
Partial Differential Equations in Applied Mathematics 6 (2022) 100457

A
s
E
L
a

b

c

d

A

K
S
B
E
D
P
B
A
D
R
P

1

t
T
q
c
t
s
t
m
w
m
l
f
p
d
c

h
R

2
(

Contents lists available at ScienceDirect

Partial Differential Equations in Applied Mathematics

journal homepage: www.elsevier.com/locate/padiff

test of backward stochastic differential equations solver for solving
emilinear parabolic differential equations in 1D and 2D✩

van Davis a, Guangming Yao b,∗, Elizabeth Javor c, Kalani Rubasinghe b,
uis Antonio Topete Galván d

Department of Mathematics, University of Wisconsin, Madison, 53706, WI, USA
Department of Mathematics, Clarkson University, 8 Clarkson Ave, Potsdam, 13699, NY, USA
Department of Mathematics, Rochester Institute of Technology, Rochester, 14623-5600, NY, USA
Universidad Autónoma del Estado de Hidalgo, Kilómetro 4.5 carretera Pachuca-Hidalgo, Pachuca, Hidalgo, 42074, Mexico

R T I C L E I N F O

eywords:
emilinear PDE
ackward stochastic PDE
uler method
eep learning
arabolic
lack–scholes equations
llen–Cahn equations
iffusion–reaction equations
adial basis functions
icard method

A B S T R A C T

Backward stochastic differential equation solver was first introduced by Han et al in 2017. A semilinear
parabolic partial differential equation is converted into a stochastic differential equation, and then solved
by the backward stochastic differential equation (BSDE) solver. The BSDE solver uses the backward Euler
scheme for time discretization and stochastic process and neural network to learn the derivative functions
at each time step. The algorithm is ideal for solving high-dimensional PDEs, especially in dimensions higher
than 3-dimension problems, whereas the traditional numerical techniques fail to produce any simulations.
We modified the BSDE solver so that is works for one-dimensional problems as well. The focus of this
paper is to understand how the BSDE solver works in comparison with the traditional numerical techniques
in low dimensional spaces (1D and 2D). We examined the BSDE solver in terms of accuracy, efficiency
and convergence. Through five classical differential equations, we discovered that the solver works for low
dimensional spaces, as accurate as it can be in high dimensional spaces. It is more accurate than the radial
basis function collocation method reported in literature and the results by the Picard method. However, the
BSDE solver is time consuming. This however, can be solved by parallel computing if needed.
. Introduction

Partial differential equations (PDEs) are among the fundamental
ools used to model physical phenomena in sciences and engineering.1
raditional analytical or numerical methods are sometimes inade-
uate to use in realistic problems due to increase in dimensions and
omplexity.2–5 Additionally, numerical stochastic differential equa-
ions (SDE)6–9 are very successful for modeling stochastic phenomena
uch as those in finance, biology, mechanical engineering, popula-
ion and etc. Methods for solving SDE including finite difference
ethod,10,11 finite element method,12 meshfree methods,13 Bernoulli
avelet method,14 hybrid methods,15,16 and many others. Further-
ore, over the last decade, deep learning algorithms have gained a

ot of interests in dealing with high-dimensional problems in many
ields. It has effectively been used in solving problems with com-
licated geometries,17 many-electron Schrodinger equations,18 high-
imensional forward–backward stochastic differential equations,19

omputational fluid dynamics,20 and etc.

✩ This work was supported in part by National Security Agency, USA grant H98230-21-1-0336 and H89230-22-1-0008.
∗ Corresponding author.

E-mail address: gyao@clarkson.edu (G. Yao).

In this paper, we are interested in examining the semilinear parabolic
partial differential equations (PDEs) of the following form:

𝜕𝑢
𝜕𝑡

(𝑡, 𝑥) + 1
2

Tr
[

𝜎𝜎𝑇 (𝑡, 𝑥)𝐇𝑥𝑢(𝑡, 𝑥)
]

+ ∇𝑢(𝑡, 𝑥) ⋅ 𝜇(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢, 𝜎𝑇∇𝑢) = 0

(1.1)

where 𝑥 ∈ R𝑑 , 𝑡 ∈ R, subject to terminal condition

𝑢(𝑇 , 𝑥) = 𝑔(𝑥), (1.2)

where the function 𝑔(𝑥) is a given real-valued function defined on R𝑑 .
Note that Tr denotes the trace of matrices, ∇𝑢 is the gradient, 𝐇𝑥𝑢(𝑡, 𝑥)
is the Hessian matrix, 𝜎(𝑡, 𝑥) ∶ R × R𝑑 → 𝑀𝑑×𝑑 (R) is a known matrix-
valued function, 𝜇(𝑡, 𝑥) ∶ R × R𝑑 → R𝑑 is a known vector-valued
function, and 𝑓 is a known nonlinear function. The goal is to obtain
𝑢(0, 𝜉) for some fixed 𝜉 ∈ R𝑑 .

Backward stochastic differential equation solver was first intro-
duced in Ref. 21 in 2017 to solve such semilinear parabolic PDEs in
high-dimensional spaces as high as hundreds. Instead of setting up
ttps://doi.org/10.1016/j.padiff.2022.100457
eceived 23 January 2022; Received in revised form 12 June 2022; Accepted 19 O

666-8181/© 2022 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by/4.0/).
ctober 2022

ss article under the CC BY license

https://doi.org/10.1016/j.padiff.2022.100457
https://www.elsevier.com/locate/padiff
http://www.elsevier.com/locate/padiff
http://crossmark.crossref.org/dialog/?doi=10.1016/j.padiff.2022.100457&domain=pdf
mailto:gyao@clarkson.edu
https://doi.org/10.1016/j.padiff.2022.100457
http://creativecommons.org/licenses/by/4.0/

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

i
m
s
s
s
T
a
t
s
H

i
t
b
p
d
a
d
i
s
i
l
i
t
m
h
i

2

B
I
i
i
a
i

D
p

𝑋

Fig. 1. Flowchart of the BSDE solver algorithm for solving semilinear parabolic PDEs.
𝑢

w

P

𝑢

W

nitial value problems, as is commonly done in traditional numerical
ethods literature, problem with terminal conditions is considered

ince it enables to make connections with BSDEs. To be able to handle
uch high-dimension, the PDEs are converted into SDEs, and then
olved by the backward stochastic differential equation (BSDE) solver.
he BSDE solver uses the backward Euler scheme for time discretization
nd stochastic process and neural network to learn the derivative func-
ions at each time step. Fig. 1 illustrates the steps involved in the BSDE
olver. The solver is programmed in PYTHON using TENSORFLOW by
an et al. in 2017, which can be downloaded from GitHub.

The focus of our paper is to examine how the BSDE solver works
n low-dimensional spaces (1D, 2D) and compare its performance with
raditional numerical techniques. The original BSDE solver found to
e faulty for 1D problems. We modified the solver so it works for 1D
roblems. These numerical experiments include classical benchmark
ifferential equation problems, such as 1D and 2D heat equation with
terminal condition, a diffusion–reaction equation in 2D and higher

imensions up to 100 dimensions, nonlinear Black–Scholes equations
n 2D, and an Allen–Cahn Equation in 2D. We discovered that the
olver works for low dimensional spaces, as accurate as it can be
n high dimensional spaces. As the solver can only approximate so-
ution at a single point at a time makes it inefficient when we are
nterested in solutions in a region. Note that authors claimed that
he solver can be improved to solve PDEs over a region. Further-
ore, the method is analyzed and showed to be convergences for
igh-dimensional forward–backward stochastic differential equations
n Ref. 19.

