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Abstract The control of nonnative species is a central problem in spatial ecology.Data on the
invasive Burmese python (Python bivittatus) in the Florida everglades, show an exponential
increase in python population,which have resulted in local prey populations reducing severely
(Dorcas et al. in Proc Natl Acad Sci 109:2418–2422, 2012). This is exacerbated by the
inability to harvest pythons by law, in Everglades National Park, where their concentration is
extremely high.We consider a two species predator–preymodel with Beddington–DeAngelis
functional response, and show that it blows up in finite time, thus mimicking an “exploding”
python population. Given current government policy that requires complete protection of
species in national parks, we investigate novel alternative population control measures that
promote efficient eco-system engineering. We establish such measures are feasible in our
setting by rigorously proving boundary damping effects. That is we show that an exploding
population in a region can be controlled, solely via manipulation of the boundary, such
as effective corridor design. Detailed numerical simulations are performed to justify our
analytical results.
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Introduction

Background

An invasive species is formally defined as any species capable of propagating itself in a
nonnative environment and thus establishing a self-sustained population. In the United States
damages caused by invasive species to agriculture, forests, fisheries and businesses, have
been estimated to be $120 billion a year [1]. To quote from [2]: “Invasive species are a
greater threat to native biodiversity than pollution, harvest, and disease combined.” Therefore
understanding and subsequently attenuating the spread of invasive species is an important and
practical problem [3–9]. In many ecosystems around the world various invasive species have
already established, such as the Burmese python invasion in the Florida everglades [10].
Thus, a very relevant problem in spatial ecology is the actual control of such established
invasive populations.

Eradication is optimal, but often eco-system managers are satisfied if targeted invasive
species can be kept to low/manageable levels. Current eradication efforts for many invasive
species usually involve chemical treatment, local harvesting, dewatering, ichthyocides, or a
suitable combination [11]. Unfortunately, many of these methods are known to negatively
impact native fauna [11], are expensive, and are not reversible. A notable example is when the
United States Geological Survey (USGS) attempted amass scale poisoning of fish, to prevent
the invasive Asian carp from entering the Chicago Sanitary and Ship Canal, so as to protect
the fishing interests of the region. Unfortunately after the poison had taken effect, biologists
found only one Asian carp among the thousands of dead fish [12]. Similarly, in 2016, in an
effort to control the mosquito population that carries the Zika virus, an aerial pesticide was
used. This inadvertently resulted in the death of millions of honeybees [13]. The most current
control measures have focused on shifting the sex ratio of invasive aquatic populations [14].
Therein adding individuals containing two Y chromosomes (YY females) to an invasive
population to skew the sex ratio of subsequent generations to contain an increasing number
of males (i.e., fewer and fewer females in each generation). The gradual reduction in females
may lead to eventual extinction of the population. Such methods are reversible and have the
advantage of targeting a specific invasive species [15]. Recent work has also focused on using
pheromone based techniques [16], in the context of the invasive cane toad. The tadpoles of
cane toads eliminate competition by locating and eating new eggs, via chemical cues from the
eggs. Researchers have shown that using those very same cues, funnel traps in waterbodies
can be used to capture and eradicate cane toad tadpoles [16].

Environmental pressures also promote population explosion. For example, the environ-
ment may turn unfavorable for the competitors or natural enemies of a species, causing the
population of this species to rapidly increase unchecked or outbreak [17]. As an illustration,
in the European Alps certain seasonal environmental conditions enable the population of
the larch budmoth to become large enough to defoliate entire forests [18]. Extreme weather
events for example could have both positive or negative effects on invasive species selection
[19]. Thus in most ecosystems, if the density of an invasive species/pest undergoes a rapid
transition to an extremely high level in population, the results can be catastrophic, both for
local and nonlocal populations.

Control Mechanisms and “Ecological” Damping

One can ask what measures apart from chemical control, are available to target invasive
populations. Biological control is an alternative adopted strategy to limit harmful populations
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[20]. The objective of a biological control is to establish a management strategy that best
controls and decreases the harmful population to healthy levels as opposed to high and risky
levels. This can be done via introduction of natural enemies of the pest into the ecosystem
perse. Naturally, how does one define high level, and further, how well does the biological
control actually work, at various high levels? We have recently started investigating this
question via the mathematical property of finite time blow-up [21–26].

Given a mathematical model for the population dynamics of a species, one can investigate
the question of whether there is a globally (in time) existing solution, or perhaps if finite time
blow-up occurs. That is,

lim
t→T ∗<∞ ‖u‖X = ∞, (1)

where X is a certain function space with a norm ‖·‖, u is the population density of the species
in question (described by an evolution equation) that depends on time (t) as well as spatial
variables (x), and T ∗ is the blow-up time [27,28]. In the context of population biology finite
time blow-up has been well investigated [7,29–31].

Note, we have now introduced an alternate viewpoint: finite time blow-up. This can be
viewed as mimicking the explosive growth of an invasive species. This is formalised by
equating:

finite time blow-up = uncontrollable and unmanageable population level. (2)

Here, the blow-up time T ∗ is viewed as the disaster time, for the ecosystem.
Although populations cannot reach infinite values in finite time, they can grow rapidly

[17]. For example, experimental evidence suggest that the human populationmay be growing
hyperbolically, rather than logistically [32]. Data on the Burmese python suggests that its
population is growing at least exponentially, causing severe crashes in local prey populations
[10]. Our approach investigates biological control mechanisms, that attempt to lower and
control the targeted population before time T ∗. These rely on eco-friendly/grass-roots and
community programs [24], and avoid classical chemical and biological control [20]. We term
this as “Ecological” Damping [24]. With this approach there is no ambiguity as to what is
a disastrous high level of population. Furthermore, there is a clear demarcation between the
disaster occurring, or not occurring. We survey the most recent literature in this direction

• There is a potential for the predator density to blow-up/explode in finite time, for suffi-
ciently large initial values of predator density [21,23].

• The blow-up can occur even for small initial values of predator densities [33].

These ideas have also been applied to model invasive populations that seem to be “explod-
ing”, under a variety of ecological scenarios. The most current findings in the literature thus
far are that

• Prey refuge can prevent blow-up [24].
• Interference effects among the predators increases the propensity to blow-up [34].
• Climate induced mortality in the predator can prevent blow-up [35].
• Gestation effect in predator can prevent blow-up [25,36].

Remark 1 Conditions for the prevention of blow-up viamanipulation of boundary conditions
are completely lacking in the literature.

Remark 2 Note a similar concept of finite time consensus has been studied quite intensively
in the control theory literature. Here the system under consideration will reach a consen-
sus/agreement state in a finite/fixed time. Such methods have far reaching applications in
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grouphuntingbypredators, coordinatedmilitary decisions and actions and coordinated search
and rescue procedures. For details the interested reader is referred to [37,38].

