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ABSTRACT10

In this paper, the improved localized method of approximated particular solutions11

(ILMAPS) using polyharmonic splines (PHS) together with a low-degree of poly-12

nomial basis is used to approximate solutions of various nonlinear elliptic Partial13

Differential Equations (PDEs). The method is completely meshfree, and it uses a14

radial basis function (RBF) that has no shape parameters. The discretization pro-15

cess is done through a simple collocation technique on a set of points in the local16

domain of influence. Resulted system of nonlinear algebraic equations is solved by17

the Picard method.18

The performance of the proposed method is tested on various nonlinear ellipti-19

cal problems, including the Poisson-type problems in 2D and 3D with constant or20

variable coefficients on rectangular or irregular domains and the Poisson-Boltzmann21

equation with Dirichlet boundary conditions or mixed boundary conditions. The22

effect of domain shapes in 2D and 3D, types of boundary conditions, and degrees23

of polyharmonic splines, and order of polynomial basis are examined. The perfor-24

mance of the method is compared with other bases such as multiquadrics (MQ)25

basis functions, and with results reported in the literature (method of particular so-26

lutions using polynomials). The numerical experiments suggest that ILMAPS with27

polyharmonic splines yields considerably superior accuracy than other RBFs as well28

as other approaches reported in the literature for solving nonlinear elliptic PDEs.29
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1. Introduction33

Mesh-based methods, such as finite difference method (FDM) [21, 29], finite volume34

method (FVM) [8, 23] and finite element method (FEM) [4] are commonly used nu-35

merical methods in computational sciences and engineering. Meshfree methods, on36

the other hand, have been developed and effectively applied to solve many problems37

in science and engineering during the last two decades [22, 24–26, 35]. Most of those38

meshfree methods are collocation methods where scattered nodes in the domain and39

on the boundaries of the domain are used to establish an algebraic system of equa-40

tions. Strong form methods account for a large proportion of the meshfree methods,41
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such as the vortex method [1], general FDM [28], the meshfree collocation method [15],42

the method of fundamental solution [14], the method of fundamental solution-Method43

of particular solution [16], the method of particular solution [3], the localized method44

of particular solutions [34], and etc. The complex pre-processing is avoided, and the45

formulation procedure is straightforward. These strong form meshfree methods have46

some attractive features: no mesh or numerical integration is needed during the dis-47

cretization process, they are simple to implement, and they are efficient in comparison48

with mesh-based methods.49

Radial basis functions (RBFs) are used in the discretization process in the strong50

form meshfree method, to create shape functions. Any functions whose values depend51

only on the distance from a fixed point (also called a center), xc, i.e.,52

ϕ(x) = ϕ(||x− xc||) = ϕ(r), (1)

are called radial basis functions (RBFs), where || · || denotes the Euclidean norm, r =53

||x−xc||. Thus, discretization using RBFs reduces problems in high-dimensional spaces54

to one-dimensional problems. Some commonly used RBFs are listed in Table 1, which55

include Gaussian, multiquadrics (MQ), Matern, polyharmonic splines (PHS) and etc.56

Note Ki, i = 2, 3 denote the modified Bessel functions of the second kind of order two57

and three, respectively. Among those, all but polyharmonic splines are positive definite58

RBFs, where the collocation matrix constructed from distinct collocation points is59

invertible. Thus, all but polyharmonic splines have been widely used in applications60

and numerical simulations of solutions to ordinary and partial differential equations.61

However, the strong form meshfree methods using those RBFs are somewhat sensitive62

to the choice of shape parameters of RBFs and can be unstable due to ill-conditioning63

issues.64

Table 1.: Commonly used RBFs.

RBF Formulation Shape
parameter

Gaussian ϕ(r) = exp(−cr2), c > 0 c

multiquadric (MQ) ϕ(r) =
√
r2 + c2, c > 0 c

inverse multiquadric (IMQ) ϕ(r) = 1/
√
r2 + c2, c > 0 c

Matern ϕ(r) = (cr)mKm(cr), m > 0 c
Polyharmonic Splines (PHS) in 2D ϕ(r) = r2kln(r), k ∈ N+ None
Polyharmonic Splines (PHS) in 3D ϕ(r) = r2k−1, k ∈ N+ None

The localized method of particular solutions (LMAPS) was first introduced in65

2010 [34]. The performance of LMAPS on linear PDEs has been studied using var-66

ious types of PDEs for past years, including two-dimensional velocity–vorticity for-67

mulation of the Navier–Stokes equations [9] using implicit Euler method and the68