. Itô’s Lemma and the BSDE

For completeness, we will briefly review the algorithm used in the
SDE solver in this section. First, we need to define an Itô process. An
tô process is a type of stochastic process described by Kiyoshi Itô. It
s expressed as the sum of the integral of a process over time and the
ntegral of another process over a Brownian motion. Those processes
re the base of Stochastic integration, which therefore are widely used
n stochastic calculus.

efinition 1. For a vector 𝜇 ∈ 𝐿1 and a matrix 𝜎 ∈ 𝐿2, 𝑋(𝑡) is an Itô
rocess22 if

(𝑡) = 𝑋0 + ∫

𝑡

0
𝜇𝑑𝑠 + ∫

𝑟

0
𝜎𝑑𝑊 . (2.1)

This implies that

𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡. (2.2)

Definition 2. Let {𝑊𝑡}𝑡∈[0,𝑇] be a d-dimensional Brownian motion.
We define the d-dimensional stochastic processes, {𝑋 } , {𝑌 } ,
𝑡 𝑡∈[0,𝑇] 𝑡 𝑡∈[0,𝑇] 𝑑

2

{𝑍𝑡}𝑡∈[0,𝑇] as follows23:

𝑋𝑡 = 𝜉 + ∫

𝑡

0
𝜇𝑑𝑠 + ∫

𝑡

0
𝜎𝑑𝑊 , (2.3)

𝑌𝑡 = 𝑔(𝑋𝑇) + ∫

𝑇

𝑡
𝑓 (𝑠,𝑋𝑠, 𝑌𝑠, 𝑍𝑠)𝑑𝑠 − ∫

𝑇

𝑡
(𝑍𝑡)𝑇 𝑑𝑊𝑠 (2.4)

𝑍𝑡 = 𝜎𝑇 (𝑡, 𝑋𝑡)∇𝑢(𝑡, 𝑋𝑡). (2.5)

Theorem 1 (Itô’s Lemma 22).
For a vector 𝜇 and matrix 𝜎, let 𝑋𝑡 = (𝑋1

𝑡 , 𝑋
2
𝑡 ,… , 𝑋𝑑

𝑡)
𝑇 be a vector of

Itô processes such that 𝑑𝑋𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡. Then

𝑑𝑢(𝑡, 𝑋𝑡) =
𝜕𝑢
𝜕𝑡

𝑑𝑡 + (∇𝑢)𝑇 𝑑𝑋𝑡 +
1
2
(

𝑑𝑋𝑡
)𝑇 (

𝐇𝑥𝑢
)

𝑑𝑋𝑡,

=
{ 𝜕𝑢
𝜕𝑡

+ (∇𝑢)𝑇 𝜇 + 1
2
Tr

[

𝜎𝑇 𝜎
(

𝐇𝑥𝑢
)]

}

𝑑𝑡 + (∇𝑢)𝑇 𝜎 𝑑𝑊𝑡

(2.6)

where ∇𝑢 is the gradient of 𝑢 w.r.t. 𝑥, 𝐇𝑥𝑢 is the Hessian matrix of 𝑢 w.r.t.
𝑥, and 𝑇 𝑟 is the trace operator.

If 𝑢(𝑡, 𝑥) be any twice differentiable scalar function of two real
variables 𝑡 and 𝑥, for an Itô drift–diffusion process

𝑑𝑋𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡, (2.7)

one has

𝑑𝑢(𝑡, 𝑋𝑡) =
(

𝜕𝑢
𝜕𝑡

+ 𝜇 𝜕𝑢
𝜕𝑥

+ 𝜎2

2
𝜕2𝑢
𝜕𝑥2

)

𝑑𝑡 + 𝜎 𝜕𝑢
𝜕𝑥

𝑑𝑊𝑡. (2.8)

This immediately implies that 𝑢(𝑡, 𝑋𝑡) is itself an Itô drift–diffusion
process. We seek to show that the solution 𝑢 to the semilinear parabolic
PDEs (1.1)–(1.2) can lead us to a solution of a stochastic differential
equation (SDE) and vise versa.

Theorem 2. The semilinear parabolic PDEs (1.1)–(1.2) has a solution
(𝑡, 𝑥) if and only if 𝑢(𝑡, 𝑋𝑡) satisfies the following Backward SDE (BSDE)

𝑢(𝑡, 𝑋𝑡) − 𝑢(0, 𝑋0)

= − ∫

𝑡

0
𝑓 (𝑠,𝑋𝑠, 𝑢(𝑠,𝑋𝑠), 𝜎𝑇 (𝑠,𝑋𝑠)∇𝑢(𝑠,𝑋𝑠))𝑑𝑠

+ ∫

𝑡

0
[∇𝑢(𝑠,𝑋𝑠)]𝑇 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠. (2.9)

here 𝑋𝑡 is defined in (2.3).

roof. For our simplicity, we rewrite (2.9) as follows:

(𝑡, 𝑋𝑡) − 𝑢(0, 𝑋0) = −∫

𝑡

0
𝑓𝑑𝑠 + ∫

𝑡

0
[∇𝑢(𝑠,𝑋𝑠)]𝑇 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠. (2.10)

e can also reformulate (2.4) as follows:

𝑇
𝑌𝑡 = −𝑓 (𝑡, 𝑋𝑡, 𝑌𝑡, 𝑍𝑡)𝑑𝑡 + (𝑍𝑠) 𝑑𝑊 (2.11)

https://github.com/frankhan91/DeepBSDE

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

0
c

𝑋

T
t
t
a
t
d

𝑢

G
e

3

𝑥

a
a

(

f
l
a

𝑙

a
O
o
d

n
t
n
i
t
r

4

d
w
p
l
d
m
E

In addition, by Itô’s Lemma, we have that

𝑑(𝑢(𝑡, 𝑋𝑡)) =
{

𝑢𝑡 + ∇𝑢 ⋅ 𝜇 + 1
2
𝑇 𝑟(𝜎𝜎𝑇𝐇𝑥𝑢)

}

𝑑𝑡 + [∇𝑢]𝑇 𝜎𝑑𝑊 . (2.12)

• If 𝑢(𝑡, 𝑥) is a solution to the semilinear parabolic PDE (1.1)–(1.2),
by Eq. (1.1), 𝑢𝑡 + ∇𝑢 ⋅ 𝜇 + 1

2𝑇 𝑟(𝜎𝜎
𝑇𝐇𝑥𝑢) = −𝑓 (𝑡, 𝑋𝑡, 𝑌𝑡, 𝑍𝑡). Thus,

𝑑(𝑢(𝑡, 𝑋𝑡)) = − 𝑓 (𝑡, 𝑋𝑡, 𝑌𝑡, 𝑍𝑡)𝑑𝑡 + [∇𝑢]𝑇 𝜎𝑑𝑊 . (2.13)

Note the definitions of 𝑌𝑡 and 𝑍𝑡 by Eqs. (2.4) and (2.5) or (2.11),

𝑑(𝑢(𝑡, 𝑋𝑡)) = −𝑓 (𝑡, 𝑋𝑡, 𝑌𝑡, 𝑍𝑡)𝑑𝑡 + (𝑍𝑡)𝑇 𝑑𝑊 = 𝑑𝑌𝑡, (2.14)

Thus,

𝑢(𝑡, 𝑋𝑡) = 𝑌𝑡 = 𝑔(𝑋𝑇) + ∫

𝑇

𝑡
𝑓 (𝑠,𝑋𝑠, 𝑌𝑠, 𝑍𝑠)𝑑𝑠 − ∫

𝑇

𝑡
(𝑍𝑡)𝑇 𝑑𝑊𝑠,

𝑢(0, 𝑋0) = 𝑌0 = 𝑔(𝑋𝑇) + ∫

𝑇

0
𝑓 (𝑠,𝑋𝑠, 𝑌𝑠, 𝑍𝑠)𝑑𝑠 − ∫

𝑇

0
(𝑍𝑡)𝑇 𝑑𝑊𝑠.