Python Explosion in the Everglades and New Mechanisms of Control

The Burmese python (Python bivittatus) is an invasive species of snake in the Florida ever-
glades, whose entry into the region is mostly attributed to the exotic pet trade [1]. Data from
python capture show an exponential increase in python population, which has in turn spelled
doom for many native endangered species, that fall prey to the python [10]. A separate issue
here is that due to current government policy, all species in National parks in the United
States are protected by law and so harvesting of pythons in the actual park area is deemed
illegal [39]. Furthermore the large area of the park, the rich source of prey there, and low
detectability of the python, are all factors causing the python population to grow unchecked.
Thus one is led to consider alternate control measures. One possibility is to attempt to use
mechanisms at the boundary of the park (given that the interior is protected by law). Also,
how does one convert such a novel control method into sound management practice? The
heart of the matter mathematically, is to understand and investigate the effect of various
boundary conditions. This is discussed next.

In our approach to investigate population explosion problems and their subsequent control,
we have considered only Dirichlet or Neumann boundary conditions earlier [24,34]. It is
important to briefly glean over boundary conditions, as they appear in reaction diffusion
problems in spatial ecology. One is referred to [40] for a thorough treatment. Typically one
has, a partial differential equation model for a state variable u(x, t) (usually representing
the concentration or density of a species), with x ∈ �, where � is the physical domain
of interest. One treats the general boundary condition a(x)∇u · n + b(x)u = 0 on ∂�. If
b(x) = 0, we have pure no-flux boundary condition, indicating no individuals cross the
boundary, and the boundary is essentially a perfect barrier. If a(x) = 0 then we have the
so called lethal/hostile/absorbing boundary, where individuals are annihilated/absorbed as
they meet the boundary. Typically the mixed boundary condition requires a(x), b(x) �= 0.
If a(x), b(x) > 0, then we have a situation where some individuals from the interior of the
domain cross the boundary when they meet it, thus moving outside the domain. This is the
situation we are most interested in.

Setting a(x), b(x) > 0, is purely mathematical. In reality, when a species in the interior of
� meets the physical boundary ∂�, it may or may not be the easiest thing to move across it.
Thus we first have to establish that in theory such a boundary condition can indeed provide
a damping effect in our setting. Next we link this mechanism to the design of more efficient
pathways and corridors [41], so that the species in question will indeed be able to cross over.
Our contributions in the current manuscript are the following:

• We investigate a two species predator–prey model, where the predator population, has
the potential to blow-up in finite time. We investigate this phenomenon first under purely
Neumann boundary conditions, showing blow-up is possible via Theorems 2.2 and 2.3.

• We show that blow up is possible under mixed (in particular Robin type) boundary
conditions, for large initial data, via Theorem 2.4.

• However, we show that the mixed (in particular Robin type) boundary conditions can
also provide a “damping” effect. That is, global existence of finite population is possible
with the Robin type boundary condition with small initial data, via Theorem 2.5.

• In particular we derive conditions via Corollary 1 such that the two species model (5)–
(6) posed with Neumann boundary conditions blows up in finite time, whilst the two
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Table 1 List of functions and parameters used in the model with their physical meaning

Symbols Meaning

u Prey

v Predator

r Growth rate of prey u

K Carrying capacity of prey u

ω Maximum rate of per capita removal of prey u

d Measure of refuge provided by the environment for the prey u

D Predator interference

c Growth rate of v via sexual reproduction.

ω1 Maximum rate of per capita removal of predator species v

D1 Alternate food available to predator v

All parameters are assumed to be positive constants

species model (5)–(6) with mixed boundary conditions (with the same initial conditions
and parameters) is bounded for all time.

• Turing instability is impossible in this model system, for any parameter regime, via
Theorem 2.6.

• Detailed numerics are performed on the PDE system on square and circular domains to
justify our analytical results, and explore various parameter/data regimes. See “Numerical
simulations”.

Model Formulation

The predator–prey ODE model from the recent work of Upadhyay et al. [42] is first consid-
ered

du

dt
= ru(1 − u/K ) − ωuv

D + du + v
, (3)

dv

dt
= cv2 − ω1v

2

u + D1
, (4)

where r, ω, D, d, c, ω1, D1 are model parameters, v denotes a generalist predator population
as a function of time t , depredating on a prey population u. The functional response of the
predator is of Beddington–DeAngelis type [43]. This response assumes that the predators
interfere with each others feeding.

The parameter definitions are given in Table 1:

Definition 1.1 (Generalist Predator) A generalist predator is a hunting organism that feeds
on a wide variety of prey.

Definition 1.2 (Interference) Mutual interference is defined as the behavioral interactions
among feeding organisms, that reduce the time that each individual spends obtaining food,
or the amount of food each individual consumes.

Interference occurs commonly among predators when prey is scarce, or when the predator
population is at high density. The reader is referred to [29,34,36,44–49] for further details.
Note that the classical Holling type II response function, for a population of predators say
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given by v, depredating on a prey population u, would take the form f (u) = u/(u +d), with
d as a parameter. That is the predator v has a purely prey dependent functional response.
Interference is often modeled via the Beddington–DeAngelis response [43] which takes the
form f (u, v) = u/(v + b1u + d). The constant b1 is then the interference parameter, and the
response changes due to the assumption that high predator density, should also affect their
feeding rate. Intuitively, at higher values of v, u/(v + b1u + d) is small, and the predator
feeds less, because there is more time spent as the various predators interfere with each
other, in their search for prey [49]. Note, the Beddington–DeAngelis formulation assumes
that handling and searching are mutually exclusive, that is predators handling prey will not
interferewith those searching for prey. Interference occursmost commonlywhere the amount
of food is scarce, or when the population of feeding organisms is large [47]. Note, food chain
models incorporating mutual interference appear a fair bit in the literature [44,45,48].

The predator is modeled according to the modified Leslie–Gower scheme. In this formu-
lation the functional response of the predator is not similar to that of its prey. The generalist
predator population grows quadratically as cv2, signifying population growth is directly pro-
portional to the product of males and females (v × v = v2). The population decays due
to intraspecies competition as −(ω1/(u + D1))v

2. Thus if the u population is large, v has
enough prey, and so the competition coefficient ω1/(u + D1), is small. On the other hand
if the u population is small, v has lack of sufficient prey, and so the competition coefficient
ω1/(u + D1), is large, inducing greater competition amongst the predators v. The D1 shows
that v is a true generalist predator, and can switch to alternate prey, in case its favorite prey
u goes extinct. The ODE model is referred to as ODE system.

Remark 3 We would like to remark that we consider the autonomous problem, and all the
parameters in our setting are pure constants, not time dependent functions. Many times the
non-autonomous problem is also considered, when there is a physical motivation that these
intrinsic rates could be time dependent. For example in population ecology mating rates
could be seasonal [35]. Also, random environmental fluctuations have lead many researchers
to consider stochastic rates, such as in the setting of random weather driven events. For
example, Acacia mearnsii is a shallow-rooted tree introduced in Yunnan province, in China.
Significant decline was observed for this species relative to the regions native trees, during the
drought of 2009–2010. Another example where random climatic fluctuation stops invasive
species population growth, is the destruction of shell beds in the Yellow River in China, by
extreme storms. The interested reader is referred to [35,50,51] for recent results in these
directions. However in our setting the nonautonomous problem is outside the scope of the
current research.

