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Abstract. In this paper, a kernel based method, the modified localized method of ap-
proximated particular solutions (MLMAPS) [16, 23] is utilized to solve unsteady-state
linear and nonlinear diffusion-reaction PDEs with or without convections. The time-
space and spatial space are discretized by the higher-order Houbolt method with var-
ious time step sizes and the MLMAPS, respectively. The local truncation error associ-
ated with the time discretization is O(h4), where h is the largest time step size used.
The spatial domain is then treated by a special kernel, the integrated polyharmonic
splines kernels together with low-order polynomial basis. Typical computational al-
gorithms require a trade off between accuracy and rate of convergency. However, the
experimental analysis has shown high accuracy and fast convergence of the proposed
method.
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1 Introduction

The domain type meshfree methods utilizing radial basis functions, such as Kansa’s
method [11, 12] and the method of approximated particular solutions (MAPS) [3, 4], are
classified as global meshfree methods because the methods result in the creation of a
dense linear system. Yao et al. further localized the MAPS into the localized MAPS
(LMPAS) [21] which allows the creation of a sparse system. This is especially useful for
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solving large-scale problems. The LMAPS utilizes the collocation scheme on overlap-
ping local domains with integrated radial basis functions (RBFs), such as multiquadrics,
inverse multiquadrics, and Matern. This technique drastically reduces the storage size
of the collocation matrix. This improved the computational efficiency of the method for
solving large-scale partial differential equations (PDEs). This allows the LMAPS to com-
pete with the traditional numerical methods such as the finite element method (FEM)
for large-scale problems. Since then, the LMAPS has been applied to various kinds of
differential equations, such as the biharmonic equation [15], near-singular PDEs [24], the
unsteady Burgers’ equations [17, 27], convection-diffusion equations [2], 3D nonlinear
Schrödinger equations [18], and wave equations [10], as well as unsteady Navier-Stokes
problem [7, 26].

A modified LMAPS (MLMAPS) presented in [22] shows a significant improvement
in terms of accuracy by using integrated polyharmonic splines in radial space together
with the polynomial basis for linear and nonlinear elliptic PDEs in 2D and 3D. Since
then, the method has been applied to time-dependent PDEs [16]. On the other hand, the
Houbolt method in [9, 19, 25] is a high-order accurate time discretization scheme. Note
that MLMAPS can be classified as a kernel-based method, which has similar ideas as the
generalized finite difference method or radial basis function- finite difference method.
The main difference is that MLMAPS uses commonly used kernels in the integrated
forms, in addition to low-order polynomial basis. This is a combination of basis func-
tions that amazingly preserve the high accuracy of the polynomial basis and flexibility of
the kernel based methods.

In this paper, MLMAPS is coupled with the Houbolt method to solve linear or non-
linear diffusion-reaction PDEs with or without convection terms:

∂u
∂t

=Du+ f (x,t), x∈Ω⊂Rd, (1.1)

with the boundary condition Bu(x,t)=g(x,t), x∈∂Ω, and the initial condition u(x,0)=u0,
x∈Ω∪∂Ω, whereD is linear or nonlinear diffusion-convection differential operator, f is a
reaction function, and B is a linear or nonlinear boundary differential operator, functions
f , g and u0 are known, with physical domain Ω in Rd. We will combine the implicit Euler
method, the Houbolt method, and MLMAPS to solve this type of PDEs.

The rest of the paper is organized as follows: In Section 2, the first few time-steps are
discretized by the traditional implicit time-stepping method with small evenly-spaced
time-step h0. This allows the Houbolt method to be used in the following time-steps after
first three steps, the time step will jump from h0 to a relatively larger time-step h. After
transitioning to h, the third order Houbolt method will be used for the evenly-spaced
time discretization with time-step h. The error analysis associated with time discretiza-
tion is presented at the end of this section. The time discretization transforms the given
time-dependent PDE to a series of elliptical differential equations. Therefore, in Section 3,
the spatial discretization using MLMAPS with integrated polyharmonic splines together
with polynomial basis are introduced. Section 4 illustrates the performance of the nu-
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merical scheme by four examples.