Newton’s method, 3D nonlinear Schrödinger equations [20], biharmonic equations [17],69

unsteady Navier–Stokes problem [36], two-dimensional nonlinear sine-Gordon equa-70

tion [27], Cole–Hopf transformation for multi-dimensional Burgers equations [19], near-71

singular two-and three-dimensional problems [33], and etc.72

To make these types of meshfree methods more efficient and robust and to achieve73

even higher accuracy, the LMAPS method is improved by utilizing the PHS RBF for74

solving linear elliptic PDEs [31]. The main differences between the original LMAPS and75
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the Improved LMAPS is that the ILMAPS uses polyharmonic splines and a low degree76

of polynomial basis to approximate solutions whereas original LMAPS is limited to77

Gaussian, MQ, or Matern RBFs. Such improvement avoided the difficulty of searching78

for the optimal shape parameter, accuracy is improved simply by increasing the order79

of polyharmonic splines or polynomial basis, or the number of interpolation points,80

and better stability with the use of additional polynomial basis. To our surprise,81

the method is extremely accurate and efficient, in comparison to all other commonly82

used RBFs. To improve the stability, a basis of low degree of polynomials is added to83

create the shape functions. The basis of a low degree of polynomials guarantees the84

non-singularity of the collocation matrices. The improved LMAPS (ILMAPS) is then85

applied to solve linear elliptic equations with mixed boundary conditions on scattered86

data [18].87

The effect of boundary conditions on the global method of approximated particular88

solutions (MAPS) was studied in [12]. In [32], MAPS with PHS has successfully been89

used for solving nonlinear PDEs. In 2017, Dangal et al proposed the method of par-90

ticular solutions using polynomials only (without the RBFs). The method is proved91

to be efficient and accurate [6].92

Nonlinear partial differential equations are nowadays very popular as many real-93

world problems, ranging from gravitation to fluid dynamics are modeled by these94

equations. There is no general method to solve such problems, especially when dealing95

with irregular geometries and complex boundary conditions. Therefore, a numerical96

algorithm that is aiming for solving general nonlinear elliptic PDEs with complicated97

features such as domains or boundary conditions is needed.98

In this paper, the improved localized method of approximated particular solutions99

(ILMAPS) using PHS together with a basis of low degree of polynomials is used100

to approximate solutions of various nonlinear PDEs, particularly to the elliptic type101

PDEs. We used the Picard method for the nonlinear iteration in all examples which will102

be discussed in Section 3. The effect of domain shapes, the complexity of the nonlinear103

terms in the elliptic equations in 2D and 3D, types of boundary conditions including104

Dirichlet boundary condition or mixed Dirichlet and Neumann boundary conditions,105

the order of PHS, and the degree of polynomial basis are examined. The performance of106

the proposed method is compared with other bases such as multiquadrics basis (MQ)107

functions and other reported results in the literature. We show that the proposed108

ILMAPS method can avoid some of the ill-conditioning issues and is more accurate109

and efficient than the original method, especially for the nonlinear elliptic PDEs using110

Neumann boundary conditions, whereas the original LMAPS was not able to find111

accurate solutions when dealing with Neumann boundary conditions.112

2. Improved localized method of approximated particular solutions113

(ILMAPS)114

Let us consider the following elliptic PDEs of the form

Du(x) = f(x), x ∈ Ω, (2)

Bu(x) = g(x), x ∈ ∂Ω, (3)

where D and B are differential operators, f and g are known functions, Ω ∈ Rd, d = 2, 3115

is a bounded and closed domain with boundary ∂Ω. This paper focuses on nonlinear116

differential operators for D and B.117
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Figure 1.: The random node arrangement on an irregular domain and the schematics
of the five-node local domains of influence in the interior and at the near boundary.

Let Bd
m be the set of d-variant polynomials of degree up to m and {p}wl=1 be a basis118

of Bd
m where119

w =

(
m+ d

d

)
=


1
2(m+ 2)(m+ 1), in R2,

1
6(m+ 1)(m+ 2)(m+ 3), in R3,

is the dimension of the polynomial basis. Let {xi}Ni=1 ∈ Ω ∪ ∂Ω be the spatial dis-120

cretization points, where the first ni points are the interior points in Ω, followed by121

nb boundary points on ∂Ω such that ni + nb = N .122

In ILMAPS, the solution of PDEs can be approximated on a set of radial basis123

functions. First of all, for each xi ∈ Ω, a local domain of influence, Ωi needs to be124