The spatially explicit form of the above ODE model can be considered, if species are
allowed to freely diffuse in search of food, mates etc. Thus, the ODE system can be extended
to two-dimensional space, we obtain the following PDE model:

ut = Du�u + ru(1 − u/K ) − ωuv

D + du + v
, (5)

vt = Dv�v + cv2 − ω1v
2

u + D1
. (6)

The model (5)–(6) is referred as PDE system.
Due to the large python population in the Florida everglades, and the diminishing source

of prey, model system (5)–(6) seems ecologically appropriate to model the python situation
in the glades.
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Preliminaries

We now present various notations and definitions that will be used frequently. The usual
norms in the spaces Lp(�) and L∞(�) respectively denoted by

‖u‖p
p = 1

|�|
∫

�

|x(s)|p ds,

‖u‖∞ = max
s∈�

|x(s)| .

Existence of Local Solution

It is well-known [27] under the ”regularizing effect principle” to prove global existence of
solutions to (5)–(6) , it suffices to derive uniform estimates on the L p norms of the reaction
terms on [0, Tmax] for some p > n/2, where n is the spatial dimension of the domain �,
where Tmax denotes the eventual blowing-up time in L

∞(�). The following local existence
result is well-known [27].

Lemma 2.1 The system (5)–(6) admits a unique, classical solution (u, v) on [0, Tmax] × �.
If Tmax < ∞ then

lim
t→Tmax

{‖u(t, ·)‖∞ + ‖v(t, .)‖∞} = ∞. (7)

Proof Since the reaction terms are continuously differentiable in the positive octant, then for
any initial data inLp(�), p ∈ (1,+∞), it is easy to check directly their Lipschitz continuity
on bounded subsets of the domain of a fractional power of the operator I2 (Du, Dv)

t �,
where I2 the two dimensional identity matrix, � is the Laplacian operator and ()t denotes
the transposition. 	

Remark 4 In the estimates that follow, C, C1, C2 are generic constants. They can change in
value from line to line, and sometimes within the same line, if so required.

Finite Time Blow Up for Large Initial Data

We first show that the solution v to (6) can blow up in finite time for large initial data. In
particular we state the following theorem:

Theorem 2.2 Consider the two species model (5)–(6). The solution to (6), v(x, t), blows up
in finite time. That is limt→T ∗<∞ ||v(x, .)||∞ = ∞ as long as the initial data (u0(x), v0(x))

are large enough.

Proof Consider ODE version of (5)–(6), with positive initial conditions. By integrating (4)
we obtain

v = 1

1
v0

− ct + ω1

t∫
0

ds
u+D1

.

Our goal, following [23], is to show that, for u0 chosen sufficiently large, via the continuity
of the solution component u on a the local interval of existence following classical theory
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[27], there exists a δ > 0 such that

ψ (t) = 1

v0
− ct + ω1

∫ t

0

ds

u + D1

= 1

v0
+

[
−c + ω1

t

∫ t

0

ds

u + D1

]
t

<
1

v0
− c

2
t, for all t ∈ (0, δ). (8)

Now for v0 chosen sufficiently large, then we can find T ∗ ∈ (0, δ) such that

1

v0
− c

2
T ∗ = 0,

which gives us by application of the mean value theorem, the existence of some T ∗∗ ∈ (0, δ),
T ∗∗ < T ∗, s.t ψ (T ∗∗) = 0. This implies v(t) the solution of (6), blows-up in finite time, at
t = T ∗∗. Via standard comparison, the result for the PDE follows, proving the theorem. 	

Sufficient Condition on Data for Blow Up

Theorem 2.3 Consider the two species PDE model (5)–(6), for any choice of parameters,
and a δ1 > 0, such that c > δ1. If a given initial condition (u0, v0) satisfies

ω1

δ1
< ||v0||∞ ln

(
||u0||∞
ω1

c−δ1
− D1

)
(9)

then the solution to (6), v, will blow-up in finite time, that is limt→T ∗<∞ ‖|v||∞ = ∞, where
the blow-up time T ∗ ≤ 1/δ1||v0||∞.

Proof Consider the equation for the predator

dv

dt
=

(
c − ω1

u + D1

)
v2.

In the event that c > ω1
D1

, blow-up is trivial. If c < ω
D1

, blow-up is far from obvious. However
still possible, under certain sufficiency conditions on the initial data. Suppose

(
c − ω1

u + D1

)
> δ1 > 0.

Then in the ODE case, v will blow-up in finite time in comparison with

dv

dt
= δ1v

2.

In the PDE case, we require minx∈� u(x, t) ≥ ω1
c−δ1

− D1, and then blow up is obvious in
comparison with

vt = �v + δ1v
2.

123



Differ Equ Dyn Syst (January–July 2019) 27(1–3):249–276 257

Note this is sufficient, not necessary. To see how this can be guaranteed wemake estimates
on the prey u, via comparing it to a sub-solution

ut = Du�u + ru(1 − u/K ) − ωuv

D + du + v

> Du�u + ru(1 − u/K ) − ωuv

v
= Du�u + ru(1 − u/K ) − ωu.

Note, here we use the positivity of the predator v and prey u and the fact that ωuv
D+du+v

< ωuv
v
,

and so − ωuv
D+du+v

> −ωuv
v
. Thus, via standard theory if r > ω, u will converge uniformly to

the steady state u∗ = K (1− ω
r ). Now if K (1− ω

r ) >
(

ω1
c − D1

)
, then u will eventually rise

above the level
(

ω1
c − D1

)
point-wise, making blow up a certainty. However, it might turn

out that K (1 − ω
r ) <

(
ω1
c − D1

)
. In this case we compare with the sub-solution

ut = Du�u + ru(1 − u/K ) − ωuv

D + du + v
> Du�u − ωu.

via classical theory we have that

u > u0e−(C+ω1)t .

This estimate holds point-wise. Thus in order to have blow up, we require that

u > u0e−(C+ω1)t >
ω1

c − δ1
− D1.

Equivalently,

ln

(
||u0||∞
ω1

c−δ1
− D1

)
> t (C + ω1).

Note that

vt = �v + cv2

blows-up at time T ∗ = 1/c||v0||∞. Thus, if we choose initial data such that

ln

(
||u0||∞
ω1

c−δ1
− D1

)
1

(C + ω1)
> t > T ∗ = 1

c||v0||∞ ,

then the above inequality guarantees that the min of u will remain above the critical level
ω1

c−δ1
− D1, for sufficiently long enough time, for v to blow-up. This yields that as long as

the following holds

||v0||∞ ln

(
||u0||∞
ω1

c−δ1
− D1

)
>

(C + ω1)

c
,

then v will blow up in finite time. This proves the theorem. 	