2 Time discretization

To discretize the time variable, the time domain of the PDE is discretized by implicit
method and the Houbolt finite difference method [9, 19, 25]. In order to fully implement
the Houbolt method, we need to know the initial values of the first three time-steps, in
which the implicit Euler method is used with tiny time step size h0. The Houbolt finite
difference is then used with a relatively large time step size h. Note that we need to
perform nonuniform time steps at step four and five to transform the time-step size from
h0 to h. The details are introduced as follows. Assume that the time-space is discretized
into t= tk, k=1,2,3,···, where t1=0 is the initial time and

tk =

{
(k−1)h0, k=1,2,3,4,
3h0+(k−4)h, k=5,6,··· , (2.1)

where uk≈u(x,tk), k=1,··· , as the approximation of u at tk. Next subsection introduces
the detailed time discretization.

Let the initial three time-step size be h0, which is very small. That implies tk=(k−1)h0,
k = 1,2,3,4. The initial condition leads to u1 = u(x,t1) to be known, where t1 = 0. The
implicit Euler method with a very tiny step h0 will be implemented to obtain the approx-
imated values of the first three time steps, u2, u3 and u4. To jump from the implicit Euler
to Houbolt method, that is to jump from the tiny initial time steps h0 to a relatively larger
time step h, we need various time stepping schemes, at least at the first few steps:

• For the first three steps, the implicit Euler method implies that

∂uk+1

∂t
=

1
h0

(
uk+1−uk

)
.

Note that this time-discretization leads to a local truncation error O(h2
0). Thus,

Eq. (1.1) can be written as

Duk+1− 1
h0

uk+1=− 1
h0

uk− f k+1, x∈Ω, (2.2)

where f k+1 = f (x,tk+1). The boundary conditions are given through the original
system

Buk+1(x)= gk+1(x), x∈∂Ω, (2.3)

where gk+1(x)=g(x,tk+1). MLMAPS will be introduced in the next section to solve
Eqs. (2.2)-(2.3).
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• For time-step five to approximate u5 with time discretization [h0,h0,h] for t5=3h0+h,
assume a numerical scheme of form

a1u5+a2u4+a3u3+a4u2=
∂u5

∂t
. (2.4)

This requires the Taylor series expansions of u4, u3, and u2 at t5 as follows:

u4=u5−h
∂u5

∂t
+
(h)2

2
∂2u5

∂t2 −
(h)3

6
∂3u5

∂t3 +O(h4), (2.5a)

u3=u5−(h+h0)
∂u5

∂t
+
(h+h0)2

2
∂2u5

∂t2 −
(h+h0)3

6
∂3u5

∂t3 +O((h+h0)
4), (2.5b)

u2=u5−(h+2h0)
∂u5

∂t
+
(h+2h0)2

2
∂2u5

∂t2 −
(h+2h0)3

6
∂3u5

∂t3 +O((h+2h0)
4), (2.5c)

where

uk≈u(x,tk), ∂uk+1/∂t≈∂u(x,tk+1)/∂t,

∂2uk+1/∂t2≈∂2u(x,tk+1)/∂t2, ∂3uk+1/∂t3≈∂3u(x,tk+1)/∂t3.

Thus, Taylor series expansion requires solving the following linear system
1 1 1 1
0 h h0+h 2h0+h
0 h2 (h0+h)2 (2h0+h)2

0 h3 (h0+h)3 (2h0+h)3




a1
a2
a3
a4

=


0
−1
0
0

. (2.6)

Note that the first equation comes from grouping the coefficients of uk+1 in
Eqs. (2.4)-(2.5c), and second equation comes from grouping the coefficients of
∂uk+1/∂t, and ∂2uk+1/∂t2 for the third equation, and last for ∂3uk+1/∂t3. The
above linear system can be solved analytically provided that h0(h+2h0) 6= 0 and
h(h+h0) 6=0. This leads to

a1=
3h2+6hh0+2h2

0
h(h+h0)(h+2h0)

, (2.7a)

a2=−
(h+h0)(h+2h0)

2hh2
0

, (2.7b)

a3=
h(h+2h0)

h2
0(h+h0)

, (2.7c)

a4=−
h(h+h0)

2h2
0(h+2h0)

. (2.7d)

Note that this time-discretization leads to a local truncation error O(h4)+O((h+
h0)4)+O((h+2h0)4). The linear system can be solved numerically in MATLAB
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with user-defined h and h0, or various time-step sizes. The numerical scheme for
the original PDE then is

Du5−a1u5= a2u4+a3u3+a4u2− f 5, x∈Ω, (2.8)

with the same form of the boundary condition

Bu5= g5, x∈∂Ω. (2.9)

This will be solved using MLMAPS in Section 3.