created. This can be done through a kd-tree search or knn search for a large amount125

of data. Figure 1 is a schematic showing five-node local domains of influence. Let n126

be the number of points in the influence domains, and Ωi = {x[i]
j }nj=1. Let ϕ(r) be127

the PHS of order k and {pl}wl=1 be the polynomial basis of order up to m. Then the128

solution to (2)-(3) can be approximated by particular solutions and polynomials in129

the following way:130

u(xi) ≈ û(xi) =

n∑
j=1

αjΦ(||xi − x
[i]
j ||) +

w∑
l=1

αn+lpl(xi); xi ∈ Ω (4)

where x
[i]
j , j = 1, · · · , n ∈ Ωi are points located inside the local domain of influence of131

xi, {αj} is the undetermined coefficients, Φ is a particular solution with respect to ϕ132

and differential operator D, which is also a RBF, i.e133

DΦ(r) = ϕ(r),
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and the augmented polynomial basis is as follows: for any 0 ≤ l ≤ w,

pl(x) =

xl−jyj , 0 ≤ j ≤ i, 0 ≤ i ≤ m, in R2,

xl−j−kyjzk, 0 ≤ k ≤ i− j, 0 ≤ j ≤ i, 0 ≤ i ≤ m, in R3,

where m is the highest degree of polynomials in the polynomial basis. Particular
solutions for various differential operators associated with commonly used RBFs have
already been derived in [30]. The closed form particular solutions

∆Φ(r) = ϕ(r) = r2k ln(r)

in R2 is134

Φ(r) =
r(2k+2) ln(r)

4(k + 1)2
− r(2k+2)

4(k + 1)3
. (5)

Since there are w additional degrees of freedoms in (4), standard polynomial insolvency135

constraint [11, 32] must be applied. Thus, the collocation technique on a local domain136

of x resulted in the following linear system:137

n∑
j=1

αjΦ(∥x[i]
k − x

[i]
j ∥) +

w∑
l=1

αn+lpl(x
[i]
k ) = û(x

[i]
k ), k = 1, 2, . . . , n, (6)

n∑
j=1

αjpl(x
[i]
k ) = 0, l = 1, 2, . . . , w. (7)

Note that (6)–(7) is a linear system of equations with n + w coefficients to be de-138

termined. Let’s denote the coefficient matrix in the first term in (6) as Φnn, and the139

second term as Pnw. Note that the matrix Φnn is a symmetric matrix of size n × n.140

Then the above system can be represented in block matrix form141 [
Φnn Pnw

PT
nw 0ww

]
αn+w =

[
ûn

0w

]
, (8)

where

ûn = [û(x1), û(x2), · · · , û(xn)]
T , αn+w = [α1, α2, · · · , αn+w]

T ,

and 0w is a zero matrix of size w × w. Denote the coefficient matrix in (8) by Φn+w,142

and the right-hand side of the (8) by ûn+w. Then the system can be rewritten as143

Φn+wαn+w = ûn+w. (9)

Since both weights αn+w and approximated solutions ûn are unknown, we can inter-144

change those two vectors in the system above:145

Φ−1
n+wûn+w = αn+w. (10)
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Note that the matrix Φn+w is nonsingular if the nodes inside Ωi are distinct. The146

unknown coefficient vector αn+w in (8) can be reformulated as in (10), although the147

inverse matrix Φ−1
n+w exists but we never computed it directly. Details can be found148

below:149

• Plug (9) into (2)-(3), we have

DΦn+wαn+w = f(xi), xi ∈ Ω, (11)

BΦn+wαn+w = g(xi), xi ∈ ∂Ω, (12)

• Plug (10) into the system above, we have(
(DΦn+w)Φ

−1
n+w

)
ûn+w = f(xi), xi ∈ Ω, (13)(

(BΦn+w)Φ
−1
n+w

)
ûn+w = g(xi), xi ∈ ∂Ω. (14)

• Coefficients of unknown approximations ûn+w in (13) or (14), denoted by A, is a
row vector of size (n+w). This can be obtained by solving the following system,
for (13),

Φn+wA
T = (DΦn+w)

T . (15)

This is why we say that the inverse of small matrices of the size of (n+w)× (n+w)150

were never computed directly. It was done by solving a small linear system. Since151

there were N collocation matrices in the spatial discretization, we will need to solve152

N systems, which resulted in a large system, (13)-(14), of N nonlinear equations with153