(2.15)

Therefore,

𝑢(𝑡, 𝑋𝑡) − 𝑢(0, 𝑋0)

= − ∫

𝑡

0
𝑓 (𝑠,𝑋𝑠, 𝑢(𝑠,𝑋𝑠), 𝜎𝑇 (𝑠,𝑋𝑠)∇𝑢(𝑠,𝑋𝑠))𝑑𝑠

+ ∫

𝑡

0
[∇𝑢(𝑠,𝑋𝑠)]𝑇 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠

= − ∫

𝑡

0
𝑓𝑑𝑠 + ∫

𝑡

0
(𝑍𝑡)𝑇 𝑑𝑊𝑠

This is the BSDE (2.9).
• If 𝑢(𝑡, 𝑋𝑡) is a solution of the BSDE (2.9), then

𝑢(𝑡, 𝑋𝑡) =𝑢(0, 𝑋0) − ∫

𝑡

0
𝑓𝑑𝑠 + ∫

𝑡

0
(𝑍𝑡)𝑇 𝑑𝑊𝑠,

𝑑𝑢(𝑡, 𝑋𝑡) = − 𝑓𝑑𝑡 + (𝑍𝑡)𝑇 𝑑𝑊 .
(2.16)

Thus, by Eq. (2.4) we have that

𝑢(𝑇 ,𝑋𝑡) =𝑢(0, 𝑋0) − ∫

𝑇

0
𝑓𝑑𝑠 + ∫

𝑇

0
(𝑍𝑡)𝑇 𝑑𝑊𝑠

=𝑢(0, 𝑋0) + 𝑔(𝑋𝑇) − 𝑌0 = 𝑔(𝑋𝑇). (2.17)

Thus, 𝑢(𝑇 , 𝑥) = 𝑔(𝑥). On the other hand, recall Itô’s lemma,
combining Eqs. (2.12) and (2.16), we have that
{

𝑢𝑡 + ∇𝑢 ⋅ 𝜇 + 1
2
𝑇 𝑟(𝜎𝜎𝑇𝐇𝑥𝑢)

}

𝑑𝑡 + [∇𝑢]𝑇 𝜎𝑑𝑊 = −𝑓𝑑𝑡 + (𝑍𝑡)𝑇 𝑑𝑊 ,

𝑢𝑡 + ∇𝑢 ⋅ 𝜇 + 1
2
𝑇 𝑟(𝜎𝜎𝑇𝐇𝑥𝑢) = −𝑓,

𝑢𝑡 + ∇𝑢 ⋅ 𝜇 + 1
2
𝑇 𝑟(𝜎𝜎𝑇𝐇𝑥𝑢) + 𝑓 = 0.

(2.18)

Thus, we have a solution to the PDE (1.1)–(1.2), 𝑢(𝑡, 𝑥). □

3. Numerical solutions to the BSDE

The BSDE solver buit by Han et al. in Ref. 18 uses a simple explicit
Euler scheme to discretize the time space for the BSDE, and then
use the deep learning method to approximate derivatives in spatial
variables during each time step. In this section, we briefly introduce
the numerical algorithm.

3.1. Euler’s method for time discretization

First, we will apply a temporal discretization using the explicit Euler
scheme on (2.3)–(2.5). Let 𝛥𝑡 = 𝑡 − 𝑡 , and 𝛥𝑊 = 𝑊 −𝑊 , 𝑛 =
𝑛 𝑛+1 𝑛 𝑛 𝑡𝑛+1 𝑡𝑛

3

, 1,… , 𝑁 , and 𝑡0 = 0, 𝑡𝑁 = 𝑇 . With the time discretization, Eq. (2.3)
an be discretized as

𝑡𝑛+1 −𝑋𝑡𝑛 ≈ 𝜇(𝑡𝑛, 𝑋𝑡𝑛)𝛥𝑡𝑛 + 𝜎(𝑡𝑛, 𝑋𝑡𝑛)𝛥𝑊𝑛, (3.1)

he choices in Eq. (3.1) is the explicit Euler’s method. The local trunca-
ion error by such time discretization is approximately proportional to
he square of time step size. We chose to use small time steps to ensure
ccuracy in the numerical experiments, so the effect of neural network
raining on the derivative approximations can be studied. With the time
iscretization, (2.9) becomes

(𝑡𝑛+1, 𝑋𝑡𝑛+1) − 𝑢(𝑡𝑛, 𝑋𝑡𝑛) ≈ − 𝑓 (𝑡𝑛, 𝑋𝑡𝑛 , 𝑢(𝑡𝑛, 𝑋𝑡𝑛), 𝜎
𝑇 (𝑡𝑛, 𝑋𝑡𝑛))∇𝑢(𝑡𝑛, 𝑋𝑡𝑛)𝛥𝑡𝑛

+[∇𝑢(𝑡𝑛, 𝑋𝑡𝑛)]
𝑇 𝜎(𝑡𝑛, 𝑋𝑡𝑛)𝛥𝑊𝑛. (3.2)

iven this temporal discretization, the path 𝑋𝑡𝑛 , 0 ≤ 𝑛 ≤ 𝑁 can be
asily sampled using (3.1).

.2. Neural network for spatial derivative approximations

Next key step is to approximate the function

↦ 𝜎𝑇 (𝑡, 𝑥)∇𝑢(𝑡, 𝑥) (3.3)

t each time step 𝑡 = 𝑡𝑛 by a multilayer feedforward network under the
ssumption that 𝑢(𝑡, 𝑥) is know by given terminal condition. Denote

𝜎𝑇∇𝑢)(𝑡𝑛, 𝑋𝑡𝑛) ≈ (𝜎𝑇∇𝑢)(𝑡𝑛, 𝑋𝑡𝑛 ; 𝜃𝑛)

or 𝑛 = 1,… , 𝑁 − 1, and 𝜃𝑛 refers to neural network parameter. The
oss function is defined based on the squared approximation error
ssociated to the terminal condition of the BSDE:

(𝜃) = E[|𝑔(𝑋𝑡𝑁) − 𝑢(𝑡𝑁 , 𝑋𝑡𝑁)|2] (3.4)

Optimization methods such as Stochastic Gradient Descent (SGD)
lgorithm or Adam optimizer24 can be used to minimize 𝑙(𝜃) over 𝜃.
nce the maximum number of iterations has occurred, a final estimate
f the initial value is obtained. We refer readers to21 for detailed
escription on the training of the neural networks in the algorithm.

The traditional numerical methods represent functions using poly-
omials or other basis functions, leads to high complexity. In contrast,
he BSDE algorithm uses compositions of simple functions in the neural
etwork which leads to less computational cost. This made the numer-
cal approximation to higher dimensional PDEs possible whereas the
raditional numerical techniques unable to produce any solution within
easonable time and storage spaces in computers.

. Numerical experiments

In this section, we extended the solver so that it works for one-
imensional problems. Additionally, a comparison of the BSDE solver
ith traditional numerical techniques in low dimensional spaces is
resented through five classical differential equations benchmark prob-
ems. There are 1D and 2D heat equation with a terminal condition, a
iffusion–reaction equation in 2D and higher dimensions up to 100 di-
ensions, nonlinear Black–Scholes equations in 2D, and an Allen–Cahn
quation in 2D.

• In Examples 1 and 2, we were able to derive an analytical solution
to the 1D and 2D heat equation. So that the performance of the
BSDE solver is examined by comparing numerical solution with
the analytical solution.

• In Example 3, we examined a diffusion–reaction equations in 2D
and dimensions up to 100. We also compared the performance
of the solver with a radial basis function collocation method
reported in Ref. 25.