• For time-step six, t6=3h0+2h, with time discretization [h0,h,h], similar to previous
time-step, to approximate u6, the Taylor series expansion of u5, u4 and u3 at t6 is
needed. Assume a numerical scheme of form

a1u6+a2u5+a3u4+a4u3=
∂u6

∂t
. (2.10)

This requires to solve the following linear system
1 1 1 1
0 h 2h h0+2h
0 h2 (2h)2 (h0+2h)2

0 h3 (2h)3 (h0+2h)3




a1
a2
a3
a4

=


0
−1
0
0

. (2.11)

The above linear system can be solved analytically provided that h0(2h2+3hh0+
h2

0) 6=0 and h 6=0. This leads to a solution

a1=
8h+3h0

4h2+2hh0
, (2.12a)

a2=−
2(2h+h0)

h(h+h0)
, (2.12b)

a3=
1

2h
+

1
h0

, (2.12c)

a4=−
2h2

2h2h0+3hh2
0+h3

0
. (2.12d)

Note that this time-discretization leads to a local truncation error O(h4)+O((2h+
h0)4). Again, the above linear system can be solved numerically in MATLAB with
user-defined h and h0. The numerical scheme then is

Du6−a1u6= a2u5+a3u4+a4u3− f 6, x∈Ω, (2.13)

with the same type of boundary condition

Bu6= g6, x∈∂Ω. (2.14)

Again, this will be solved by MLMAPS in Section 3.
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• For seventh time step and all the steps afterwards, the Houbolt method requires
three third order Taylor series expansions of uk, uk−1, and uk−2 at tk+1. Note that
now we have an uniform time steps h between tk−2, tk−1, tk and tk+1. After solving
the system 

1 1 1 1
0 h 2h 3h
0 h2 (2h)2 (3h)2

0 h3 (2h)3 (3h)3




a1
a2
a3
a4

=


0
−1
0
0

 (2.15)

with h 6=0, we have that a1=
11
6h , a2=

−18
6h , a3=

9
6h and a4=− 2

6h . Thus,

∂uk+1

∂t
=

1
6h

(
11uk+1−18uk+9uk−1−2uk−2

)
.

Note that this time-discretization leads to a local truncation error O(h4). Thus,
Eq. (1.1) can be written as

Duk+1− 11
6h

uk+1=
1

6h

(
−18uk+9uk−1−2uk−2

)
− f k+1, x∈Ω, (2.16)

where f k+1 = f (x,tk+1). The boundary conditions are given through the original
system

Buk+1= gk+1, x∈∂Ω, (2.17)

where uk+1 ≈ u(x,tk+1) and gk+1 = g(x,tk+1). This is an equation of modified
Helmholtz type.

At any time-step, the local truncation error from such scheme for approximating first
derivative with respect to time can be bounded by∣∣∣∣∂uk+1

∂t
− ∂u(x,tk+1)

∂t

∣∣∣∣
=max

{
O(h2

0),O(h4),O(h4)+O((h0+2h)4),

+O(h4)+O((h+h0)
4)+O((h+2h0)

4)
}

.

This can be seen as O(h4) when h0 is chosen to be tenth of h. If we desire to use an
even higher-order time discretization scheme, we can expand a higher-order Taylor series
expansions of uk,uk−1,uk−2,··· ,uk−l at tk+1.

Thus, through various time discretization schemes, Eqs. (2.2)-(2.3) need to solved in
the first three time-steps, then Eqs. (2.8)-(2.9) at step five and Eqs. (2.13)-(2.14) at step six,
and finally Eqs. (2.16)-(2.17) at all steps afterwards.
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3 Spatial discretization

In every time-step, a general elliptical equation needs to be solved. For our simplicity, we
will rewrite those elliptical equations in the following form:

D̃w(x)= f̃ (x), (3.1a)
Bw(x)= g(x), (3.1b)

where D̃ is the differential operator appeared in Eqs. (2.2), (2.8), (2.13), or (2.16), w(x)=
u(x,tk+1) ≈ uk+1(x) = ŵ(x), and f̃ (x) various depending on which time step is being
considered. For example after step seven, D̃=D− 11

6h I and

f̃ =
1

6h

(
−18uk(x)+9uk−1(x)−2uk−2(x)

)
− f k+1(x).