N unknowns û(xi) ≈ u(xi),xi ∈ Ω ∪ ∂Ω. This N × N sparse nonlinear system of154

equations can be solved by an efficient sparse nonlinear solver. To our surprise, the155

simple Picard method is already sufficient. This will be discussed in the next section.156

3. Nonlinear Solver–Picard Method157

If the differential operator D is nonlinear, a direct Picard method is used to solve the158

nonlinear system of algebraic equations (13)-(14). For our simplicity, we denote the159

nonlinear system of N equations with N unknowns û(xi) ≈ u(xi),xi ∈ Ω ∪ ∂Ω by160

A(û)û = b, (16)

where A(û) as an N × N matrix function of û, b as a vector function, and û =161

[û(x1), û(x2), · · · , û(xN )]T .162

Example 3.1. Let the differential operator

Du = ∆u− u
∂u

∂x
+ u2, B = I.
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The resulting nonlinear system by ILMAPS would be

(
(∆Φn+w)Φ

−1
n+w

)
ûn+w − ûi

((
∂

∂x
Φn+w

)
Φ−1

n+w

)
ûn+w + û2i = f(xi), xi ∈ Ω,

ûi = g(xi), xi ∈ ∂Ω,

where ûi ≈ u(xi) is the approximated solution at xi. The above system can be repre-163

sented as a nonlinear system of the following form:164

A(û)û = b(û).

We can linearize the product A(û)û to A(ûi)û and b(û) as b(ûi). That is, we use the165

most previously computed approximation in A and b to arrive at a linear system for166

û. Let the initial guess û0 = 0. We construct a sequence ûi, i = 1, 2, 3, . . . by solving167

the following linear system:168

A(ûi)ûi+1 = b(ûi), i = 0, 1, 2, · · · .

The algorithm can be found below:

Algorithm 1: The Picard Method for solving (16).

Data: Set a small positive tolerance ϵ;
Set large positive integer tolerance TOL;

Result: ûi

1 û0 initial guess, i = 0;
2 û1 = 10ϵû0;
3 while ∥ûi − ûi+1∥ > ϵ do
4 i = i+ 1;
5 if i < TOL then
6 Solve A((ûi))ûi+1 = b(ûi);
7 else

8 end

169

Then ûi at the final iteration is the approximated solution.170

4. Numerical Results171

In this section, the improved localized method of approximated particular solutions172

(ILMAPS) using polyharmonic splines (PHS) together with a basis of low degree of173

polynomials is used to approximate solutions of various nonlinear Poisson-type elliptic174

PDEs on regular and irregular domains in 2D or 3D. Recall the following notations:175

• ni: the number of collocation points in the domain Ω176

• nb: the number of collocation points on the boundary ∂Ω177

• N = ni + nb: the total number of collocation points178

• n: the number of points in the local domain of influence179

• m: the degree of highest order polynomials180

• k: the order of PHS.181
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Uniformly distributed interior points are used in the computational experiments,182

together with points on the boundaries with equal spaces along the boundary. The183

root mean squared error (ϵrms) and the maximum absolute error (ϵ∞) are used to184

measure the accuracy of our approximated solutions. They are defined as follows:185

ϵrms =

√√√√ 1

N

N∑
i=1

(ûi − ui), ϵ∞ =
N

max
i=1

|ûi − ui| (17)

where ûi ≈ ui = u(xi). The Picard method is used for nonlinear iterations with the
initial guess, u0 = 0 across all the examples presented. Stopping criteria are set to

∥ui+1 − ui∥ < 10−9

or the 200 maximum number of iterations.186

The accuracy of the RBF-based method depends on the shape parameter if there187

is a shape parameter associated with the RBF. However, the determination of the188

optimal shape parameter is still an ad hoc topic. A statistical method called leave-189

one-out-cross validation (LOOCV) [10], is employed to automatically select an optimal190

shape parameter when MQ is used for comparison purposes.191

The performance of the proposed method is tested on several nonlinear equations,192

including193

• Example 1: a nonlinear Poisson-type equation in 2D on a square domain and194

several irregular domains (amoeba-like domain and peanut-shaped domain);195

• Example 2: a slightly more complicated nonlinear force term when analytical196

solutions are simple exponential function or Franke’s benchmark test function;197

• Example 3: a Poisson-Boltzmann equation on a rectangular domain with Dirich-198

let and Neumann boundary conditions;199

• Example 4: variable coefficient problem with mixed boundary conditions, and200

• Example 5: a 3D nonlinear problem with bumpy sphere domain.201

Example 4.1. In this example, we consider the following nonlinear Poisson-type prob-202

lem:203

∆u(x, y) = 3u2(x, y), (x, y) ∈ Ω, (18)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (19)

where g(x, y) is given based on the following analytical solution204

u(x, y) =
4

(3 + x+ y)2
. (20)