• In Example 4, the focus is a Black–Scholes equation where the
performance of the solver is closely experimented by considering

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

c
o
s
A
a
P
m

E

𝑢

a

𝑢

A
p

𝑢

L

𝑢

l
𝑇
a
c

t
t
r

Table 1
Example 1: Comparison of analytical and approximated solutions at different spatial
locations: 𝑥 = −1, 0, 1, 2, and 3. Absolute errors and relative errors are shown in the
table, where 𝑇 = 1.0, number of iterations in the deep learning network is 1000, and
the number of time steps is 30.
𝑥 BSDE 𝑢(𝑇 , 𝑥) Absolute error Relative error

−1 2.554 × 10−2 2.275 × 10−2 3.394 × 10−4 0.123
0 0.147 0.159 1.137 × 10−2 7.163 × 10−2

1 0.482 0.5 1.825 × 10−2 3.788 × 10−2

2 0.800 0.841 4.174 × 10−2 5.22 × 10−2

3 0.988 0.977 1.091 × 10−2 1.104 × 10−2

different locations in the domain, number of iterations in the
neural network and number of iterations in time discretization.

• In Example 5, an Allen–Cahn equation in 2D is considered.

In all the numerical experiments, spatial domains have been dis-
retized and approximate solutions at several random points have been
btained using the BSDE solver. Due to the stochastic property of the
olver, the solver is tested 5 times on all spatial points of interests.
verages of 5 runs are reported in tables and standard deviations are
lso presented in figures. All simulations are performed on a MacBook
ro with a 2.4 GHz Quad-Core Intel Core i5 processor and 16 GB
emory.

xample 1. We consider the following 1D heat equation with terminal
condition26

𝑢𝑡(𝑡, 𝑥) +
1
2
𝜕𝑢
𝜕𝑥

(𝑡, 𝑥) = 0, ∀ (𝑡, 𝑥) ∈ [0, 𝑇) × R

(𝑇 , 𝑥) = 𝜒[1,∞)(𝑥), ∀ 𝑥 ∈ R,
(4.1)

where 𝜒 [1,∞) is an indicator function of [1,∞) and 𝜒[1,∞)(𝑥) =
{

1, 𝑥 ≥ 1,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. It can be shown that there exists at most one strong-

viscosity solution to the equation above. The solution is given by

𝑢(𝑡, 𝑥) = 1 −𝛷

(

1 − 𝑥
√

𝑇 − 𝑡

)

, (𝑡, 𝑥) ∈ [0, 𝑇] × R, (4.2)

where 𝛷(𝑧) = ∫ 𝑧
−∞

1
√

2𝜋
𝑒−𝑧2∕2 𝑑𝑧.

Table 1 shows a comparison between analytical solution and the
pproximated solutions at different spatial locations: 𝑥 = −1, 0, 1, 2, and

3. Absolute errors and relative errors are shown, where 𝑇 = 1.0, number
of iterations in deep learning network is 1000, and the number of time
steps is 30.

Left of Fig. 2 shows the profile of the approximated solution at
𝑡 = 0, 𝑥 = 0 as a function of number of iterations. When the num-
ber of iterations higher than 200, the approximated solutions started
converge to the true solution. The line represents the average values
over 5 runs when the number of iteration is fixed, and the shaded
blue region around the line demonstrates the standard deviation of the
approximation for that iteration. Right of Fig. 2 shows the profile of
the approximated solution versus the analytical solution as a function
of 𝑥 when 𝑡 = 0.

Example 2. We consider the following 2D heat equation with terminal
condition

𝑢𝑡(𝑡, �̃�) +
1
2
𝛥𝑢(𝑡, �̃�) = 0, ∀ (𝑡, �̃� = (�̃�1, �̃�2)) ∈ [0, 𝑇) × R2

(𝑇 , �̃�) = 𝜒[1,∞)×[1,∞)(�̃�), ∀ �̃� ∈ R2.
(4.3)

We will first derive the analytical solution of the system above.
change of variables is performed to transform a terminal condition

roblems into an initial value problem. Let 𝑥1 = �̃�1 − 1, 𝑥2 = �̃�2 − 1, 𝑡 =
𝑇 − 𝑡, then the system above becomes

𝑢𝑡(𝑡, 𝑥) =
1
2
𝛥𝑢(𝑡, 𝑥), ∀ (𝑡, 𝑥) ∈ [0, 𝑇) × R2

2
(4.4)
𝑢(0, 𝑥) = 𝜒[1,∞)×[1,∞)(𝑥), ∀ 𝑥 ∈ R . s

4

Table 2
Example 2: Comparison of approximated solution by the BSDE solver and the analytical
solution. Absolute errors and relative errors are shown in the table, where 𝑇 = 1.0,
number of iteration in time is 𝑁 = 1000, and 30 time steps are used.
(𝑥1 , 𝑥2) BSDE 𝑢(𝑇 , 𝑥1 , 𝑥2) Absolute error Relative error

(−1,−1) 8.570 × 10−4 5.176 × 10−4 3.394 × 10−4 0.656
(−1,0) 3.423 × 10−3 3.609 × 10−3 1.860 × 10−4 5.155 × 10−2

(−1,1) 1.019 × 10−2 1.138 × 10−2 1.188 × 10−3 0.104
(0,0) 2.547 × 10−2 2.517 × 10−2 2.936 × 10−4 1.166 × 10−2

(0,1) 8.240 × 10−2 7.933 × 10−2 3.070 × 10−3 3.870 × 10−2

(0,2) 0.129 0.133 4.177 × 10−3 3.129 × 10−2

(0,3) 0.153 0.155 2.340 × 10−3 1.509 × 10−2

(1,1) 0.249 0.25 9.973 × 10−4 3.989 × 10−3

(1,2) 0.422 0.421 8.990 × 10−4 2.137 × 10−3

(1,3) 0.490 0.487 1.252 × 10−3 2.562 × 103

(2,2) 0.707 0.708 9.257 × 10−4 1.308 × 10−3

(2,3) 0.820 0.822 1.767 ×10−3 2.149 × 10−3

(3,3) 0.956 0.955 1.104 × 10−3 1.156 × 10−3

The solution to the initial value problem27 is

(𝑡, 𝑥) = ∬ 𝑔(𝑘, ℎ) 1
2𝜋𝑡

𝑒−[(𝑥−𝑘)
2+(𝑦−ℎ)2]∕2𝑡 𝑑ℎ 𝑑𝑘. (4.5)

Imposing the initial condition 𝑔(𝑥) and applying Fubini’s Theorem, we
arrive at:

𝑢(𝑡, 𝑥) = 1
2𝜋𝑡

(

∫

∞

0
𝑒−(𝑥1−ℎ)

2∕2𝑡𝑑ℎ
)(

∫

∞

0
𝑒−(𝑥2−𝑘)

2∕2𝑡𝑑𝑘
)

.

et 𝑧 =
ℎ − 𝑥1
√

2𝑡
and 𝑤 =

𝑘 − 𝑥2
√

2𝑡
. Note that ∫ 𝑧

0 𝑒−𝑡2𝑑𝑡 =
√

𝜋
2 𝑒𝑟𝑓 (𝑧).