MLMAPS is presented in this section to solve (3.1a)-(3.1b). In the modified method,
the spatial domain is discretized into a set of points in vector format {xi}N

i=1, where N
represents the total number of discrete points in the domain and on the boundary. As-
sume that the first ni points are the interior points, and next nb points are the boundary
points. Note that N=ni+nb. To find a numerical solution that makes the residual

R(x)= D̃ŵ(x)− f̃ (x) (3.2)

small, the idea is to expand the numerical solution ŵ in a finite-dimensional subspace PN
of some Hilbert spaceW : PN =span{φ1(x),φ2(x),··· ,φN(x)}. Let

ŵ(x)=
N

∑
j=1

αjφj(x).

The focus of this paper is on choosing RBFs as φ, particularly the polyharmonic splines.
However, the polyharmonic spline is not used directly, instead, the integrated form will
be used. In this paper, φ is the particular solution of Laplacian operator ∆ with respect to
polyharmonic splines ψ(r), in two dimensional space. Therefor, the basis φ is found by
integrating polyharmonic spline ψ(r)= r2m ln(r) in the following manner in two dimen-
sional space:

φ(r)=
∫ 1

r

∫
r ·ψ(r)drdr. (3.3)

By direct integration, we obtain that

φ(r)=


r2m+2 ln(r)
4(m+1)2 −

r2m+2

4(m+1)3 , r>0,

0, r=0.
(3.4)
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Additionally, to avoid singularity a low order polynomial space of dimension q is needed:

P=span{p1,··· ,pq}.

The solution to Eqs. (3.1a)-(3.1b) can be approximated at the given discrete nodes xj,
j=1,··· ,N. The word ”localized” is coming from influence domain Ωx of every discrete
point, x, in the domain which contains the n nearest discrete points to x where n is much
smaller than the total number of discrete points, n�N. For convenience, denote the local
domain of influence at interpolation point xj by Ωj ={xi, i=1,··· ,n}, then

w(x)≈ ŵ(x)=
n

∑
i=1

αiφ(‖x−xi‖)+
q

∑
l=1

αn+l pl(x), x∈Ωj. (3.5)

Thus,

n

∑
i=1

αiφ(‖xj−xi‖)+
q

∑
l=1

αn+l pl(xj)= ŵ(xj), j=1,··· ,n, (3.6a)

n

∑
i=1

αi pl(xi)=0, l=1,··· ,q. (3.6b)

Note that Eqs. (3.6a)-(3.6b) is a system of equations with n+q unknowns,

α=[α1,··· ,αn,αn+1,··· ,αn+q]
T,

which are to be determined. Denote the above small system of linear equations in matrix-
vector form, we have Aα= ŵ, where A is the coefficient matrix of the linear system, and
ŵ=[ŵ(x1),··· ,ŵ(xn),0,··· ,0︸ ︷︷ ︸

q 0’s

]. The unknown coefficients α=A−1ŵ. Thus,

D̃ŵ(xj)=
n

∑
i=1

αiD̃φ(‖xj−xi‖)+
q

∑
l=1

αn+lD̃pl(xj)=BT A−1ŵ, (3.7)

where

BT =[D̃φ(‖xj−x1‖),D̃φ(‖xj−x2‖),··· ,D̃φ(‖xj−xn‖),D̃p1(xj),··· ,D̃pq(xj)].

Similarly, we have that

Bŵ(xj)=
n

∑
i=1

αiBφ(‖xj−xi‖)+
q

∑
l=1

αn+l Bpl(xj)= cT A−1ŵ, (3.8)

where

cT =[Bφ(‖xj−x1‖),Bφ(‖xj−x2‖),··· ,Bφ(‖xj−xn‖),Bp1(xj),··· ,Bpq(xj)].
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By direct collocation on the discrete nodes in the domain, we have

BT A−1ŵ= f (xj), j=1,··· ,ni, (3.9a)

cT A−1ŵ= g(xj), j=ni+1,··· ,N. (3.9b)

Note that BT A−1 is a ”notation” only, in the sense that the inverse matrix were never
computed in practice. In fact, a small linear system Av=B is solved, and the resulted
solution is vT =BT A−1. This is an N×N system of algebraic equations, and each equa-
tion in the system contains n non-zero entries. The system is a sparse system with N
unknowns {ŵ(xj)}N

j=1. Even though an additional polynomial basis needs to be added
when we create local small linear systems in LMAPS using polyharmonic splines, the re-
sulting global sparse system remains the same size as in the original LMAPS using other
positive definite RBFs.

