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Abstract. In this paper, we propose a new approach for selecting suitable shape pa-
rameters of radial basis functions (RBFs) in the context of the localized method of ap-
proximated particular solutions. Traditionally, there is no direct connections on choos-
ing good shape parameters and choosing interior and boundary nodes using the local
collocation methods. As a result, the approximation of derivative functions is less ac-
curate and the stability is also an issue. One of the focuses of this study is to select the
interior and boundary nodes in a special way so that they are correlated. Furthermore,
a test differential equation with known exact solution is selected and a good shape
parameter for the given differential equation can be selected through a good shape
parameter for the test differential equation. Two numerical examples, including a Poi-
son’s equation and an eigenvalue problem, are tested. Uniformly distributed node
arrangement is compared with the proposed cross knot distribution in Example 4.1
with Dirichlet boundary conditions and mixed boundary conditions. The numerical
results show some potentials for the proposed node arrangements and shape parame-
ter selections.

AMS subject classifications: to be provided by authors15
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1 Introduction19

The radial basis function (RBF) collocation method or the so-called Kansa’s method [9]20

was proposed in early 1990’s and has became very popular for solving various types21
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of problems in science and engineering. The main attractions of Kansa’s method are its22

simplicity and high accuracy. Due to its simplicity, Kansa’s method is especially useful for23

solving high dimensional problems with complicate domains. To alleviate the difficulty24

of dense and ill-conditioning system of linear equations in the formulation of the global25

RBF collocation methods, a number of localized RBF methods [13, 15, 17] were proposed26

for solving more challenging problems, which these methods can solve a system involves27

large number of RBF centers. As a result, the linear system created through collocation is28

sparse which allows us to solve large-scale problems in science and engineering. Despite29

all the favorable features of the newly developed RBF collocation methods, the accuracy30

of the approximated solutions heavily depends on the value of the shape parameters of31

RBFs. It is known that the determination of the optimal shape parameters of RBFs is still32

an outstanding research topic. There is still no theory or recipe for selecting the optimal33

shape parameters that can consistently apply to various applications. This issue has been34

studied by several authors such as Hardy [8], Franke [6], Foley [5], Carlson and Foley [1],35

Golberg et al. [7], Rippa [14], Kansa and Hon [10], Larson and Fornberg [12], to name36

just a few. Most of the proposed approaches were given through experiment or statistics.37

Each proposed technique has its advantages and drawbacks. In his paper, Rippa [14]38

believes that the shape parameter should depend on a number of factors such as the39

number of grid points, distribution of grid points, RBF functions, condition number and40

computer precision.41

The purpose of this short paper is to propose another approach for choosing a good42

shape parameter for solving partial differential equations using localized RBF colloca-43

tion methods. The proposed method for selecting a good shape parameter is suitable44

for many methods that involve RBF collocation. In particular, we implement the pro-45

posed approach in the context of the localized method of approximate particular solu-46

tions (LMAPS) [17]. In most of the RBF collocation methods, the number and the dis-47

tribution of the interior and boundary points are selected in an arbitrary way and there48

is not close relationship between them. It is known that RBF collocation methods can49

produce accurate solution but less accurate for the corresponding derivative function-50

s’ approximations. To achieve a better accuracy, it is important to find a way to more51

accurately approximate the derivatives using RBF collocation methods.52

This paper builds upon several observations. We first observe that a better approxi-53

mation of derivative functions can be achieved if the boundary points and interior points54

are all uniformly lined up in each axis direction such as the point distribution used in the55

finite difference method. Next, for selecting the shape parameter, we propose to choose56

a test function which is a solution of a differential equation with the same differential57

operator as the given differential equation. As we shall see, a good shape parameter of58

the given differential equation can be chosen through the test function.59

The structure of the paper is as follows. In Section 2, we give a brief review of the60

LMAPS. In Section 3, we propose a new approach to distribute the boundary and the61

interior nodes. In Section 4, two numerical examples are given to demonstrate the effec-62

tiveness of the proposed method. In Section 5, some concluding remarks are given.63
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2 The localized method of approximate particular64

solutions (LMAPS)65

In this section, we give a brief review of the LMAPS. Let L be a linear second-order
elliptic partial differential operator, B be a boundary differential operator. We consider
the following boundary value problem