The solution can be rewritten as follows

(𝑡, 𝑥) = ∬ 𝑔(𝑘, ℎ) 1
2𝜋𝑡

𝑒−[(𝑥−𝑘)
2+(𝑦−ℎ)2]∕2𝑡 𝑑ℎ𝑑𝑘

= 1
𝜋 ∫

∞

−𝑥1∕
√

2𝑡
𝑒−𝑧

2
𝑑𝑧∫

∞

−𝑥2∕
√

2𝑡
𝑒−𝑤

2
𝑑𝑤

= 1
𝜋

(

∫

∞

0
𝑒−𝑧

2
𝑑𝑧 + ∫

𝑥1∕
√

2𝑡

0
𝑒−𝑧

2
𝑑𝑧

)

×

(

∫

∞

0
𝑒−𝑤

2
𝑑𝑤 + ∫

𝑥2∕
√

2𝑡

0
𝑒−𝑤

2
𝑑𝑤

)

= 1
𝜋

[
√

𝜋
2

+

√

𝜋
2

𝑒𝑟𝑓

(

𝑥1
√

2𝑡

)][
√

𝜋
2

+

√

𝜋
2

𝑒𝑟𝑓

(

𝑥2
√

2𝑡

)]

=

[

1
2
+ 1

2
𝑒𝑟𝑓

(

𝑥1
√

2𝑡

)][

1
2
+ 1

2
𝑒𝑟𝑓

(

𝑥2
√

2𝑡

)]

= 1
2

[

1 + 𝑒𝑟𝑓

(

𝑥1
√

2
√

𝑡

)]

1
2

[

1 + 𝑒𝑟𝑓

(

𝑥2
√

2
√

𝑡

)]

= 𝛷

(

𝑥1
√

𝑡

)

𝛷

(

𝑥2
√

𝑡

)

.

(4.6)

where 𝛷(𝑥) = 1
2

[

1 + 𝑒𝑟𝑓
(

𝑥
√

2

)]

. Substituting in the original variables,
we arrive at the solution to the original terminal condition problem:

𝑢(𝑡, �̃�) = 𝛷

(

�̃�1 − 1
√

𝑇 − 𝑡

)

𝛷

(

�̃�2 − 1
√

𝑇 − 𝑡

)

. (4.7)

The profile of our analytical solution is shown in Fig. 3 on the
eft. On the right of Fig. 3, it shows the absolute error surface when
= 1, 𝑁 = 1000 and 30 time steps are used. Detailed comparison of

pproximated solution by the BSDE solver and the analytical solution
omputed on several locations of the domain can be found in Table 2.

Left of Fig. 4 shows the absolute error calculated at (0, 0) and on
he right, it shows the profile of approximation solution at (0, 0) against
he number of iterations with standard deviation shown as the shaded
egion around the curves.

Compare to the 1D heat equation in Example 1, the approximated
olution in 2D heat equation experienced less deviation from the mean

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

t
s

Fig. 2. Example 1: Left is the profile of the approximated solution at 𝑡 = 0, 𝑥 = 0 as a function of number of iterations; The line represents the average values over 5 runs when
he number of iteration is fixed, and the shaded blue region around the line demonstrates the standard deviation of the approximation for that iteration. Right is the analytical
olution vs. approximated solution as a function of 𝑥 at 𝑡 = 0.
Fig. 3. Example 2: on the left, it shows a profile of the analytical solution; on the right, it shows a profile of absolute error surface when 𝑇 = 1.0, 𝑁 = 1000 and 30 time steps
are used.
Fig. 4. Example 2: Left: Absolute error at (0, 0). Right: Approximate solution at (0, 0) with standard deviations shown as the shaded region around the mean curves.
a
h

o

value than in 1D. This indicates the solver performs more stable as the
dimension gets higher.

Example 3. In this example, we consider the following 2D problem:

𝑢𝑡(𝑡, 𝑥) = 0.2𝛥𝑢(𝑡, 𝑥) + 0.1𝑢(𝑡, 𝑥) (4.8)

subject to the initial condition: 𝑢(0, 𝑥) = cos(𝑥1) + sin(𝑥2). This problem
has an exact analytical solution:

𝑢(𝑡, 𝑥) = exp(−0.1𝑡)
[

cos(𝑥) + sin(𝑥)
]

. (4.9)
1 2 n

5

By considering the time reversal 𝑡 → 𝑇 − 𝑡 for some 𝑇 > 0, we can
obtain an equation as expressed in form of (1.1).

𝑢𝑡(𝑡, 𝑥) + 0.2𝛥𝑢(𝑡, 𝑥) + 0.1𝑢(𝑡, 𝑥) = 0. (4.10)

This matches the semilinear parabolic form with 𝜎 =
√

0.4 𝐼2, 𝜇 = 0,
nd 𝑓 (𝑡, 𝑥) = 0.1𝑢(𝑡, 𝑥), where 𝐼2 is an identity matrix of size 2 × 2. We
ave the terminal condition 𝑔(𝑥) = 𝑢(𝑇 , 𝑥) = cos(𝑥1) + sin(𝑥2).

In our numerical experiments, a 6 × 6 grid of points were tested
ver the domain [0, 2𝜋] × [0, 2𝜋] using total of 5000 iterations in neural
etwork with a learning rate of 0.01 for the first half and 0.0002 for

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457
Fig. 5. Example 3: The exact solution profile on the left and the absolute error profile on the right.
Fig. 6. Example 3: Left: The approximate value of 𝑢(0, 0) at different numbers of iterations of the Deep BSDE solver and Right: The absolute errors of the Deep BSDE solver at
various numbers of iterations.
S

𝑢

Fig. 7. Example 3: The value of 𝑢(𝑡, 0) for various times 𝑡. The BSDE solver results
are in blue, while the exact solution is in red.. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

the second half. In two separate rounds of testing, 10 and 100 step sizes
were used with 𝑇 = 0.1.

The surface of the exact solution in 2D and the surface of the
absolute error in 2D obtained by the BSDE solver are shown on the left
and right of Fig. 5, respectively. To ascertain the impact of the number
of iterations used, five independent runs were completed using several
total iterations. The average approximation solution and approximation
errors at 𝑢(𝑡 = 0, 𝑥 = 0) are plotted in Fig. 6. The shaded regions around
 𝑑

6

the lines demonstrate the standard deviation of the approximation and
the error for the particular iteration. It is clear from Fig. 6, as the
number of iterations increases, the approximate solution converges to
an asymptotic value equal to the analytical solution and absolute error
decreases with increasing number of iterations. Time profile of the
2D solution was obtained by running the solver with different end
conditions, which can be found in Fig. 7 when the number of iteration
in the deep learning network is sufficient.

In Table 3, we compare the performance of the BSDE solver with
RBFCM in Ref. 28. The accuracy of the results from BSDE solver did
not improve substantially when the time step size was reduced, while
the time required to perform the approximation increased greatly.
Compared to the RBFCM, the BSDE solver with the aforementioned
parameters produces results more accurate than the results obtained
by RBFCM. It should be noted that the computational time is high,
requiring several minutes per point of interest when 100 times steps
are used. Even when 10 time steps are used, the computation time is
still substantial.

To further evaluate the performance of the Deep BSDE solver, the
previous equation was considered in 𝑑 dimensions with 𝑑 being 5, 10,
20, 50, and 100:

𝑢𝑡(𝑡, 𝑥) = 0.2𝛥𝑢(𝑡, 𝑥) + 0.1𝑢(𝑡, 𝑥)

ubject to 𝑢(0, 𝑥) = 𝑔(𝑥) =
∑𝑑

𝑖=1 cos(𝑥𝑖). This has a solution:

(𝑡, 𝑥) = exp(−0.1𝑡)
𝑑
∑

𝑖=1
cos(𝑥𝑖).