• Linear PDEs

If the differential operator D̃ is linear, the sparse system (3.9) is linear as well. Thus,
many existed linear sparse matrix solver can be used directly in MATLAB or other
computer languages.

• Nonlinear PDEs

In the case that the differential operator D̃ is nonlinear, a direct Picard method is
used to solve the nonlinear system of algebraic equation (3.9). At each time step,
a iteration is needed. The initial guess value at each time step is set to be the ap-
proximated solution at the end of last time step, i.e., uk+1(x,y) = uk(x,y) for all
(x,y)∈Ω∪∂Ω. Then the uk+1(x,y) is updated iteratively with stopping criteria of
differences between two consecutive iterations is less than 10−12. A numerical ex-
ample on nonlinear Burger’s equation is given in Section 4.

4 Numerical examples

In this section, we will apply the above numerical scheme to examples such as heat equa-
tion, convection-diffusion equation and nonlinear Burger’s equation in 2D. The maxi-
mum absolute errors, the average absolute errors and the root mean squared errors are
defined as

max abs=max
x∈Ω
|uk(x)−u(x,tk)|, (4.1a)

ave abs=
1
N ∑

x∈Ω
|uk(x)−u(x,tk)|, (4.1b)

rms=

√
1
N ∑

x∈Ω
|uk(x)−u(x,tk)|2, (4.1c)
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where N is the total number of collocation points in Ω∪∂Ω. For numerical simplicity, we
consider evenly-spaced spatial collocation points, in which

• number of points in each direction: np;

• number of boundary points: nb =4np;

• number of interior points: ni =(np−1)2;

• total number of collocation points: N=ni+nb =(np+1)2;

• number of points in local domains: n;

• initial small time-step size: h0; and

• time-step size for the Houbolt method: h or ∆t.

Example 4.1. In this example, we consider a simple heat equation in two-dimensional
space [5, 13]:

∂u(x,y,t)
∂t

=∆u(x,y,t)+sin(x)sin(y)(2sin(t)+cos(t)), (x,y)∈Ω,

u(x,y,t)=sin(x)sin(y)sin(t), (x,y)∈∂Ω,
u(x,y,0)=0, (x,y)∈Ω∪∂Ω.

This problem is chosen due to its simplicity and no other effect to the performance of the
proposed method other than time and spatial discretizations.

The performance of the proposed method on a square domain of [−2,2]2 (as shown
in [5] and [13]) is much more accurate.

To show effectiveness of our proposed method on irregular domains, we consider a
star-shape domain Ω which is defined by the following parametric equation:

Ω={(x,y)|x=ρcos(θ), y=ρsin(θ), 0≤ θ<2π},

where
ρ=1+cos2(4θ).

The profiles of the computational domain is shown in Fig. 1.
Fig. 2 shows the profiles of the analytical solution and the absolute errors on the top.

The maximum absolute errors, average absolute errors, and the root mean squared er-
rors are plotted against time variable, as shown on the bottom of Fig. 2. The maximum
absolute error at t = 9.9757 is within 10−7 which is extremely accurate. Note that the
number of points in the local domains is chosen as 35 while N=612, ∆x=∆y=4/60, and
h0=h=0.0015. The order of polynomial basis is 4 and the order of polyharmonic splines
is 1.
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Figure 1: The computational domain in Example 4.1.

Figure 2: Top: profiles of the analytical solution and the absolute errors at t=9.9757 in Example 4.1. Bottom:
the maximum absolute errors, the average absolute errors and the root mean squared errors versus time when
n=35, h=h0 =0.0015 are chosen in Example 4.1.

Fig. 3 shows the rate of convergence of the proposed method in terms of time dis-
cretization. The rate is about 2.5 when considering approximation to the solution at
t= 0.1, and rate is about 3.3 when considering approximation to the solution at t= 0.4.
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Figure 3: Rates of convergence of the proposed method in Example 4.1 when t= 0.1 and t= 0.4 are 2.5 and
3.3, respectively.
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Figure 4: Rates of convergence of the proposed method in Example 4.1 when t=1.6005 and t=2.001 are 4.0704
and 4.0042, respectively.

