:

f(s, t) = Ψ(s, t), (s, t) ∈ [−τ, 0]× [0, 1],

∂f(s, t)

∂t
− ε∂

2f(s, t)

∂s2
= −2e−1f(s, t−1)+F (s, t), (s, t) ∈ [0, 1]× (0, 2],

f(0, t) = e−1, f(1, t) = e−(t+1/
√
ε), t ∈ [0, 2].

The initial date is given by Ψ(s, t) which can be calculated from the exact
solution

f(s, t) = e−(t+s/
√
ε).

Listed in Table 3 are numerical results of Example 3 obtained by our proposed198

RKM and the finite difference methods in [3]. From the Table, we can see that199

our RKM method is litte bit more accurate than the method in [3]. This also200

shows that the RKM proposed in this paper is meaningful.201
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Table 3. The comparision of maximum errors for Example 3.

ε n parameter-robust FDMs in [3] our proposed RKM

2−6

64 2.158E-3 1.335E-3
256 5.138E-4 3.179E-4
1024 1.268E-4 7.948E-5

2−8

64 2.628E-3 1.594E-3
256 5.449E-4 3.785E-4
1024 1.287E-4 9.463E-5

2−14

64 4.718E-3 2.947E-3
256 8.212E-4 7.017E-4
1024 1.576E-4 1.754E-4

6 Conclusions202

In this post, a significant method was proposed by us that using RK-spaces and203

collocation method to solve delay parabolic PDEs with singular perturbation.204

We defined three basic RK-spaces with their inner product and norms. Fur-205

thermore, an approximated solution to the delay parabolic PDEs with singular206

perturbation were approximated by the RK-space W(3,2)(Ω). In addition, we207

verified that the exact solution is uniformly convergent by the approximated208

solution. Error estimates for the presented numerical algorithm were estab-209

lished.210

All the discussions and proofs are based on [0, 1] in one dimensional space.211

However, those results can be easily extended to other closed interval in R.212

Furthermore, the absolute errors of the approximated solution is in the order of213

T/n which can be understood as the time step size in our numerical algorithm.214

Notice that we do not have any special time discretization in our algorithm. In215

other words, the time domain is treated the same way as the spatial domain,216

which is much easier than other traditional methods that use finite different217

scheme for time discretization and another spatial discretization scheme.218
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