Lu(x,y)= f (x,y), (x,y)∈Ω, (2.1a)

Bu(x,y)= g(x,y), (x,y)∈∂Ω, (2.1b)

where Ω is a bounded and closed domain with a sufficiently smooth boundary ∂Ω. We66

consider the case of the above boundary value problem has a unique solution.67

Let
{

(xj,yj)
}n

j=1
be a set of interpolation points inside the domain Ω. For any point68

(

xp,yp

)

∈Ω, we create a local influence domain Ωp, which is a region containing ns neigh-69

boring interpolation points
{(

xj,yj

)}ns

j=1
of

(

xp,yp

)

. The method of particular solutions70

assumes the solution space is a finite vector space of a special kind of radial basis func-71

tions, which is so called particular solutions. The particular solutions are defined as the72

solution Φ to the following differential equations73

LΦ= ϕ, (2.2)

in which ϕ is a commonly used radial basis function. Note that the particular solutions74

are derived analytically with respect to the given differential operator L and chosen radial75

basis function ϕ. More details can be found in [3]. By the method of particular solutions,76

u
(

xp,yp

)

can be approximated by a linear combination of ns radial basis functions in the77

following form:78

u(xp,yp)≃ û(xp,yp)=
ns

∑
j=1

αjΦ
(
∥

∥(xp,yp)−(xj,yj)
∥

∥

)

, (2.3)

where
{

αj

}ns

j=1
are coefficients to be determined, ‖·‖ is the Euclidean norm and79

Φ
(
∥

∥(x,y)−(xj,yj)
∥

∥

)

are the ns RBFs created by choosing ns points in the local domain80

of
(

xp,yp

)

, Ωp. Since {(xj,yj)}ns
j=1 ⊂ Ωp, Eq. (2.3) holds for every

(

xj,yj

)

, j = 1,2,··· ,ns.81

Thus, it follows that82

ûns =Φns αns , (2.4)

where ûns =[û(x1,y1),··· ,û(xns ,yns)]
T are unknown solution values to be approximated,83

αns=[α1,α2,··· ,αns ]
T are unknown coefficients to be determined and the collocation matrix84

in the local domain Ωp is Φns =
[

Φ
(
∥

∥(xi,yi)−(xj,yj)
∥

∥

)]ns

i,j=1
. Rewrite Eq. (2.4), we have85

that86

αns =Φ
−1
ns

ûns . (2.5)



G
al

le
y 

Pr
oo

f4 H. Zheng, G. M. Yao, L. H. Kuo and X. X. Li / Adv. Appl. Math. Mech., 10 (2018), pp. 1-16

Note that the equation above is an expression, in which we will neither need the matrix
inverse in numerical computation, nor it is reasonable to use practically. The expression
is for elimination of the unknown coefficients α so it is described by unknown approxi-
mations û. Plug the above expression in Eq. (2.3), we have that

û(xp,yp)=
ns

∑
j=1

αjΦ
(∥

∥(xp,yp)−(xj,yj)
∥

∥

)

=Θnsαns =
(

ΘnsΦ
−1
ns

)

ûns , (2.6)

where87

Θns =
[

Φ
(
∥

∥(xp,yp)−(x1,y1)
∥

∥

)

,··· ,Φ
(
∥

∥(xp,yp)−(xns ,yns)
∥

∥

)]

. (2.7)

Thus, Eq. (2.1a) can be rewritten in the following form for any
(

xp,yp

)

∈Ωp

Lû(xp,yp)=
ns

∑
j=1

αjLΦ
(∥

∥(xp,yp)−(xj,yj)
∥

∥

)

=
(

LΘnsΦ
−1
ns

)

ûns = f (xp,yp). (2.8)