Table 4 shows the approximated solutions at the origin for various

. For each value of 𝑑, the approximations are calculated by averaging

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

m
B
o
o

w
[
c
k

a
S

Table 3
Example 3: Comparison of BSDE solution with different time step sizes and with RBFCM presented in Ref. 28. Decreasing the
step size by a factor of 10 had minimal impact on the error while increasing time greatly.
𝛥𝑡 BSDE Solver RBFCM28

𝐿∞ 𝐿𝑟𝑚𝑠 CPU time 𝐿∞ 𝐿𝑟𝑚𝑠

𝛥𝑡 = 10−2 3.002 × 10−4 1.598 × 10−4 38 8.31 × 10−3 2.45 × 10−3

𝛥𝑡 = 10−3 3.456 × 10−4 1.340 × 10−4 408.5 3.33 × 10−3 2.45 × 10−3
Table 4
Example 3: The approximated solutions at the origin, errors and CPU time for various 𝑑 = 5, 10, 20, 50 and 100, where 𝑇 = 0.1. 3000 iterations
are used in the deep learning network, learning rate is set to be 0.5 for the first half of the iterations to speed up computational time, and it
was set to be 0.0001 for the next half of the iterations.
𝑑 5 10 20 50 100 200 500
𝑌0 (BSDE) 4.951 9.900 19.80 49.50 99.00 198.0 479.0
𝑌0 (exact) 4.951 9.901 19.80 49.50 99.01 198.0 495.0
Absolute error 2.63𝐸−4 4.82𝐸−4 2.70𝐸−3 2.30𝐸−3 6.74𝐸−4 5.47𝐸−4 1.60𝐸1
Relative error 0.0053% 0.0049% 0.0136% 0.0046% 0.0007% 0.0003% 3.23%
CPU Time 50.8 51.4 53.4 61.4 75.8 109.1 220
10 independent trials. In running the trials, a total time of 𝑇 = 0.1
was considered, split up into 20 time steps. A total of 3000 iterations
were considered for each trial with a learning rate of 0.5 for the first
half and 0.0001 for the second half. The BSDE solver is fairly accurate
despite the dimension of the problem. However, the relative error when
𝑑 = 500 is slightly higher than when the number of dimensions are
small.

Example 4. Let us consider a model of pricing with default risk with
domain [0, 𝑇] × R2. Let 𝑅 be the interest rate of the risk-free asset and
𝑄 be an intensity function defined in three regions (𝑣ℎ < 𝑣𝑙 , 𝛾ℎ > 𝛾 𝑙),
which are defined by :

𝑄(𝑦) = 1(−∞,𝑣ℎ)(𝑦)𝛾
ℎ + 1[𝑣𝑙 ,∞)(𝑦)𝛾

𝑙 + 1[𝑣ℎ ,𝑣𝑙)(𝑦)
(

𝛾ℎ − 𝛾 𝑙

𝑣ℎ − 𝑣𝑙
(𝑦 − 𝑣ℎ) + 𝛾ℎ

)

,

(4.11)

𝑓 (𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝜎𝑇 (𝑡, 𝑥)∇𝑢(𝑡, 𝑥)) = −(1 − 𝛿)𝑄(𝑢(𝑡, 𝑥))𝑢(𝑡, 𝑥) − 𝑅𝑢(𝑡, 𝑥), (4.12)

for any 𝛿 ∈ (0, 1], where 𝑓 is the value process. The nonlinear Black–
Scholes equation then can be formed as follows

𝜕𝑢
𝜕𝑡

+ 𝜇𝑥∇𝑢(𝑡, 𝑥) + 𝜎2

2

(

|𝑥1|
2 𝜕2𝑢
𝜕𝑥21

(𝑡, 𝑥) + |𝑥2|
2 𝜕2𝑢
𝜕𝑥22

(𝑡, 𝑥)

)

− (1 − 𝛿)𝑄(𝑢(𝑡, 𝑥))𝑢(𝑡, 𝑥) − 𝑅𝑢(𝑡, 𝑥) = 0. (4.13)

In mathematics finance, Black and Scholes29 is a partial differen-
tial equation that governs the price evolution of a European call or
European put options. Finding the analytic closed-form solution of
the Black–Scholes equation is not easy. Therefore, it is necessary to
approximate the solutions using numerical methods. The finite dif-
ference methods (FDM) such as the operator splitting method30 and

ultigrid method31 are very popular to approximate the solution of the
S equations.32 In 2018, Grohs33 showed that artificial neural networks
vercome the curse of dimensionality in the numerical approximation
f Black–Scholes partial differential equations.

To verify the accuracy of the BSDE solver in lower dimension,
e approximate the initial value 𝑢(𝑡 = 0, (𝑥1, 𝑥2)), with (𝑥1, 𝑥2) ∈
0, 100]2, using the BSDE solver and compare with the approximations
omputed means of the multilevel Picard method.34 We set all the
nown parameters as follows:

𝑇 = 1, 𝛿 = 2
3
, 𝑅 = 0.02, 𝜇 = 0.02, 𝜎 = 0.2,

𝑣ℎ = 50, 𝑣𝑙 = 70, 𝛾ℎ = 0.2, 𝛾 𝑙 = 0.02,
(4.14)

nd terminal condition 𝑔(𝑥) = min{𝑥1, 𝑥2}. Thus, the nonlinear Black–
choles equation is simplified as:

𝜕𝑢 + 0.02𝑥∇𝑢(𝑡, 𝑥) + 0.02

(

|𝑥1|
2 𝜕2𝑢

2
(𝑡, 𝑥) + |𝑥2|

2 𝜕2𝑢
2
(𝑡, 𝑥)

)

𝜕𝑡 𝜕𝑥1 𝜕𝑥2 𝑓

7

Table 5
Example 4: Approximation of 𝑢(𝑡 = 0, 𝑥 = (𝑥1 , 𝑥2)) at different values of 𝑥1 and 𝑥2.
𝑥2∖𝑥1 0 20 40 60 80 100

0 2.41 × 10−4 0.0632 9.67 × 10−3 2.24 × 10−4 0.0183 0.0075
20 0.03 16.596 18.811 18.835 18.176 18.722
40 3.44 × 10−3 18.583 33.199 37.194 37.43 37.472
60 4.25 × 10−3 18.599 36.805 50.412 56.108 57.428
80 3.3942 × 10−2 18.605 37.234 56.083 70.096 76.269
100 3.6747 × 10−2 18.606 37.274 57.537 76.224 88.16

− 1
3
𝑄(𝑢(𝑡, 𝑥))𝑢(𝑡, 𝑥) − 0.02𝑢(𝑡, 𝑥) = 0. (4.15)

Table 5 shows the approximations of 𝑢(𝑡 = 0) computed on different
locations of the domain and left of Fig. 9 shows the corresponding
solution profile. According to the Fig. 8, solver seems to converge to
a solution when we let it work higher number of iterations. Moreover,
we compute the approximations using multilevel Picard method for the
exact same (𝑥1, 𝑥2) as in Table 5 and present them on the Table 6.
Accuracy of the BSDE solver in lower dimensions is evident from the
errors computed in Table 6 and absolute error profile on the right of
Fig. 9.

From the left of Fig. 10 it is clear that solutions from the BSDE
solver converge for any given point (𝑥1, 𝑥2) if the number of iteration
in Neural Network is high enough. The right of Fig. 10 shows that
BSDE solver can obtain approximation which is accurate up to fourth
order by increasing the number of iterations in neural network. The
approximation solutions of 𝑢(𝑡 = 0, 𝑥 = (100, 100)) were reported at
different time steps for number of iterations 1000 and 8000 in Table 7.
The approximations vary significantly as the number of time steps
changes when the number of iteration in network is not high enough to
achieve convergence in the solution. The not explicitly known ‘‘exact’’
solution at 𝑡 = 0, 𝑥 = (100, 100) has been approximately computed
using the multilevel Picard method35: 𝑢(𝑡 = 0, 𝑥 = (100, 100)) ≈ 88.16.