Blow Up with Mixed Boundary Conditions

Here we derive sufficient conditions under which blow up is possible with mixed boundary
conditions. We state the following theorem:
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Theorem 2.4 Consider the two species model (5)–(6) posed with mixed boundary conditions
that is a∇v · n + bv = 0|∂�. If c > ω and c > ω1/

( r−ω
r

)
K + D1, then v(x, t) the solution

to (6) blows up in finite time, that is limt→T ∗<∞ ||v(x, .)||∞ = ∞, as long as the initial data
v0(x) is sufficiently large.

Proof Again, we can compare u, with a subsolution

ut = Du�u + ru(1 − u/K ) − ωuv

D + du + v

> Du�u + ru(1 − u/K ) − ωuv

v
= Du�u + ru(1 − u/K ) − ωu.

The sub-solution that is the u∗ solving ut = Du�u + ru(1 − u/K ) − ωu, will converge
to

( r−ω
r

)
K uniformly, thus after a certain transition time T1, we must have, by comparison,

that u >
( r−ω

r

)
K , with the estimate being true point-wise in x .

Now this implies that for t > T1,

cv2 − ω1v
2

u + D1
=

(
c − ω1

u + D1

)
> c − ω1( r−ω

r

)
K + D1

. (10)

Since by assumption, we have c > ω1/
( r−ω

r

)
K + D1, then for t > T1, (6) reduces to

vt = Dv�v +
(

c − ω1( r−ω
r

)
K + D1

)
v2 > Dv�v + δv2 (11)

a∇v · n + bv = 0, on ∂�. (12)

We thus have to analyze the above problem, and adhere to standard methods [52]. We
recap a few details for the sake of completeness. We consider

φ(t) =
∫

�

v2dx . (13)

One easily derives,

φ
′
(t) ≥ −3

(
b

a
Dv

∫
∂�

v2ds + Dv

∫
�

|∇v|2dx

)
+ 6

∫
�

v3dx = ψ(t). (14)

It is also easily derived that

ψ
′
(t) = 6

∫
�

(vt )
2dx . (15)

Since ψ
′
(t) ≥ 0, it must be that ψ(t) ≥ 0, for t > 0 if ψ(0) ≥ 0. Also it is easily seen

via Cauchy-Schwartz that [φ ′
(t)]2 ≤ φ(t)ψ

′
(t), and since φ

′
(t) ≥ ψ(t), standard calculus

yields

ψ
′
(t)

ψ(t)
≥ 3

2

φ
′
(t)

φ(t)
(16)

and so integration in time yields

ψ(t) ≥ Mφ(t)
3
2 , (17)
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where M = ψ(0)/(φ(0))
3
2 . Now using the fact again that φ

′
(t) ≥ ψ(t), we have

φ
′
(t) ≥ Mφ(t)

3
2 . (18)

Thus integration in time of the above inequality yields the finite time blow up of φ(t) =∫
�

|v|2dx , for large enough initial data. 	

Remark 5 Next we provide explicit estimations of v0(x) required to yield blow up. Note,

as long as M = ψ(0)/(φ(0))
3
2 ≥ 0, φ(t) will blow up in finite time. Since φ(0) =∫

�
(v0(x))2dx > 0, M will be strictly greater than 0 as long as ψ(0) > 0. Thus solving

ψ(0) = −3

(
b

a
Dv

∫
∂�

(v0(x))2ds + Dv

∫
�

|∇v0(x)|2dx

)
+ 6

∫
�

(v0(x))3dx > 0, (19)

we can give the following sufficient explicit estimate for the largeness of the initial data
v0(x) for blow up to occur:

2
∫

�

(v0(x))3dx >
b

a
Dv

∫
∂�

(v0(x))2ds + Dv

∫
�

|∇v0(x)|2dx . (20)

We see this can be achieved by using an initial condition v0(x) large in amplitude, so that
its L3(�) norm will be large, whilst we can make the right hand side of the above small by
choosing Dv << 1, as well as b << 1.

Next we derive sufficient conditions under which blow up can be prevented using mixed
boundary conditions. We state the following theorem:

Theorem 2.5 Consider the two species model (5)–(6)posed with mixed boundary conditions,
that is a∇v ·n+bv = 0, on ∂�. Then the L2(�) norm of solutions to this model, are bounded
for all time, for sufficiently small initial data.

Proof We compare the solution of (6) to a super solution via

cv2 − ω1v
2

u + D1
=

(
c − ω1

u + D1

)
v2 < cv2. (21)

Now note

vt = Dv�v +
(

c − ω1

u + D1

)
v2 < Dv�v + cv2, in � (22)

a∇v · n + bv = 0, on ∂�. (23)

We attempt to prove global existence for

vt = Dv�v + cv2, in � (24)

a∇v · n + bv = 0, on ∂�, (25)

because any global bound derived here, will be a bound for the v solving (6), by simple
comparison. We multiply (24) by u and integrate in space on �, and use (25) to obtain

1

2

d

dt

∫
�

|v|2dx = − Dv

∫
∂�

|∇v|2dx + Dv

∫
∂�

v∇v · nds + c
∫

�

v3dx (26)

≤ − Dv

∫
�

|∇v|2dx − Dv

b

a

∫
∂�

|v|2ds + c
∫

�

v3dx .
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Recall the Gagliardo–Nirenberg interpolation inequality [53],

||φ||W k,p(�) ≤ C ||φ||θW m,q (�)||φ||1−θ
Lr (�), for φ ∈ W m,q(�) (27)

provided p, q, r ≥ 1, 0 ≤ θ ≤ 1, and

k − n

p
≤ θ

(
m − n

q

)
+ (1 − θ)

n

r
, where n = dim �. (28)

Now we consider exponents such that

W k,p(�) = L3(�), W m,q(�) = H1(�), Lr (�) = L2(�), (29)

so k = 0, p = 3, m = 1, q = 2, r = 2, n = 2, thus 1
3 ≤ θ ≤ 1. Thus, choosing

θ = 1

3
, (30)

we obtain via an application of the Gagliardo–Nirenberg interpolation inequality on v solving
(6)

||v||3 ≤ C ||∇v||
1
3
2 ||v||

2
3
2 . (31)

Thus we obtain

||v||33 ≤ C ||∇v||2||v||22. (32)

Injecting the above into (24) we obtain

1

2

d

dt

∫
�

|v|2dx ≤ − Dv

∫
�

|∇v|2dx − Dv

b

a

∫
∂�

|v|2ds + c
∫

�

v3dx

≤ − Dv

∫
�

|∇v|2dx − Dv

b

a

∫
∂�

|v|2ds + cC

(∫
�

|∇v|2dx

) 1
2
(∫

�

v2dx

)

≤ − Dv

∫
�

|∇v|2dx − Dv

b

a

∫
∂�

|v|2ds + Dv

∫
�

|∇v|2dx

+ C1

(∫
�

v2dx

)2

. (33)

This follows via employing Young’s inequality with ε, with ε =
√

2Dv

cC . Let us call F(t) =∫
�

v2dx , then the above entails

d

dt
F(t) ≤ 2C1F(t)2 − 2Dv

b

a
δ2. (34)

where
∫
∂�

v2ds > δ2 > 0. Integration of the above equation now yields a global solution as
long as the initial data v0(x) is small enough. 	