This particular time is selected since it is the largest maximum/average absolute errors
and the root mean square errors occur for the first time. When time is relatively large, the
errors do not change very much with small h such as 10−4 in comparison with 10−2. This
is partially due to the errors from spatial discretization, in addition to the implicit time
stepping scheme can tolerate bigger time-step sizes.

Fig. 4 shows the rates of convergence of the proposed method in Example 4.1 with re-
spect to spatial discretization are 4.0704 and 4.0042, when t=1.6005 and t=2.001 respec-
tively. Note the parameters in both cases are n= 35 collocation points in local domains,
np =40, h=h0=0.0015, the order of polynomial basis is 4 and the order of polyharmonic
splines is 1.
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Example 4.2. Consider the parabolic problem

∂u
∂t

=∆u+ f in Ω,t>0, (4.2a)

u|∂Ω = g for t>0, (4.2b)
u|t=0=u0 on Ω∪∂Ω, (4.2c)

where f , g and u0 are selected so that its exact solution is

u(x,y,t)=0.8e−80[(x−r(t))2+(y−s(t))2], (4.3)

where

r(t)=
1
4
(2+sin(πt)), s(t)=

1
4
(2+cos(πt)). (4.4)

(a) Consider Ω=[0,1]×[0,1] [1, 14]. The analytical solution Eq. (4.3) is a cone centered
at (1/2,3/4) at t = 0, and then the center of the cone moves around the origin in
a clockwise direction. After t = 2, the cone will rotate back to the original center.
Thus, we will consider to find the approximated solution for 0≤ t≤2.

To compare the proposed method with MFS-DRM in [1] and Kansa’s method in [14],
algorithm parameters are chosen to be the same as what were in the references,
which are h=0.01 and 19×19 uniform grid inside Ω with 32 boundary points uni-
formly distributed on ∂Ω. The proposed method is clearly as accurate as the MFS-
DRM and Kansa’s method (around 2×10−3 in maximum norm).

Additionally, the method implemented in this paper is a localized method which
can be used for large-scale problem with little loss of efficiency and accuracy, the
method can easily employ more collocation points to achieve higher-accuracy. For
example, when 41 by 41 collocation points in Ω with the same time-step sizes h=
0.01 and h0=0.1h, order of the polyharmonic splines is 4, order of polynomials is 3,
and 55 points in local domains are used, we can achieve maximum absolute error
of 4.9114e−5 accuracy.

Fig. 5 shows the profiles of the analytical solutions and the absolute errors, on the
left and on the right respectively, at t = 0.503, 1.003, 1.503 and 2.003. The errors
remain in the order of 5 magnitude.

Fig. 6, on the left, shows the maximum absolute errors, the average absolute errors
and root mean squared errors as a function of time. The errors stay at similar order
of magnitude, where 10−5 for the maximum absolute errors and 10−6 for the other
two errors. The numerical accuracy is consistent with the truncation error O(h3).
On the right of Fig. 6, the rate of convergence of the proposed scheme is shown in
terms of the spatial discretization. The rates are ranging from 2.3 to 2.5, although
the rates dropped compared to the previous example.
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Figure 5: The profiles of the analytical solutions and the absolute errors in Example 4.2 at t= 0.503, 1.003,
1.503 and 2.003, respectively.

(b) Next, we exam the same problem with a different domain, which is an irregular
domain where Ω is shown in Fig. 7 and the boundary ∂Ω is defined by the following
parametric equation:

∂Ω={(x,y)|x=ρcosθ+1.5, y=ρsinθ+1.5, 0≤ θ<2π},
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Figure 6: Left: The errors as functions of time in Example 4.2. Right: The rate of convergence of the proposed
scheme in terms of the spatial discretization.

Figure 7: The computational domain in Example 4.2.

where

ρ=

(
cos(3θ)+

√
2−sin2(3θ)

) 1
3

.

In the numerical implementation, we choose ni=9189 and nb=300 and the solution
for 0≤t≤2 is approximated with a maximum absolute error of 1.2603e−5 accuracy.
Fig. 8 shows the profiles of the analytical solutions and the absolute errors in Ex-
ample 4.2 with an irregular domain at t=0.503, 1.003, 1.503 and 2.003, respectively.