Example 5. We consider the following Allen–Cahn Equation in 2D on
the domain [0, 10] × [0, 10]:

𝑢𝑡(𝑡, 𝑥) = 𝛥𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)3 (4.16)

subject to the initial condition: 𝑢(0, 𝑥) = 1
2+0.4‖𝑥‖2 .

By considering the time reversal 𝑡 → 𝑇 − 𝑡 for some 𝑇 > 0, we can
obtain an equation as expressed in (1.1):

𝑢𝑡(𝑡, 𝑥) + 𝛥𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)3 = 0. (4.17)

This matches the semilinear parabolic form with 𝜎 =
√

2𝐼2, 𝜇 = 0, and
(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − 𝑢(𝑡, 𝑥)3.

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

m

i

Table 6
Example 4: Relative and absolute errors of 𝑢(𝑡 = 0, 𝑥 = (𝑥1 , 𝑥2)), for each 𝑥1 , 𝑥2 ∈ {0, 20, 40, 60, 80, 100}, compared with approximations made with
multilevel Picard method values.
𝑥2∖𝑥1 0 20 40 60 80 100

0 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 0 0 0 0 0
Relative error
Absolute error 2.41 × 10−4 0.0632 9.67 × 10−3 2.24 × 10−4 0.0183 0.0075

20 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 16.5963 18.8110 18.8354 18.8356 18.8354
Relative error 0.01% 0.58% 0.64% 0.64% 0.6%
Absolute error 0.03 .002137 0.1095 0.121 0.1199 0.1133

40 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 18.5834 33.1986 37.1937 37.611 37.6367
Relative error 0.61% 0.02% 0.53% 0.48% 0.44%
Absolute error 3.44 × 10−3 0.1142 .0054 0.1962 0.1813 0.1643

60 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 18.5994 36.8051 50.4123 56.2028 57.6156
Relative error 0.63% 0.63% 0.04% 0.17% 0.33%
Absolute error 4.25 × 10−3 0.1165 0.2324 0.0187 0.0944 0.1873

80 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 18.6048 37.2338 56.0825 70.1898 76.3015
Relative error 0.6% 0.49% 0.02% 0.13% 0.04%
Absolute error 0.0339 0.1118 0.1821 0.0131 0.0935 0.0321

100 𝑌0(𝑃 𝑖𝑐𝑎𝑟𝑑) 0 18.6059 37.2738 57.569 76.1515 88.16
Relative error 0.6% 0.45% 0.06% 0.09% 0.0001%
Absolute error 0.03674 0.1109 0.1674 0.0318 0.072 9.83 × 10−5
Fig. 8. Example 4: Approximations of 𝑢(𝑡 = 0) at (100, 20) and (80, 100) using the BSDE solver for Black–Scholes equation against number of iterations in neural network.
Fig. 9. Example 4: Left: Approximate solution 𝑢(𝑡 = 0, 𝑥 = (𝑥1 , 𝑥2)) profile based on Table 5, Right:Absolute error compared to the approximation of 𝑢 obtained by multilevel Picard
ethod.
Table 7
Example 4: Comparison of approximations of 𝑢(𝑡 = 0, 𝑥 = (100, 100)) as a mean of 5
independent runs at different time steps for number of iterations 1000 and 8000.

of time steps 10 20 40 60 100

1000 Iterations 35.165 37.725 37.605 35.864 36.781
8000 Iterations 87.631 88.057 87.269 87.180 87.530

The Allen–Cahn equation was first introduced by Allen and Cahn
n Ref. 36 to describe the motion of anti-phase boundaries in crystalline
8

solids. Then it has been widely used in many fields.36–39 Numerical
methods40 including Finite difference method,41 the reduced order
method42,43 spectral method40,44 and reproducing kernel method,45

radial basis function collocation method,46 and many others have
investigated.

In this example, the Allen–Cahn Equation was explored using both
the BSDE solver and the RBF solver. Solution surfaces for the two
methods are shown in Fig. 11. Fig. 12 shows the absolute error obtained
by the BSDE solver when using RBF solver as the comparison solutions.
The error is viewed from two different angles.

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457

R

5

p
t
s
c

d
w
c

Fig. 10. Example 4: Left shows an approximation of 𝑢 at 𝑡 = 0 as a mean of 5 independent runs against the number of iterations in network for different points in the domain.
ight shows the relative approximation error of 𝑢(𝑡 = 0, 𝑥 = (100, 100)) against the number of iterations in network. The shaded area depicts the mean ±the SD of the relative error

for five different runs.
Fig. 11. Example 5: Approximation solution of 𝑢(𝑥1 , 𝑥2) at 𝑡 = 0.5 in a square domain using BSDE method on the left and using RBF method on the right.
Fig. 12. Example 5: The approximation error of 𝑢 at 𝑡 = 0.5 in two different views.
t
i
t
i
c

D

c

. Conclusions

Backward stochastic differential equation solver solves semilinear
arabolic partial differential equations by converting them into stochas-
ic differential equations . This algorithm is especially powerful for
olving high-dimensional PDEs, which traditional numerical techniques
annot handle.

This paper modified the BSDE solver so it can be used for one-
imensional problems. Furthermore, we compared the BSDE solver
ith traditional numerical techniques in low dimensional spaces in-

luding 1D, 2D. Through classical differential equations, we discovered
 i

9

hat the solver works well for low dimensional problems, as accurate as
t can be in high dimensional spaces. However, the BSDE solver might
ake much longer time than the traditional methods, considering that
t only handles one point at a time and the approximation should be
omputed by means of few independent runs of the algorithm.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

E. Davis, G. Yao, E. Javor et al. Partial Differential Equations in Applied Mathematics 6 (2022) 100457
References

1. Evans LC. Partial Differential Equations, Vol. 19. American Mathematical Society;
2010.

2. Morton KW, Mayers DF. Numerical Solution of Partial Differential Equations: An
Introduction. Cambridge University Press; 2005.

3. Lapidus L, Pinder GF. Numerical Solution of Partial Differential Equations in Science
and Engineering. John Wiley & Sons; 2011.

4. Farshid M, Shadi R, Nasrin S. Application of combination schemes based on radial
basis functions and finite difference to solve stochastic coupled nonlinear time
fractional sine–Gordon equations. Comput Appl Math. 2021;41(10).

5. Cheng L. KdV-type Wronskian rational solutions to the (4+ 1)-dimensional Fokas
equation. Partial Differ Equ Appl Math. 2022;5:100222.

6. Kloeden PE, Platen E. Stochastic differential equations. In: Numerical Solution of
Stochastic Differential Equations. Springer; 1992:103–160.

7. Platen E. An introduction to numerical methods for stochastic differential
equations. Acta Numer. 1999;8:197–246.

8. Burrage K, Burrage P, Mitsui T. Numerical solutions of stochastic differ-
ential equations–implementation and stability issues. J Comput Appl Math.
2000;125(1–2):171–182.

9. Higham DJ. An algorithmic introduction to numerical simulation of stochastic
differential equations. SIAM Rev. 2001;43(3):525–546.

10. Mirzaee F, Sayevand K, Rezaei S, Samadyar N. Finite difference and spline
approximation for solving fractional stochastic advection-diffusion equation. Iran
J Sci Technol Trans A Sci. 2021;45(2):607–617.

11. Mirzaee F, Samadyar N. Implicit meshless method to solve 2D fractional stochastic
Tricomi-type equation defined on irregular domain occurring in fractal transonic
flow. Numer Methods Partial Differential Equations. 2021;37(2):1781–1799.

12. Yan Y. Galerkin finite element methods for stochastic parabolic partial differential
equations. SIAM J Numer Anal. 2005;43(4):1363–1384.

13. Mirzaee F, Rezaei S, Samadyar N. Solving one-dimensional nonlinear stochastic
Sine-Gordon equation with a new meshfree technique. Int J Numer Modell: Electron
Netw. 2020;34.