The parametric equation of the irregular domain boundary is defined as follows,205

∂Ω = {(x, y)|x = r cos θ, y = r sin θ, 0 ≤ θ < 2π},

where two irregular shapes of domains can be obtained by choosing different r(θ):206

• Amoeba-like domain: r(θ) = 0.4esin θ sin2(2θ) + 0.4ecos θ cos2(2θ)207

• Peanut-shaped domain: r(θ) =

√
cos(2θ) +

√
1.1− sin2(2θ).208
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Figure 2.: Computational domains: Amoeba-shaped (left), peanut-shaped (right)
used in Example 4.1.

Computational domains: Amoeba-shaped (top-left), peanut-shaped (top-right), are209

shown in Figure 2.210

Table 2.: Example 4.1: Comparison of PHS (order 4) and MQ with additional
polynomial basis of order 4 is added with n = 35.

Domain (ni, nb)
ϵrms ϵ∞

PHS MQ PHS MQ c
Unit Square (841, 236) 1.959E−09 8.764E−07 4.511E−09 3.353E−06 7.6393
Amoeba (861, 300) 9.752E−10 8.218E−07 2.514E−09 7.768E−06 8.5913
Peanut (832, 290) 2.788E−07 5.417E−05 9.996E−07 3.369E−04 3.1245

Table 2 shows the comparison of the performances of ILMAPS with PHS of order211

k = 4 against LMAPS with MQ when the additional polynomial basis of order m = 4212

is added in both cases for a fair comparison. We observe high accuracy in the approxi-213

mation on the unit square domain compared to results obtained on irregular domains.214

It is quite clear that PHS outperforms MQ regardless of the domain considered. The215

selection of the shape parameter of MQ is done with great care to make sure that216

the results of the MQ basis are almost optimal. The leave-one-out cross-validation217

(LOOCV) algorithm is employed with the initial search interval [0, 10] to find the218

optimal shape parameter for the MQ basis.219

Figure 3 shows a comparison of maximum absolute errors and root mean squared220

errors of ILMAPS on three different domains: square, amoeba, and peanut domains221

with different algorithm parameters:222

Figure 3 Top: k = 4,m = 6, n various;223

Figure 3 Middle: n = 135,m = 6, k various;224

Figure 3 Bottom: k = 6, n = 135, m various;225

As we can see, to improve the accuracy of ILMAPS, we need to employ more points226

in the local influence domains (up to n = 135) or use higher order PHS (up to k = 12)227

or even use lower degree polynomials ( m = 3 to m = 11). The method is simple and228

easy to implement as there is no shape parameter to be selected, and small values229

for n, k and m are sufficient to obtain extremely accurate approximations (maximum230

absolute errors in the magnitude of 10−10).231

Example 4.2. We consider the following nonlinear Poisson’s equation with Dirichlet232
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Figure 3.: Example 4.1: A comparison of maximum absolute errors and root mean
squared errors of ILMAPS on three different domains: square, amoeba, and peanut
domains, when the number of points in the local influence domains (n) changes (top,
k = 4,m = 6), the order polyharmonic splines (k) changes (middle, m = 6, n = 135),

and the order polynomials (m) changes (bottom, k = 6, n = 135).
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boundary condition in the peanut-shaped domain as shown in Figure 2:233

∆u(x, y)− 4u3(x, y) = f(x, y) (x, y) ∈ Ω, (21)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (22)

where f and g are given based on the following analytical solutions:234

• Case 1. The analytical solution is a trivial and simple exponential function:235

u(x, y) = ex+y, (x, y) ∈ Ω. (23)

• Case 2. A relatively complicated analytical solution: [7]236

u(x, y) = (1 +
√

x2 + y2)e−
√
x2+y2

, (x, y) ∈ Ω. (24)

• Case 3. Franke’s benchmark test function [13] as the analytical solution:237

u(x, y) =
1.25 + cos (5.4y)

6(1 + (3x− 1)2)
, (x, y) ∈ Ω. (25)

Example 2/allinone_crop.pdf

Figure 4.: Example 4.2: The profiles of the exact solutions: Case 1 is on the left, Case
2 is in the middle, and Case 3 is on the right.

Example 2/ex2_polorder.pdf

Figure 5.: Example 4.2: RMS errors versus the polynomial order m for ni = 300 ,
nb = 100 and ns = 55 with PHS of order k = 4 for exact solution in (23) .