Fig. 9 on the left, shows the maximum absolute errors, the average absolute errors
and root mean squared errors as a function of time. The orders of errors are 10−6,
10−8, 10−7, respectively. The numerical accuracy of the method when applied to
the irregular domain is consistent with the truncation error O(h3). On the right
of Fig. 9, the rate of convergence of the proposed scheme is shown in terms of the
spatial discretization. The rates are approximately 4.2.
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Figure 8: The profiles of the analytical solutions and the absolute errors in Example 4.3 at t= 0.503, 1.003,
1.503 and 2.003, respectively.

Example 4.3. Next, we test the method by solving convection-diffusion equation [6, 20]

∂u
∂t

=d∆u−b·∇u, Ω,t>0, (4.5a)

u|∂Ω = g, t>0, (4.5b)
u|t=0=u0, Ω∪∂Ω, (4.5c)
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Figure 9: Left: The errors as functions of time in Example 4.2 with irregular domain. Right: The rate of
convergence of the proposed scheme in terms of the spatial discretization.

where with Ω=[0,2]×[0,2], d=0.01 and b=(b1,b2)=(0.8,0.8), g and u0 are obtained from
the analytical solution

u(x,y,t)=
1

1+4t
exp

[
−(x−b1t−0.5)2

d(1+4t)
− (y−b2t−0.5)2

d(1+4t)

]
. (4.6)

Similar nodes arrangements and number of collocation points are used in this paper
as seen in [6, 20], where N = 612 uniformly distributed interpolation nodes and n = 13
nearest nodes are selected in a local influence domain in this example. The order of
polynomial basis and the order of polyharmonic splines are both 3 with h0=0.001 and h=
0.01. Fig. 10 shows the profiles of exact solutions at different time and the corresponding
absolute errors.

The errors of our numerical solution over time are shown in Fig. 11. Compare to the
results obtained by finite collocation (FC) method in [20], we get similar accuracy. Since
the discretization and assembling process of FC method in [20] is almost same as the
LMAPS, our method has the same order of computational complexity as FC method. The
FC method in [20] is based on multiquadric (MQ) RBF. However, as we know, the choice
of its shape parameter is still an ad hoc topic in the research community of radial basis
function methods. The proposed MLMAPS is based on integrated polyharmonic splines
with polynomial, which has no shape parameters to be determined. Moreover, in [20] the
error of this problem increases over time. Using our method, it can be seen that the errors
decrease as time goes by in Fig. 11. The reason is that the Gaussian pulse decreases and
fades to the outside of the domain. This consistency of errors and solutions shows the
stability of the proposed method. The rate of convergence with respect to time-step size
for this problem at t=2 is approximately 2 which can be seen in Fig. 12.

Example 4.4. At last, we consider the nonlinear Burger’s equation [8, 17, 20, 27]

∂u
∂t

+uux+uuy = c∆u in Ω, t>0, (4.7)
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Figure 10: The profiles of the analytical solutions and the absolute errors in Example 4.3 at t=0.503,1.003,1.503
and 2.003 respectively.

where with Ω=[0,1]×[0,1], c=1/R where R is the Reynolds number. Initial and Dirichlet
boundary conditions are obtained from the analytical solution

u(x,y,t)=
1

1+e(x+y−t)/2c
. (4.8)

In this example, nearest 6 nodes in the local influence domain are used. The order of
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Figure 11: The errors versus time in Example 4.3
with N=612, n=13, h=0.01, and h0 =0.001.
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Figure 12: The rate of convergence of our method
in Example 4.3 when time t=2 is approximately 2.

polynomial basis and the order of polyharmonic splines are both 2. The profiles of nu-
merical solution and corresponding absolute errors when c=0.2 based on 31×31 uniform
nodes are shown in Fig. 13.

Fig. 14 shows the root mean squared errors versus the number of collocation points at
t=1 with different c’s. In comparison with the results in Fig. 11 in [20], where FC method
based on MQ is used, current results from the proposed methods in this paper are more
accurate and consistent. The errors decrease with growth of values of c. That is because
the greater the c is, the smoother the solution is. From both Figs. 14 and 15, it can be seen
that the numerical results converge with respect to the number of collocation nodes, N
used.

In [27], LMAPS based on MQ is used for solving Burger’s equation. A ”good” shape
parameter in MQ has to be carefully selected in order to achieve reported accuracy. The
optimal shape parameter is specifically effected by the number of collocation points, the
parameter c in the Burger’s equation, and domain size and shapes. In the proposed
method using polyharmonic spline, there is no need to determine a shape parameter.
Compare errors in Fig. 15 with the results in [27], where same c are used, our results are
competitive and stable. This advantage is especially manifested in solving large-scale
problems, because we do not need to change any parameters when the distance between
nodes is getting smaller. It can be seen in Table 1 that the proposed method has robust
performance for solving large-scale Burger’s equation.