Note that the LΘnsΦ
−1
ns

can be viewed as solution to a linear system where the coefficients88

are given by Φn and the right-hand-side of the system is given by LΘns . Thus, the matrix89

inverse is not actually involved, even though the expression exists. This is a similar90

technique that is described in [16]. It is easy to convert Eq. (2.8) into the global form91

(

LΘnΦ
−1
n

)

ûn = f
(

xp,yp

)

,
(

xp,yp

)

∈Ω, (2.9)

where ûn = [û(x1,y1),û(x2,y2),··· ,û(xn,yn)]
T and

(

LΘnΦ
−1
n

)

is the mapping of92
(

LΘnsΦ
−1
ns

)

from local to global by inserting zeros in the proper position.93

For
(

xp,yp

)

∈∂Ω, the formulation of the boundary condition is similar to the interior94

points. Hence, we have95

(

BΘnΦ
−1
n

)

ûn = g(xp,yp),
(

xp,yp

)

∈∂Ω. (2.10)

Let {(xi,yi)}ni
i=1 be the interior points, {(xi,yi)}ni+nb

i=ni+1 be the boundary points and n=
ni+nb. By using Eqs. (2.9) and (2.10), the LMAPS discretize the original elliptic equation
(2.1a)-(2.1b) into

(

LΘnΦ
−1
n

)

ûn = f (xj,yj), j=1,2,··· ,ni, (2.11a)
(

BΘnΦ
−1
n

)

ûn = g(xj,yj), j=ni+1,··· ,n. (2.11b)

For the Dirichlet boundary condition, Eq. (2.11b) becomes

û(xj,yj)= g(xj,yj), j=ni+1,··· ,n.

Notice that Eqs. (2.11a) and (2.11b) are the system of linear equations, with n unknown-96

s which is the values of the approximated solution at nodal nodes. Additionally, each97
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equation contains only ns non-zero terms which obtained by considering the local influ-98

ence domains of the nodal points. Thus, this is a sparse system of equations, which can99

be solved by sparse system solver such as MATLAB build-in solver. The solutions to the100

sparse system are the approximated solution of Eqs. (2.1a)-(2.1b) at all the nodal points.101

In this paper the multiquadric (MQ), ϕ=
√

r2+c2, is used as the basis function. The102

corresponding particular solution, Φ in Eq. (2.2) for L=∆ in two-dimensional space is as103

follows [2, 3]104

Φ(r)=
1

9

(

4c2+r2
)

√

r2+c2− c3

3
ln
(

c+
√

r2+c2
)

, (2.12)

where r is the Euclidean distance.105

3 Cross knot distribution (CKD) and test differential equation106

In this section, a node distribution that aligns interior and boundary points in each axis107

is first proposed. Fig. 1 shows a particular nodes distribution, where both nodes 1 and 2108

(marked as the solid circle) are on the boundary and three interior nodes (marked as the109

open circle) are used to calculate the partial derivatives with respect to y on nodes 1 and110

2, respectively. Approximation of the derivatives ∂u/∂y from node distribution of node111

2 is expected to be more accurate and stable than the result from node 1. This is due to112

the fact that the three interior nodes above node 2 are strictly lined up in the direction of113

y axis. The same idea can be applied to calculate second derivatives ∂2u/∂y2 or ∂2u/∂x2.114

Since the typical partial differential equation is governed by partial derivatives of x and115

y, it is ideal to have node distributed along the direction parallel to x and y axis. If116

the governing equation is formed as derivatives of x or y with various orders, nodes117

distributed on the line that parallel to the axis x or y will lead to a better result. Similarly,118

if the governing equation was formed with by spherical coordinates, then nodes should119

be more uniformly distributed along the sphere or the angle.120

Figure 1: Left: The boundary point (node 1, which is marked as solid circle) and the interior points (marked as
open circles) are distributed arbitrary. Right: The boundary point (node 2, which is marked as solid circle) and
interior points (marked as open circles) are aligned in the direction of y-axis.
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Figure 2: Uniformly distributed interior nodes (white ◦) and boundary nodes (solid •) generated by the CKD.