The profiles of the exact solutions are shown in Figure 4. In Table 3, we demonstrate238

the root mean squared error, maximum absolute errors, and the CPU time for a239

different number of interior and boundary nodes using PHS RBF with a polynomial240

basis of order 4 and 35 points in local domains of influence. It is clear that this method241

produces highly accurate approximations on an irregular domain, and it can handle242

a higher number of points in a reasonable time, regardless of the complexity of the243

analytical solutions. In addition, the method can achieve even higher accuracy by244

employing a larger number of collocation points or by increasing the size of the local245

domain.246

It is apparent that the method can approximate the solutions accurately and effi-247

ciently despite the complexity and smoothness of the exact solution. Figure 5 shows248

the possibility of improving the accuracy by using a higher degree of polynomials along249

with a slightly higher number of local collocation points.250
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Table 3.: Example 4.2: ϵrms, ϵ∞ and CPU time using different numbers of boundary
and interior points with PHS of order 4, where n = 35 for the case of exact solution

in Case 1, Case 2 and Case 3.

(ni, nb) ϵrms ϵ∞ CPU time (s)
Case 1 (300, 100) 2.197E−09 1.561E−08 3.46

(1488, 300) 1.692E−09 2.172E−08 9.18
(6728, 600) 3.487E−10 7.092E−09 87.11
(23768, 900) 3.139E−11 5.277E−10 703.84

Case 2 (300, 100) 7.582E−07 3.825E−06 2.74
(1488, 300) 6.023E−07 6.372E−06 8.08
(6728, 600) 1.470E−07 2.191E−06 68.42
(23768, 900) 3.418E−09 3.339E−08 811.19

Case 3 (300, 100) 1.849E−06 7.697E−06 2.24
(1488, 300) 1.706E−07 2.150E−06 5.59
(6728, 600) 2.170E−07 5.863E−06 45.80
(23768, 900) 2.740E−09 9.450E−08 426.3

Example 4.3. In this example, we consider the nonlinear Poisson-Boltzmann equa-251

tion in a rectangular domain [−1, 1] × [−1, 1]. The nonlinear PB equation describes252

many physical problems in the bio-molecular process and electrostatic interactions be-253

tween colloidal particles. The governing equation is as follows:254

∇ · (ϵ∇u(x, y)) = k2 sinh(u(x, y)) + f(x, y), (x, y) ∈ Ω, (26)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω, (27)

where ϵ and k are some known functions and for the comparison purpose, we consider255

the case where ϵ = k = 1,256

f(x, y) = 4− sinh (x2 + y2 + ex cos(y)) (28)

g(x, y) = x2 + y2 + ex cos(y). (29)

The analytical solution is given by257

u(x, y) = x2 + y2 + ex cos(y). (30)

In Table 4, we present a comparison of numerical results obtained by using ILMAPS258

with PHS of order k = 6 and m = 6 against a method of localized form of the259

Moving Least Squares (MLS) [2]. The results from the ILMAPS are clearly better260

than what was reported in the reference for every grid configuration. It is also possible261

to improve the accuracy by utilizing a higher number of local points and higher degree262

polynomials. Figure 6 shows the contour plot of the approximated solution and the263

rate of convergence of ILMAPS with respect to the number of nodes N . As we can see264

from the figure, the rate of convergence is close to 4.141.265

Next, we consider the same nonlinear Poisson-Boltzmann equation in (26) to find266

the distribution of electrostatic potential in a static ionic solution. Here, k = 79, ϵ = 1267
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Table 4.: Example 4.3: Comparison of ϵrms using ILMAPS and MLS for different grid
configurations with parameters ns = 150, k = 6 and m = 6 for ILMAPS.

Grid Size 41× 41 81× 81 121× 121 161× 161
ILMAPS 8.584E−11 6.853E−12 1.634E−13 2.316E-14
MPS [2] 7.270E−10 4.276E−11 8.281E−12 2.595E-12
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Figure 6.: Example 4.3: Contour plot of the approximate solution of part 1 on a 81
grid on the left and RMS errors versus the number of collocation points N on the

right.
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Figure 7.: Example 4.3: Contour plot of the approximate solution of part 2 on an
81× 81 grid on the left and surface plot on the right.

and f = 0 in nonlinear Poisson-Boltzmann equation in (26) with boundary conditions268
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Figure 8.: Example 4.3: Profiles of the approximate solutions along x = 0 and y = 0.