Remark 6 Next we provide explicit estimations of v0(x) required to yield a global in time
solution. That is we specify in terms of model parameters how “small” v0(x) really needs
to be. Note, as long as F(0) = ∫

�
(v0(x))2dx ≤ 2Dv

b
a

δ2
C1

, F(t) will exist globally, in
comparison to

d

dt
F(t) = 2C1F(t)2 − 2Dv

b

a
δ2, (35)
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and cannot blow up in finite time. Thus solving

F(0) =
∫

�

(v0(x))2dx ≤ 2Dv

b

a

δ2

C1
, (36)

we can now give the following sufficient explicit estimate for the smallness of the initial data
v0(x) for global in time existence:∫

�

(v0(x))2dx ≤ 2Dv

b

a

δ2

C1
. (37)

Remark 7 Wewould like to remark on the physical interpretation of the condition
∫
∂�

v2ds >

δ2, ∀t , that we have used in the above proof. This follows mathematically via the positivity
of v on the boundary, and the mixed boundary condition that we prescribe. Physically this
implies that the density of the predator on the actual boundary is always positive, while its
net flux across the boundary could be negative or positive. That is there could be predators
inside the domain, leaving through the boundary on contact with it, to go outside(and this is
the case if a, b > 0, or negative net flux) or coming into the domain from outside (and this
is the case if either a < 0, b > 0 or a > 0, b < 0, or positive net flux).

Remark 8 Note if b = 0, then we would have d
dt F(t) ≤ 2C1F(t)2, and be unable to claim

global existence for small data. Thus themixedboundary condition facilitates global existence
for small data.

Corollary 1 Consider the two species model (5)–(6) posed with Neumann boundary con-
ditions. Consider now initial conditions and a parameter set, for which the sufficiency
conditions of Theorem 2.3 are met. Then the two species model (5)–(6) posed with Neu-
mann boundary conditions, blows up in finite time. It is possible to choose b > 0 large
enough such that the L2(�) norm of solutions to the two species model (5)–(6) with the
same initial conditions and parameters, with mixed boundary conditions however, that is
a∇v · n + bv = 0, on ∂�, is bounded for all time.

Proof Since the conditions of Theorem 2.3 are met we have

ω1

δ1
< ||v0||∞ ln

(
||u0||∞
ω1

c−δ1
− D1

)
. (38)

Without loss of generality let us choose δ1 = 1, c > 1. We can always choose b > 0
(possibly b >> 1) such that C ||v0||2∞ ≤ 2Dv

b
a

δ2
C1

. Where the C is the optimal constant in

the embedding of L∞(�) ↪→ L2(�). This will entail

||v0||22 ≤ C ||v0||2∞ ≤ 2Dv

b

a

δ2

C1
, (39)

which will enforce the L2(�) norm of solutions to the two species model (5)–(6) with mixed
boundary conditions, to be bounded for all time, via Theorem 2.5, whilst the two species
model (5)–(6) posed with Neumann boundary conditions, blows up in finite time, due to the
result of Theorem 2.3. 	

Turing Instability

This section shows that the Turing instability is impossible in the PDE model.
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Theorem 2.6 Consider the two species model described by (5)–(6). The nontrivial spatially
homogenous steady state (u∗, v∗) cannot be driven unstable due to diffusion for any range
of parameters.

Proof The Jacobian evaluated at the interior steady state (u∗, v∗) is

J (u∗, v∗) =
⎡
⎣ u∗

(
− r

K − ωdv∗
(D+du∗+v∗)2

)
ωu∗(D+du∗)
(D+du∗+v∗)2

ω1v
∗2

(u∗+D1)2
0

⎤
⎦ . (40)

A necessary condition for Turing instability in 2-species systems is that J11|u∗,v∗ +
J22|u∗,v∗ < 0, but Du J11|u∗,v∗ + Dv J22|u∗,v∗ > 0. In our case:

Du J11|u∗,v∗ + Dv J22|u∗,v∗ = Du(u∗)
(

− r

K
− ωdv∗

(D + du∗ + v∗)2

)
+ Dv(0) < 0

making the required necessary condition an impossibility. This then makes it impossible for
Turing instability to occur, via classical theory [54], in our two species model described by
(5)–(6). 	


Numerical Simulations

In this section, we will introduce a numerical method in class of radial basis function (RBF)
collocation method, the method of particular solutions, to solve the two-dimensional model
(5)–(6). An radial basis function (RBF),φ j (x) is a function that function’s values depend only
on the distance to a center point x j . Thus, it can be rewritten as φ j (x) = φ(‖x−x j‖) = φ(r),
where r = ‖x − x j‖. This notation indicates the numerical procedure involving RBFs in
high-dimensional space will be the same as for problems in one-dimensional space, except
that the distance needs to be defined differently in different dimensional spaces.

This motivates many scientists and researchers to broadly apply RBFs on solving various
kinds of interpolation problems, PDE problems, and their applications in various engineering,
biology, biomedical fields [55–58]. The commonly used RBFs includes Gaussian, multi-
quadrics (MQ), inverse multiquadrics (IMQ), polyharmonic splines (PS), and etc. The most
of the commonly used RBFs, except PS, contains a shape parameter, which usually effect the
accuracy of the numerical methods tremendously. In the meanwhile there is not any effec-
tive methodology that can be used to find a suitable shape parameter for various kinds of
problems.

The method of approximated particular solutions (MAPS) was first proposed by Chen
et al. [59], using MQ and IMQ. Since then, the closed form particular solutions for many
commonly used RBFs and differential operators have been derived [60,61]. As a result,
MAPS was extended to Matérn and Gaussian RBFs and to many types of PDEs [59,62–
66]. PS has rarely been used in MAPS due to its conditional positive definiteness and low
accuracy, [67]. In [62],MAPS ismodified so PHS can be usedmore effectively. In the original
MAPS, integrated RBFs, so called particular solutions, are used. In the modified MAPS, an
additional polynomial basis is directly added to the integrated RBFs without integration. It
is remarkable that MAPS becomes extremely accurate when we use the PS kernels in the
proposed method.

In this paper, we will apply PS RBF to our two-dimensional predator–prey model (5)–(6).
We will first to use the implicit time-stepping scheme to discretize the time domain, and then
the system of nonlinear parabolic equations becomes a system of nonlinear elliptic equations.
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MAPS with PS are then applied to discretize the spatial variables at every time step. The
detailed numerical procedure are briefly introduced below.