In the numerical implementation, for a better accuracy it is important to distribute121

nodes uniformly so that they are parallel to the x and y axes, as shown in Fig. 2. This122

is called the cross knot distribution (CKD). The general guide of CKD is to try to gen-123

erate a uniform mesh grids to cover the domain and then find the intersection nodes of124

mesh grids and boundary. The solid black nodes of #1-#15 on the boundary are these125

intersection nodes. As we have noticed that there is a strong relation in terms of the loca-126

tion among all interior and boundary nodes. For example, the pair of nodes (#1,#9) and127

(#5,#12) are lined up on the opposite sides of the boundary in the horizontal and verti-128

cal directions, respectively. This is a sharp contrast to the traditional approach that the129

boundary and interior nodes are generated independently. In such cases, it is not clear130

how to choose the numbers of boundary and interior nodes.131

Numerical experiments shown in the next section indicate that when the interior and132

boundary nodes are distributed uniformly as shown in Fig. 2, the approximated partial133

derivatives are more stable than the traditional node distributions (uniformly node dis-134

tributions on the boundary of the domain and inside of the domain, separately). The135

CKD can be easily built up by using the following four steps: 1. generate uniformly dis-136

tributed grid nodes; 2. extract the inner nodes by check the boundaries of the domain;137

3. extend the grid nodes inside the domain but near the boundary to generate the cross138

nodes between the extended axes and the boundary; 4. check if there are some overlap139

nodes. Note that in Fig. 2 there are two nodes #6 and #7 are very much close to each oth-140

er, so the boundary nodes generated by CKD need to be pre-checked before their usages.141

When two nodes are very close, they might have bad influence on the numerical results.142

Only one node is employed to avoid the situation like #6 and #7. The CKD can normally143

enhance the stability and accuracy of the problem.144

Next, we consider how to choose a good shape parameter of RBFs in the LMAPS.
Although the process can be applied to all methods that involve RBF collocations. First,
let us consider a companion differential equation of Eqs. (2.1a)-(2.1b) with a known exact
solution v(x,y); i.e.,

Lv(x,y)= f̃ (x,y), (x,y)∈Ω, (3.1a)
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Bv(x,y)= g̃(x,y), (x,y)∈∂Ω. (3.1b)

There are various ways to find a good shape parameter for the RBF methods for such e-145

quations with known exact solutions. The goal is to select a shape parameter which leads146

not only better accuracy in the RBF collocation but also ”smooth” in the error distribu-147

tion. After that, the same selected shape parameter is used to solve Eqs. (2.1a)-(2.1b).148

4 Numerical results149

To show the effectiveness of the proposed methods, we give two examples in 2D. For the150

implementation of the LMAPS, each influence domain contains 9 nearest neighboring151

points. MQ is selected as the basis function. The numerical computations in this section152

were carried out using MATLAB c© on a desktop PC with 8x Intel(R) Core(TM) i7-2600k153

CPU@3.40 GHZ, 16 GB memory, in Linux OS Ubuntu 14.04.1 LTS.154

Example 4.1. We first consider Poisson equation with the Dirichlet boundary condition
as follows

∆u(x,y)= f (x,y), (x,y)∈Ω, (4.1a)

u(x,y)= g(x,y) , (x,y)∈∂Ω, (4.1b)

where Ω is the inner domain, ∂Ω is the whole boundary and g is given as the exact155

solution u(x,y) = exp(x−y) and f is the forcing term of the governing equation which156

can be derived from the exact solution.157

The profile of computational domain is a gear-shaped domain as shown in Fig. 3,
which is given by the following parametric equation:

∂Ω={(x,y) |x= r(θ) ·cos(σ(θ)), y= r(θ) ·sin(σ(θ)), 0≤ θ<2π} , (4.2a)

r(θ)=2+
1

2
sin(8θ)) , σ(θ)= θ+

1

5
sin(8θ). (4.2b)

To validate the contribution of the proposed node arrangement CKD, we solve E-158

q. (4.1a) with two different types of nodes distribution. The left graph in Fig. 4 shows the159

uniformly distributed nodes with 700 boundary nodes and 1980 interior nodes. On the160

left of Fig. 5, there are 382 boundary nodes which are distributed by using the proposed161