defined as269

u = 8, if x = 5/8,

u = 8, if y = 5/12,

∂u

∂x
= 0, if x = 0,

∂u

∂y
= 0, if y = 0.

on a rectangular domain [0, 5/8]×[0, 5/12]. For the comparison purpose, we use 81×81270

uniformly distributed nodes in the calculations with k = 4, m = 4, and n = 100.271

Figure 7 shows the contour plot and the surface plot that is in good agreement with272

the corresponding figures presented in [2].273

Figure 8 shows the numerical results along Neumann boundaries, y = 0 and x = 0.274

It is observed that the approximations along Neumann boundaries are very smooth275

and have no significant numerical oscillations. It can be concluded that ILMAPS is276

accurate, stable, and applicable to this practical problem.277

Example 4.4. In this example, we consider a nonlinear problem with variable coeffi-278

cients and the mixed boundary conditions on a cassini (three) shaped domain:279

∆u(x, y) + y cos (y)
∂u(x, y)

∂x
− x sin (x)

∂u(x, y)

∂y
+ u2(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = g(x, y), (x, y) ∈ ∂ΩD,

∂u(x, y)

∂n
= h(x, y), (x, y) ∈ ∂ΩN ,

where n is the unit outward normal vector, and f(x, y), g(x, y) and h(x, y) are given280

based on the following analytical solution281

u(x, y) = sin (4x) cos (4y), (x, y) ∈ Ω. (31)

The boundaries ∂ΩD and ∂ΩN denote the Dirichlet and Neumann boundaries282

respectively such that ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅. As shown on the left of283

Figure 9, ∂ΩN is defined in the fourth quadrant; i.e., 3π/2 ≤ θ < 2π.284
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Figure 9.: Example 4.4: The profiles of the computational domain and the analytical
solution.
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Figure 10.: Example 4.4: RMS errors versus the polynomial order m with ni = 6830,
nb = 400, n = 150 and for LMAPS with PHS k = 4.

285

The cassini (three)-shaped domain boundary is defined by the following parametric286

equation:287

∂Ω = {(x, y)|x = r cos θ, y = r sin θ, 0 ≤ θ < 2π}

where r(θ) =
(
cos (3θ) +

√
2− sin2(3θ)

)1/3
.288

Table 5 shows the numerical results obtained using various orders of polynomial289

basis. For the sake of comparison with the results reported in [5] for LMAPS with290

polynomial basis functions (PBF), we choose 14350 interior nodes, 307 nodes on the291

Dirichlet boundary, and 93 nodes on the Neumann boundary. The order of PHS is 4292

and 55 local nodes are used to obtain the results for ILMAPS. We see that accuracy293

increases as the order of polynomials gets higher and ILMAPS is always a few orders294

of magnitude better than LMAPS with PBF. However, LMAPS with PBF performs295

better than ILMAPS in terms of efficiency. However, the same order of accuracy and296

level of efficiency as reported in the reference can be achieved with a smaller number297
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Table 5.: Example 4.4: Comparison of ϵrms, ϵ∞ using ILMAPS with PHS and
LMAPS with PBF for different order of polynomial basis with ni = 14, 350, nb = 400.

m
LMAPS with PHS LMAPS with PBF [5]
ϵrms ϵ∞ ϵrms ϵ∞

3 9.915E−07 2.406E−06 2.96E−03 2.73E−02
4 8.324E−08 2.785E−07 5.34E−04 2.91E−03
5 6.426E−08 1.670E−07 7.70E−06 6.19E−05
6 2.605E−09 3.924E−08 5.77E−06 5.53E−05

of collocation points. As an example, it only takes 1703 interior nodes with the same298

number of boundary points to achieve accuracy up to the order of 10−8 with lesser299

CPU time than it is for LMAPS.300

In Figure 10 we compare ILMAPS against LMAPS with MQ RBF using ni =301

6830, nb = 400, n = 150 for MQ RBF and same set of parameter values and addi-302

tionally k = 4 for PHS. It is clear that as we further increase the highest order of303

polynomial basis up to the order of 15, the numerical results get extremely accurate304

and are also better than the results from MQ RBF. Further increase of m causes305

instability in numerical results and even loss of accuracy as well as an increase of306

computational time.307

Example 4.5. In this example, we consider the following 3D problem on a bumpy308

sphere domain:309

∆u(x, y, z) =
2

u(x, y, z)
+

3

u3(x, y, z)
, (x, y, z) ∈ Ω, (32)

u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω, (33)

where g(x, y, z) is given based on the following analytical solution310

u(x, y, z) =
√

3 + x2 + y2 + z2, (x, y, z) ∈ Ω. (34)