MAPS using Polyharmonic Splines

For any interested time interval, t ∈ [0, T ]. We discrete the time domain by partition the time
domain equally tn = nh, where n = 0, 1, 2, . . . , Nt , h = T/Nt . Then the model (5)–(6)
becomes

un+1 − un

h
= Du�un+1 + run(1 − un/K ) − ωunvn

D + dun + vn
, (41)

vn+1 − vn

h
= Dv�vn+1 + cv2n − ω1v

2
n

un + D1
(42)

for all x ∈ �, where un = u(x, tn), un+1 = u(x, tn+1), vn = v(x, tn), and vn+1 = v(x, tn+1).
Rearrange the system, we have that

un+1 − Du�un+1 = un + h

(
run(1 − un/K ) − ωunvn

D + dun + vn

)
, (43)

vn+1 − Dv�vn+1 = vn + h

(
+cv2n − ω1v

2
n

un + D1

)
. (44)

When n = 0, we are given un, vn from the initial conditions. Thus, the right-hand side
of the system (43)–(44) is known. We will need to solve the elliptic equations to find an
approximation to un+1 and to vn+1. The (43)–(44) are solved simultaneously by MAPS. For
our simplicity, we assume the elliptic equation of type

Lwn+1 = f (un, vn), (45)

with suitable boundary conditions

Bwn+1 = g(un, vn), (46)

where w = [u, v]. In two-dimensional space, the MAPS uses the integrated PS

�(r) = r2m+2 ln r

4(m + 1)2
− r2m+2

4(m + 1)3
(47)

where m ∈ Z+, ��(r) = φ(r) = r2m ln(r) with a monomial basis of the polynomial space
of order m,

(x) = xi− j y j (48)

where 0 ≤ j ≤ l, 0 ≤ l ≤ m. For our simplicity, we represent the polynomial space of
order m by P = {p1, p2, . . . , pq}, where q = (m + 1)(m + 2)/2. Solutions to the elliptic
equations can then be approximated by the function of the form

w(x) ≈ ŵ(x) =
N∑

k=1

αk�(‖x − xk‖) +
q∑

l=1

αN+l pl(x), (49)

where N is the total number of points located in the domain and on the boundary, and
{α j }, j = 1, 2, . . . , N +q are the undetermined coefficients. Through collocation, the above
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system can be discretized as

N∑
k=1

αkL�(‖xi − xk‖) +
q∑

l=1

αN+lLpl(x) = f (un(xi ), vn(xi )), for xi ∈ �

N∑
k=1

αkB�(‖xi − xk‖) +
q∑

l=1

αN+lBpl(x) = g(un(xi ), vn(xi )), for xi ∈ ∂� (50)

where ni represents the number of interior points in �.
Since there are additional degrees of freedoms from the polynomial basis, the standard

polynomial insolvency constraint [68] must be applied

N∑
i=1

αi Lpl(xi ) = 0, for l = 1, . . . , q (51)

N∑
i=1

αi Bpl(xi ) = 0, for l = 1, . . . , q. (52)

The system of linear equations (50)–(52) is a square system, where the unknown coeffi-
cients {αk} can be obtained by directly solving the system through least squaresmethod. Then
the approximate solution w can be obtained from Eq. (49). More details on the numerical
simulation can be found in [62].

Now we will test the two-dimensional model (5)–(6) on various scenarios with different
coefficients. All numerical results in following sections are performed on an Intel Core 2 2.66
GHz 64 bits computer using MALTAB. The collocation points are distributed uniformly in
the domain and on the boundary for simplicity. The number of nodes are examined in which
400 points in square domain and 744 points in the circle domain were chosen. The time step
size was tested to ensure the convergence of the results in which we used �t = 10−3 in all
numerical simulations. The blow up criteria was set to be ‖L‖1 < 109 and ‖L‖∞ < 109.

Blowup Criteria and Properties

We will first investigate the blowup time and locations regarding different initial conditions
and boundary conditions on square domain [0, π ]2 to test and verify the Theorems 2.2–2.5
and the Corollary 1 in previous section.

The initial conditions used in the following numerical simulations are listed below:

IC1

u(x, y, 0) = 0.25(sin2(x + y) + sin2(x − y)),

v(x, y, 0) = 0.25(cos2(x + y) + cos2(x − y)).

IC2

u(x, y, 0) = 5(sin2(x) + sin2(y)),

v(x, y, 0) = 5(cos2(x) + cos2(y)).

IC3

u(x, y, 0) = 5(sin2(2x) + sin2(2y)),

v(x, y, 0) = 5(cos2(2x) + cos2(2y)).
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Fig. 1 IC1

Fig. 2 IC2

IC4

u(x, y, 0) = 5(sin2(3x) + sin2(3y)),

v(x, y, 0) = 5(cos2(3x) + cos2(3y)).

The profile of the IC1 is shown in Fig. 1, where ‖u0‖∞ = ‖v0‖∞ < 1. The profile of
the IC2 is shown in Fig. 2, where ‖u0‖∞ = ‖v0‖∞ > 1. The profile of the IC3 is shown in
Fig. 3, where ‖u0‖∞ = ‖v0‖∞ > 1. However, the frequency of the IC3 is doubled compared
to the IC2. The profile of the IC4 is shown in Fig. 4, where ‖u0‖∞ = ‖v0‖∞ > 1. However,
the frequency of the IC3 is tripled compared to the IC2. Note ‖u0‖∞ = ‖v0‖∞, we use L∞
in the following to denote the maximum norm of initial conditions ‖u0‖∞ and ‖v0‖∞.

Dirichlet and Neumann BCs

This section tests the solution behavior effected by Dirichlet BCs or Neumann BCs.
As it was proved in earlier sections, the model will blow up in finite time with large initial

conditions or the sufficiency conditions of Theorem 2.3 are met. The IC2–IC4 are large initial
conditions. The condition of Theorem 2.3 can bemet for any δ1 ∈ (1.999, 2)withω1 = .001,
and δ1 ∈ (0, 2) with ω1 = 3 in Table 2. The blow up results listed in Table 2 are consistent
with Theorems 2.2 and 2.3. From Theorem 2.2, even if conditions of Theorem 2.3 are not
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Fig. 3 IC3

Fig. 4 IC4

Table 2 Asummary of theoretical discovery and numerical observationswithDirichlet or Neumann boundary
conditions, where Du = r = K = ω = D = d = 1

BC IC Dv c ω1 D1 IC norm Theorem 2.3 Blowup

Dirichlet IC2–IC4 1 2 0.001 1 L∞ > 1 Met Yes

IC2–IC4 1 2 3 1 L∞ > 1 Met Yes

IC1 1 2 3 1 L∞ < 1 Not met No

Neumann IC2–IC4 1 2 0.001 1 L∞ > 1 Met Yes

IC2–IC4 1 2 3 1 L∞ > 1 Met Yes

IC1 1 2 3 1 L∞ < 1 Not met No

met, the solutions will also blow up in finite time as long as the initial data are large enough.
We will use another example to verify this later in “Mixed boundary conditions”.