CKD with the same 1980 interior points. The right of Fig. 4 and 5 show the performance162

of the LMAPS, in which the nodes distribution by CKD is greatly improved compared to163

the uniform node distribution.164

To find a good shape parameter, let us assume that the exact solution of the above
differential equation is not available. Consider a test differential equation with the same
differential operator as Eq. (4.1a),

∆u(x,y)=0, (x,y)∈Ω, (4.3a)

u(x,y)= x+y, (x,y)∈∂Ω, (4.3b)

乐嘻嘻
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Ω

Figure 3: The profile of the computational domain.

−2 −1 0 1 2

−2

−1
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Figure 4: Uniform nodes distribution (left) and the absolute errors (right) using c=2 and 9 local nodes.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Nodes distribution generated by CKD (left) and the absolute errors (right) using c= 2 and 9 local
nodes.

in which the exact solution is known u(x,y)= x+y. The goal is to find a suitable shape165

parameter for the MQ RBFs so that the error of the approximated solution of the test166

differential equation is small and smooth. Subsequently, the same RBF shape parameter167

is being used to solve Eq. (4.1a).168
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Figure 6: The profiles of the absolute errors for solving Eq. (4.3a) on the left and Eq. (4.1a) on the right using
c=1.

Figure 7: The profiles of the absolute errors for solving Eq. (4.3a) on the left and for Eq. (4.1a) on the right
using c=5.

To test the effect of shape parameters on the performance of the LMAPS, we choose169

1966 uniformly distributed interior nodes and 382 boundary nodes with various shape170

parameters. Fig. 6 shows the distributions of the absolute errors with c=1.0 for Eq. (4.3a)171

on the left and for Eq. (4.1a) on the right, respectively. We observe that the error distri-172

bution of the test differential equation in Fig. 6 is relatively smooth and the error of the173

original differential equation is acceptable. We obtain the similar results for the shape174

parameter ranging from 0.5 to 2.0.175

For 2< c<10, the error distribution of the test differential equation is non-smooth as176

shown in Fig. 7 on the left. Using the same shape parameter for solving the original equa-177

tion, the obtained accuracy as shown in Fig. 7 on the right is significantly deteriorated.178

When the shape parameter is too large, there are sharp spikes in the error plot as shown179

in Fig. 8 on the left which is obtained by the test differential equation with c= 10. The180

accuracy of the original differential equation is not acceptable, as shown in Fig. 8 on the181

right, using the same shape parameter as the test differential equation.182
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Figure 8: The profiles of the absolute errors for solving Eq. (4.3a) on the left and for Eq. (4.1a) on the right
using c=10.

By comparing Figs. 6-8, we observe that if the profiles of the absolute errors of the183

test differential equation are smooth, then the results of using the same shape parameter184

for the original problem are stable (the profile of the absolute errors are less bumpy) and185

relatively accurate (similar the accuracy for the test problems). On the other hand, if the186

erratic behavior of the profile of the absolute errors occurs when solving test differential187

equation, then the selected shape parameter may not be suitable for solving the original188

differential equation.189

To show that the proposed method for selecting a good shape parameter by using190

a test differential equations can be combined with other existed methods for selecting191

shape parameters, the Leave-One-Out Cross Validation (LOOCV) algorithm is performed192

and tested in this paper. We refer readers to the following [4,14] for the further details for193

LOOCV. In the implementation of LOOCV, an initial search interval [min,max] is needed.194

If the bounds selected are not reasonable, the algorithm LOOCV can perform incorrectly195

and produce a wrong estimation to the optimal shape parameter. In Table 1, we choose196

the lower bound of search interval min=0 and we observe that the results using max=197

3,4,5,6 and 10 are consistent and good, while unacceptable results are obtained using198

Table 1: Find a suitable shape parameter c using LOOCV with various search intervals.