The boundary of the bumpy sphere domain is defined as follows:

∂Ω = {(x, y, z)|x = r cos(ϑ) cos(θ), y = r cos(ϑ) sin(θ), z = r sin(ϑ), ϑ ∈ [0, π], θ ∈ [0, 2π]},

where r = 1 + 1
6 sin (6θ) sin (7ϑ).311

To demonstrate the effectiveness of the method for higher dimensions, we consider312

this example on a quite complicated 3D domain as shown in Figure 11 (left). Table 6313

shows the maximum absolute errors and the root mean squared errors using ILMAPS314

with PHS of order 2 and MQ RBF for various orders of polynomial basis m, where315

ni = 8830, nb = 700 and n = 100. Figure 11 (right) shows the exact solution on the316

surface of the bumpy sphere domain where the color of the surface represents the317

analytical solution’s values at that location. As seen in the 2D examples, ILMAPS318

with PHS performs better than MQ basis and the accuracy increases as the degree of319

the polynomial basis gets higher. The shape parameter of MQ has to be determined320

carefully for a fair comparison with the proposed method. This is done using LOOCV321

with the initial search interval [0, 5]. As there is no need to determine a shape parameter322
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Figure 11.: Example 4.5: The profile of the bumpy sphere with boundary points on
the left and the profile of the exact solution on the boundary surface on the right.

for PHS, solving 3D problems is as simple as that for 2D problems.323

Table 6.: Example 4.5: ϵrms and ϵ∞ using different orders of polynomial basis m with
PHS of order 2 and MQ.

m
ϵrms ϵ∞

PHS MQ PHS MQ c
2 2.009E−05 1.136E−05 9.197E−04 7.802E−05 3.175
3 1.147E−05 1.130E−05 3.969E−05 9.164E−05 3.175
4 6.889E−07 5.643E−06 3.021E−05 3.189E−05 3.175
5 7.472E−08 2.141E−06 2.044E−06 3.129E−05 3.175

5. Conclusion and future work324

In this paper, the applicability of the improved localized method of particular solu-325

tions (ILMAPS) using polyharmonic splines (PHS) with a polynomial basis for solving326

nonlinear elliptic PDEs in two- and three-dimensional spaces has been demonstrated.327

We found that328

• The performance of the method is examined on five different examples on regular329

and irregular domains with Dirichlet and Neumann boundary conditions.330

• The method is not only robust and easy to implement but the accuracy of the331

numerical results is high.332

• Comparisons of the numerical results with results obtained using ILMAPS with333

MQ basis, LMAPS with polynomial basis functions (PBF), and method of lo-334

calized form of moving least squares (MLS) show that ILMAPS are among the335

most accurate for solving nonlinear PDEs.336

◦ Numerical simulations clearly show that the accuracy and the efficiency of337

ILMAPS are superior to that of LMAPS with MQ RBF and it also resolves338

the issue of searching for an appropriate value of the shape parameter in339

MQ.340

◦ In addition, the numerical results were found to be more accurate than341
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LMAPS with PBF and it is competitive with the method of MLS as well.342

• Our numerical experiments revealed that using more local points and higher343

order polynomial basis will improve the accuracy of ILMAPS up to a certain344

level.345

• ILMAPS can perform the same level of efficiency as other methods if the number346

of local points and the highest order of polynomial basis are chosen appropriately,347

especially for large-scale problems.348

It is worth mentioning the differences between the original LMAPS and the Im-349

proved LMAPS and why ILAMPS might replace the original LMAPS. ILMAPS uses350

polyharmonic splines and a low degree of polynomial basis to approximate solutions351

whereas original LMAPS is limited to Gaussian, MQ, or Matern RBFs. Advantages of352

improved LMAPS are, that the difficulty of searching for the optimal shape parameter353

is alleviated, accuracy is improved simply by increasing the order of polyharmonic354

splines or polynomial basis, or the number of interpolation points, and better stability355

with the use of additional polynomial basis.356

In our future work, we hope to implement the method for problems with higher-357

order differential operators and other types of nonlinear problems. We have shown358

that the method is very accurate, we will also want to investigate the strategies to359

improve the computational efficiency without a loss of the accuracy of the method.360

Picard’s method was used for the nonlinear iterations in our simulations and the use361

of other nonlinear solvers such as Newton’s method will be subject to further studies362

as well.363
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