14. Mirzaee F, Samadyar N. Application of Bernoulli wavelet method for estimating
a solution of linear stochastic Itô-Volterra integral equations. Multidiscip Model
Mater Struct. 2018;15(3):575–598.

15. Mirzaee F, Samadyar N. Combination of finite difference method and mesh-
less method based on radial basis functions to solve fractional stochastic
advection–diffusion equations. Eng Comput. 2020;36(4):1673–1686.

16. Samadyar N, Ordokhani Y, Mirzaee F. Hybrid Taylor and block-pulse functions
operational matrix algorithm and its application to obtain the approximate
solution of stochastic evolution equation driven by fractional Brownian motion.
Commun Nonlinear Sci Numer Simul. 2020;90:105346.

17. Berg J, Nyström K. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing. 2018;317:28–41.

18. Han J, Zhang L, Weinan E. Solving many-electron Schrödinger equation using
deep neural networks. J Comput Phys. 2019;399:108929.

19. Han J, Long J. Convergence of the deep BSDE method for coupled FBSDEs. Probab
Uncertain Quant Risk. 2020;5(1):1–33.

20. Lye KO, Mishra S, Ray D. Deep learning observables in computational fluid
dynamics. J Comput Phys. 2020;410:109339.

21. Weinan E, Han J, Jentzen A. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic
differential equations. Commun Math Stat. 2017;5(4):349–380.

22. Øksendal B. Stochastic Differential Equations: An Introduction with Applications, Vol.
82. 2000.
10
23. Pardoux É, Peng S. Backward stochastic differential equations and quasilinear
parabolic partial differential equations. In: Stochastic Partial Differential Equations
and their Applications. Springer; 1992:200–217.

24. Kingma DP, Ba J. A method for stochastic optimization. In: CAnon. International-
Conferenceon Learning Representations. SanDego: ICLR, 2015 abs/1412.6980.

25. Yao G. An improved localized method of approximate particular solutions for
solving elliptic PDEs. Comput Math Appl. 2016;71(1):171–184.

26. Cosso A, Russo F. Strong-viscosity solutions: Classical and path-dependent PDEs.
Osaka J Math. 2019;56(2):323–373.

27. Haberman R. Elementary Applied Partial Differential Equations, Vol. 987. Prentice
Hall Englewood Cliffs, NJ; 1983.

28. Yao G. A comparative study of global and local meshless methods for
diffusion-reaction equation. Comput Model Eng Sci(CMES). 2010;59(2):127–154.

29. Black F, Scholes M. The pricing of options and corporate liabilities. In: World
Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1:
Foundations of CCA and Equity Valuation. World Scientific; 2019:3–21.

30. Ikonen S, Toivanen J. Operator splitting methods for American option pricing.
Appl Math Lett. 2004;17(7):809–814.

31. Ramage A, von Sydow L. A multigrid preconditioner for an adaptive Black-Scholes
solver. BIT Numer Math. 2011;51(1):217–233.

32. Duffy DJ. Finite Difference Methods in Financial Engineering: A Partial Differential
Equation Approach. John Wiley & Sons; 2013.

33. Grohs P, Hornung F, Jentzen A, Von Wurstemberger P. A proof that artificial neu-
ral networks overcome the curse of dimensionality in the numerical approximation
of Black-Scholes partial differential equations. 2018 arXiv, abs/1809.02362.

34. Hutzenthaler M, Jentzen A, Kruse T, et al. On multilevel Picard numerical approx-
imations for high-dimensional nonlinear parabolic partial differential equations
and high-dimensional nonlinear backward stochastic differential equations. J Sci
Comput. 2019;79(3):1534–1571.

35. Weinan E, Hutzenthaler M, Jentzen A, Kruse T. On multilevel picard numerical
approximations for high-dimensional nonlinear parabolic partial differential equa-
tions and high-dimensional nonlinear backward stochastic differential equations.
J Sci Comput. 2019;79(3):1534–1571.

36. Allen SM, Cahn JW. A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening. Acta Metall. 1979;27(6):1085–1095.

37. Li Y, Jeong D, Choi J-i, Lee S, Kim J. Fast local image inpainting based on the
Allen–Cahn model. Digit Signal Process. 2015;37:65–74.

38. Cheng M, Warren JA. An efficient algorithm for solving the phase field crystal
model. J Comput Phys. 2008;227(12):6241–6248.

39. Ward MJ. Metastable bubble solutions for the Allen-Cahn equation with mass
conservation. SIAM J Appl Math. 1996;56(5):1247–1279.

40. Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard
equations. Discrete Contin Dyn Syst. 2010;28(4):1669–1691.

41. Kim J, Jeong D, Yang S-D, Choi Y. A finite difference method for a conservative
Allen–Cahn equation on non-flat surfaces. J Comput Phys. 2017;334:170–181.

42. Song H, Jiang L, Li Q. A reduced order method for Allen–Cahn equations. J Comput
Appl Math. 2016;292:213–229.

43. Abbaszadeh M, Dehghan M. A reduced order finite difference method for solving
space-fractional reaction-diffusion systems: The Gray-Scott model. Eur Phys J Plus.
2019;134(12):1–15.

44. Lee HG, Lee J-Y. A semi-analytical Fourier spectral method for the Allen–Cahn
equation. Comput Math Appl. 2014;68(3):174–184.

45. Niu J, Xu M, Yao G. An efficient reproducing kernel method for solving the
Allen–Cahn equation. Appl Math Lett. 2019;89:78–84.

46. Hon Y-C, Mao X-Z. A radial basis function method for solving options pricing
model. Financ Eng. 1999;81(1):31–49.

http://refhub.elsevier.com/S2666-8181(22)00105-X/sb1
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb1
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb1
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb2
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb2
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb2
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb3
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb3
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb3
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb4
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb4
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb4
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb4
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb4
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb5
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb5
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb5
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb6
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb6
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb6
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb7
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb7
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb7
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb8
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb8
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb8
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb8
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb8
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb9
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb9
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb9
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb10
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb10
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb10
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb10
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb10
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb11
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb11
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb11
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb11
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb11
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb12
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb12
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb12
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb13
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb13
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb13
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb13
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb13
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb14
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb14
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb14
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb14
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb14
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb15
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb15
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb15
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb15
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb15
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb16
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb17
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb17
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb17
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb18
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb18
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb18
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb19
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb19
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb19
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb20
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb20
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb20
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb21
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb21
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb21
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb21
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb21
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb22
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb22
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb22
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb23
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb23
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb23
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb23
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb23
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb24
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb24
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb24
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb25
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb25
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb25
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb26
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb26
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb26
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb27
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb27
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb27
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb28
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb28
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb28
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb29
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb29
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb29
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb29
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb29
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb30
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb30
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb30
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb31
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb31
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb31
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb32
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb32
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb32
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb33
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb33
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb33
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb33
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb33
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb34
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb35
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb36
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb36
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb36
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb37
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb37
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb37
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb38
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb38
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb38
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb39
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb39
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb39
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb40
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb40
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb40
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb41
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb41
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb41
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb42
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb42
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb42
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb43
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb43
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb43
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb43
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb43
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb44
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb44
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb44
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb45
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb45
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb45
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb46
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb46
http://refhub.elsevier.com/S2666-8181(22)00105-X/sb46

	A test of backward stochastic differential equations solver for solving semilinear parabolic differential equations in 1D and 2D
	Introduction
	Ito's Lemma and the BSDE
	Numerical solutions to the BSDE
	Euler's method for time discretization
	Neural network for spatial derivative approximations

	Numerical Experiments
	Conclusions
	Declaration of Competing Interest
	References