To test the differences between different blow ups, we plot the solution profile when the
blow up criteria met. We also plot the values of v at the blow up locations versus time to
represent below up rate. Figures5 and 6 show blowup profile and blowup rate (profile of v at
blowup locations versus time) for Neumann BC case and Dirichlet BC case with the IC2 on
the left, the IC3 in the middle and the IC4 on the right. With Neumann BC in Fig. 5, there is
no significant difference between blow up times and blow up rates. The number of blow up
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Fig. 5 Blowup profile and blowup rate for Neumann BC case with IC2 on the left, IC3 in the middle and IC4
on the right

Fig. 6 Blowup profile and blowup rate for Dirichlet BC case with IC2 on the left, IC3 in the middle and IC4
on the right

locations with IC2 and IC4 are similar. With Dirichlet BC in Fig. 6, the blow up time tends
to be later and blow up rate is slower if IC2 is used. However, all initial conditions produced
blow ups that clustered around the center of the domain.

For the small initial condition IC1, we can not find a δ1 ∈ (0, c) that can satisfy the
condition in Theorem 2.3 with ω1 = 3 in Table 2. Therefore, with the parameters in Table 2,
the IC1 meets neither the blow up conditions of Theorem 2.2 nor the Theorem 2.3. Figure7
shows the convergent solutions of the system when t = 1 with small initial condition IC1.

123



268 Differ Equ Dyn Syst (January–July 2019) 27(1–3):249–276

Fig. 7 No blowup cases with Dirichlet BC on the left and Neumann BC on the right with IC1

Fig. 8 Blowup with b = 0, 10, and 1000 when mixed BCs on a square domain with IC2

Mixed Boundary Conditions

This section exams solution behavior when mixed boundary conditions

a1ux + a2uy + bu = 0, on ∂�, (53)

a1vx + a2vy + bv = 0, on ∂� (54)

are used.
With IC2 under Neumann and mixed boundary condition, we see blow ups in all of our

numerical simulation with w1 = .001, see Fig. 8. Since both the conditions for Neumann
BC in Theorem 2.3 and conditions for mixed BC in Theorem 2.4 are met, the results are
consistent with the theorems in previous section. additionally, numerical simulations suggest
that when the coefficient of u in the mixed BCs, b, is bigger, the blowup time tends to be
later, and the blowup locations tend to cluster together.

Furthermore, we consider the following initial condition

u(x, y, 0) = γ (sin2(x) + sin2(y)),

v(x, y, 0) = γ (cos2(x) + cos2(y)),

with γ = 2. With the parameters listed in Table 3, where ω1 = 3, even though the blow up
conditions in Theorem 2.3 are not met when γ = 2, according to Theorem 2.2, the solutions
under Neumann boundary conditions will blow up as long as the initial conditions are large.
On the left of Fig. 9, we can see that there will be blow ups when b = 0, which is consistent
with Theorem 2.2 on Neumann BCs. However, there will not be any blowups even with large
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Table 3 A summary of theoretical discovery and numerical observations with Neumann and mixed boundary
conditions, where Du = r = K = ω = D = d = 1

IC Dv c ω1 D1 IC norm Conditions in
Theorem 2.3

Conditions in
Theorem 2.4

Neumann
blowup

Mixed
blowup

IC2 1 2 0.001 1 L∞ > 1 Met Met Yes Yes

γ = 2 1 2 3 1 L∞ > 1 Not met Not met Yes No

IC1 1 2 3 1 L∞ < 1 Not met Not met No No

IC1 1 2 0.001 1 L∞ < 1 Met Not met Yes No

Fig. 9 Blowup with b = 0 and no blowup with b = 10,000 when mixed BCs on a square domain with γ = 2
is used

Fig. 10 No blowup case with mixed BCs on a square domain with IC1

initial condition, where a1 = a2 = 1, b = 10,000, see the right of Fig 9. This is because the
blow up condition c > ω1/

( r−ω
r

)
K + D1 for mixed BCs in Theorem 2.4 is not met.

With initial condition IC1, for the two sets of parameters in Table 3, since the initial data
is small, the solution with mixed boundary conditions should not blow up from Theorem 2.5.
We can see that, in Fig. 10 there is no blow up shown in the profile of the solutions with
a1 = a2 = b = 1, ω1 = 3 when t = 1. When ω1 = .001, because the conditions of
Theorem 2.3 are met, the solutions blow up under Neumann BC. From Table 3, we can see
the mixed boundary conditions can provide a “damping” effect.
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Fig. 11 No blowup case with Dirichlet BC on a circle domain

Fig. 12 Blowup case with Dirichlet BC on a circle domain with IC2 on the left, IC3 in the middle, and IC4
on the right. The parameters are c = 2, ω1 = 0.001, D1 = 1, Nt = 200, order of the polyharmonic splines
is m = 2, and the order of polynomials is 1

Circle Domain

This section focuses on solution behavior to the model on a circle domain in 2D instead of
square domain. Our goal is to use numerical simulation to predict what would happen to the
PDE model, if the domain is a circle instead of a square.

• Dirichlet BC: Figure11 shows the numerical solutionwith Dirichlet BC and IC1,ω1 = 3.
There is no blowup. This is consistent with the results on square domains.
Blowup cases with Dirichlet BC on a circle domain are shown in Fig. 12 for IC2 on the
left, IC3 in the middle, and IC4 on the right. The parameters are c = 2, ω1 = 0.001,
D1 = 1, Nt = 200, order of the polyharmonic splines is m = 2, and the order of
polynomials is 1.

• Neumann BC:

– IC1: In the circle domain with Neumann BCs and IC1, the original set of parameters
chosen for the square domain (c = 2, ω1 = 3, D1 = 1) does not leads to an
equilibrium solution. That says, we still have a blowup, except if we chose a bigger
ω1, such as ω1 = 10, see Fig. 13.

– IC2, IC3 and IC4: Blowup cases with Neumann BC on a circle domain are shown in
Fig. 14 with IC2 on the left, IC3 in the middle, and IC4 on the right. The parameters
are c = 2, ω1 = 0.001, D1 = 1, Nt = 200, order of the polyharmonic splines is
k = 2, and the order of polynomials is 1.
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Fig. 13 No blowup case with Neumann BC on a circle domain with IC1. The parameters are c = 2, ω1 = 10,
D1 = 1, Nt = 200, order of the polyharmonic splines is m = 2, and the order of polynomials is 1

Fig. 14 Blowup case with Neumann BC on a circle domain with IC2 on the left, IC3 in the middle, and IC4
on the right. The parameters are c = 2, ω1 = 0.001, D1 = 1, Nt = 200, order of the polyharmonic splines
is m = 2, and the order of polynomials is 1

• Mixed BC: Blowup case with mixed BC on a square domain with IC2 with a1 = a2 = 1
is shown in Fig. 15 on the left, b = 1, and no blowup case with mixed BC and IC2
with coefficient a1 = a2 = 1 and b = 10,000 on the right. The parameters are c = 3,
ω1 = 1, D1 = 1, Nt = 200, order of the polyharmonic splines is m = 2, and the order of
polynomials is 1. L1 norm is used as the criteria of blowup. In this situation, even though
the sufficiency conditions of Theorem 2.3 are met, the solutions are bounded when b is
chosen large enough, which verifies the Corollary 1.