Combining with the Houbolt scheme, we can solve real problems with high order of
convergence and stability. In this example, we pick c= 0.5, t= 1, N = 51×51 to test the
rate of convergence with respect to h in Fig. 16. The rate of convergence is approximately
5.

In Fig. 17, we can see that our method is still very effective with greater time step
h=0.1.
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Figure 13: The profiles of the analytical solutions and the absolute errors in Example 4.4 at t=0.515,1.015,1.515
and 2.015 respectively with c=0.2, N=312, h=0.05, and h0 =0.005.

Table 1: Errors of MLMAPS for solving Burger’s equation in Example 4.4 at t= 1 with h= 0.05, h0 = 0.005,
N=1012,2012,3012,4012.

N c=0.5 c=1
max abs ave abs rms max abs ave abs rms

10201 4.7643e-7 1.6536e-7 2.1851e-7 2.0602e-8 8.9441e-9 1.0851e-8
40401 2.7521e-7 8.6343e-8 1.1515e-7 7.1061e-9 2.5314e-9 3.3019e-9
90601 2.4032e-7 7.5904e-8 9.9748e-8 4.8652e-9 1.5690e-9 2.0787e-9

160801 2.2837e-7 7.2812e-8 9.4991e-8 4.1307e-9 1.3249e-9 1.7318e-9
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Figure 16: The rate of convergence of our method
in Example 4.4 when time t=1 (c=0.5, N=512)
is approximately 5.
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Figure 17: The maximum absolute errors, the av-
erage absolute errors and the root mean squared
errors versus time in Example 4.4 with c = 1,
N=312, n=6, h=0.1, and h0 =0.01.

5 Conclusions

In this paper, the implicit time-stepping, the Houbolt method, and the modified localized
method of approximated particular solutions (LMAPS) are applied to some linear or non-
linear diffusion-reaction-convection partial differential equations. The performance of
the proposed scheme is examined on four examples, including two basis linear diffusion-
reaction equations, one linear diffusion-reaction-convection equations and one nonlinear
Burger’s equation. The focuses of presented numerical discussions are high accuracy and
fast rate of convergence.

This is uncommon to be seem due to computational trade offs. The simulation re-
sults show that the Houbolt method can significantly improve the numerical accuracy for
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time-dependent problems when MLMAPS is used. Both time-discretization and spatial
discretization are highly accurate so the numerical performance of the proposed scheme
is extremely well. It is competitive to the MFS-DRM and Kansa’s methods reported in [1]
and the original LMAPS.

The proposed scheme has outstanding performance for solving convection-diffusion
problem and nonlinear Burger’s equation due to the following reasons:

• The numerical scheme is relatively stable with respect to time discretization for
approximation of the solution at a large time. Thus, the numerical scheme is only
sensitive when approximating the solution at beginning time. This depends on how
small h0 was chosen and its relation with h.

• The proposed numerical method is very flexible as it can solve large-scale problems
due to the sparsity, it can deal with high-dimensional problems due to the kernels
chosen, it can solve nonlinear or linear problems with high accuracy due to the
use of low-order polynomial basis. Our on-going research focuses on theoretical
analysis of the algorithms.

• Since our method is compared with other methods, for the sake of fairness, we
use the same domains and same number of collocation points as in the paper be-
ing compared. In Example 4.4, as shown in Table 1, we tested the performance of
this method for solving large-scale problem. The accuracy is further improved as
number of points increases. This method can be easily used to solve large-scale
problems without changing any parameter.

• Our method has same order of computational complexity as finite collocation
method in [19] and LMAPS in [26]. The methods in [19] and [26] are based on MQ
RBF whose shape parameter need to be carefully selected. The proposed MLMAPS
is based on integrated polyharmonic splines with polynomial, which has no shape
parameters to be determined. This advantage is especially manifested in solving
large-scale problems, because we do not need to change any parameters when the
distance between nodes is getting smaller. Moreover, our solutions are more con-
sistent and stable as changes of time and other parameters in Example 4.3 and Ex-
ample 4.4.
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