Discussion

In the context of blowup we see from our theoretical and numerical results, that mixed
boundary conditions prevent blow-up/excessive concentrations of the invasive. With initial
condition IC3, there is no blowup, see Fig. 10. Also we see with the mixed BCs, when b,
is bigger, the blowup time tends to be later, and the blowup locations tend to cluster. From
Fig. 9, we can see that there will be blow-up when b = 0, but no blow-up even with large
initial conditions γ , where a1 = a2 = 1, b = 10,000 are chosen, see the right of Fig. 9. This
tells us that if efficient mechanisms are in place for sufficient number of individuals to cross
the boundary of the physical domain when encountering it [69], high local concentrations
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Fig. 15 Blowup case with mixed BC on a square domain with IC2 with a1 = a2 = 1 on the left, b = 1, and
no blowup case with mixed BC and IC2 with coefficient 1 and b = 10,000 on the right. The parameters are
c = 3, ω1 = 1, D1 = 1, Nt = 200, order of the polyharmonic splines is m = 2, and the order of polynomials
is 1. l1 norm is used as the criteria of blowup

will be prevented. This result is also rigorously proved via Theorem 2.5, and Corollary 1.
Corollary 1 in part also tells us that if we have an exploding population in a region, it can be
effectively controlled, solely via manipulation of the boundary. Thus the invasive does not
have to be engaged in the interior of the region, say via chemical control. More importantly
since current government policy, does not permit the harvesting of pythons in the actual
park area, any action in the interior of the domain is actually impossible. Thus the python
population can grow unchecked there. Our methods show that facilitating flow of some of the
pythons from the interior of the park to outside it, will check the python population overall.
How then does one facilitate such movement?

Note, a corridor is an area of habitat connectingpopulations separatedbyvarious activities,
allowing an exchange of individuals of a species [41]. From an ecological point of view, this
tell us that if we have efficient corridor design, then this can prevent high local concentrations
of invasive species. This is debated and there ismuch regulation fromenvironmental agencies,
which often want to keep an invasive species contained locally, as opposed to letting it spread
due to obvious negative effects [69]. However, if efficient chemical control is used at specific
target cites, such as at these corridors, then we could have an efficient control in place.
Furthermore, these sites would also lye outside the park boundaries, and so python removal
here (by chemical means or mechanical) would be allowable by law.

Also, there is much evidence that predators are attracted to sites of prey refuges (regions
where prey are protected) [70]. Natural examples are seen with snakes crowding near bat
caves, and weasel activity heightened near vole refuges [71]. There is also experimental
evidence of this, as seen via tracking ocelots hunting for agouti [70]. This tells us that it
would be interesting, given our results to combine refuge design, with corridor design. That
is onemight place refuges, at the ends of corridors, as a means to attract the invasive out of the
domain in question (or the one where blow-up/high local concentration is seen), and towards
the refuge. Then one can use chemical control at these cites. Thus as in [24] we reaffirm that
the optimal placement of a damping mechanism becomes most important. That is managers
can use refuges to draw out quantities of an invasive species from a habitat where there are
excessively high concentrations of them, facilitating their passage via corridors, and then use
chemical control in localised regions, for maximum impact. To this end, given that we want
to use chemical controls in a certain domain, the blow-up results we obtain are very useful.
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Again, we see irrespective of initial condition, blow-up often occurs at the centre. This give
us a spatial target, for the chemical control. This is much akin to disease models, where the
appropriate strategy is to vaccinate at certain key areas [72].

In the current manuscript we have also investigated the effect of changing the shape of
the physical domain, on the blow-up dynamics. This gives us some intuitions, about how
landscape might effect population explosion. What we see is that in a circle domain, there is
no obvious advantage to blow-up removal. That is most blow-up results are consistent, with
the square domain.

Conclusion

In the current manuscript, we investigate a spatially explicit predator–prey model, where the
predator population has the potential to explode/blow-up in finite time. This is interpreted as
perhaps an invasive species, going out of control or a defoliator or pest outbreaking. This is
formalized by equating:

finite time blow-up = uncontrollable and unmanageable population level, (55)

where, the blow-up time T ∗ is viewed as the “disaster” time, for the ecosystem. We next
consider damping mechanisms different from classical chemical and biological control. We
focus on mixed boundary conditions as well as pure Neumann boundary conditions. The
following conclusions can be made:

• Themixed (in particular Robin type) boundary conditions are shown to provide a “damp-
ing” effect.

• The PDE system blowup occurs differently in square domains than in circular domains.

Note numerically, we have only considered equations on square domains and circle
domains. However, as landscapes change, from ecosystem to ecosystem, it is worth con-
sidering domains of different shapes, and their effect on subsequent population explosion.
This will make for interesting future research.

Our ultimate goal is to highlight certain workable scenarios that might be implemented
as control policy by managers and practitioners. Often a conservation biologist/manager
has a variety of choices with control mechanisms, and needs to choose the best possible
one, or the best combination of these [73,74]. For example, the population of many bird
species have declined globally [75], due to predation by invasive predators [10]. Conservation
biologists have used predator exclosure methods with success [75,76], but are often faced
with a decision of the most cost effective combination of measures such as exclosure fencing
versus nest cover to use [73]. Thus it would make for interesting future work to investigate
models, that incorporate a combination of corridors (mixed boundary conditions) coupled
with chemical control, and work out optimal scenarios to keep the invasive/pest density low,
or drive it towards extinction. These directions essentially warrant investigating a spatially
dependent b, that is b = b(x). The other interesting future direction is to consider time
dependent/stochastic parameters, such as in [50]. For starters one may consider the sexual
reproduction rate to be timedependent c = c(t), or timedependent and stochastic c = c(ω, t).
The effect of this on the blow-up dynamics could be investigated. It will be interesting to
note if the results differ significantly from the constant parameter case.

Another future direction is to formulate this combination of measures so as to optimise (or
minimise) the costs associated with implementing them. This is the control theory approach.
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Such an approach has been taken in recent works that look at optimal introduction of genet-
ically modified organisms for the biological control of invasive fish populations [77]. An
optimal control formulation of the problem would make an interesting future direction. Most
interestingly, it would also be very interesting in the future to consider deriving optimal
conditions on the spatially dependent b, that is b = b(x) coefficient in question, to see if an
appropriate function blows-up or not, depending on how b is manipulated. This would have
far reaching consequences in actual practice for eco-system managers wishing to use solely
the boundary as a tool for population control.

All in all, we hope that our results will encourage ecosystem managers, practitioners
and government entities to invest in, and further investigate sound ecosystem engineering
methodologies such as efficient corridor design as an environmentally friendly method, and
boundary manipulation techniques, to prevent excessively high local concentrations of inva-
sive species. This in turn will help boost native biodiversity and restore ailing eco-systems.
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