max c Maximum Error
3 1.8144 1.016E-04
4 1.8137 9.983E-05
5 1.8151 1.071E-04
6 1.8132 1.037E-04
7 6.0574 1.956E-02
8 6.0559 1.355E-02
9 6.0639 4.728E-02

10 1.8148 8.978E-05
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max=7,8 and 9. It is clear that the upper bound max can be hard to choose, especially in199

this case, where [0,10] performs the best, even though [0,7], [0,8] and [0,9] are not. Thus,200

when LOOCV is preferred but a suitable bound is not clear, the ”good” shape parameters201

for the test differential equations can be used to narrow the search range for LOOCV.202

Example 4.2. Second, we will consider the same Poisson equation as shown in Example
4.1 with mixed boundary conditions as follows

∆u(x,y)= f (x,y) , (x,y)∈Ω, (4.4a)

u(x,y)= g(x,y) , (x,y)∈∂Ω|x≥0, (4.4b)

∂u(x,y)

∂n
=h(x,y) , (x,y)∈∂Ω|x<0, (4.4c)

where ∂Ω is separated as two parts x<0 and x≥0, ∂Ω|x≥0 satisfies the Dirichlet bound-
ary condition and ∂Ω|x<0 satisfies the Neumann boundary conditions, n is the normal
vector, h is the normal derivative of the exact solution u(x,y)= exp(x−y). Note that the
computational domain is the same as shown in Example 4.1 as well. The test differential
equation for the Poisson’s equation with the mixed boundary conditions is

∆u(x,y)=0, (x,y)∈Ω, (4.5a)

u(x,y)= x+y, (x,y)∈∂Ω|x≥0, (4.5b)

∂u(x,y)

∂n
=nx+ny, (x,y)∈∂Ω|x<0, (4.5c)

where the exact solution is given by u(x,y)=x+y for (x,y)∈Ω∪∂Ω,
(

nx,ny

)

is the normal203

vector.204

To test the effect of shape parameters on the performance of the LMAPS, we choose205

1966 uniformly distributed interior nodes and 382 boundary nodes with various shape206

parameters. Fig. 9 shows the distributions of the absolute errors with c=2 for Eq. (4.5) on207

the left and for Eq. (4.4) on the right, respectively. Fig. 10 and Fig. 11 show the similar re-208

sults with c=4 and with c=5, respectively. Similar observation can be obtained compared209

to Example 4.1. That says, when a shape parameter produce a smooth and relatively ac-210

curate results for the test differential equations using LMAPS, the same shape parameter211

will not perform very inaccurately on the original differential equations. However, when212

the error profile from the test problem is already not smooth, even if it is accurate (Fig. 10),213

the same shape parameter will not perform well on the original problem. Additionally,214

if a shape parameter does not perform well on the test problem, there is little or no hope215

that shape parameter can perform well on the original problem (Fig. 11).216

To test performance of LOOCV, we select several bounds as well in this example. In217

Table 2, we choose the lower bound of search interval min=0 and vary the upper bound.218

We observe that the results using max= 3,4 and 5 are consistent and good while unac-219

ceptable results are obtained using max= 6,7,8,9 and 10. Using the proposed approach220

to initially identify the range of good shape parameter, we can then apply LOOCV to221

provide a good initial search interval to further identify the optimal shape parameter.222



G
al

le
y 

Pr
oo

f12 H. Zheng, G. M. Yao, L. H. Kuo and X. X. Li / Adv. Appl. Math. Mech., 10 (2018), pp. 1-16

Figure 9: The profiles of the absolute errors for solving Eq. (4.5) on the left and for Eq. (4.4) on the right using
c=2.

Figure 10: The profiles of the absolute errors for solving Eq. (4.5) on the left and for Eq. (4.4) on the right using
c=4.

Figure 11: The profiles of the absolute errors for solving Eq. (4.5) on the left and for Eq. (4.4) on the right using
c=5.
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Table 2: Find a suitable shape parameter c using LOOCV with various search intervals.

max c Maximum Error
3 2.6730 1.353E-02
4 2.6745 3.834E-03
5 2.6755 7.058E-04
6 5.9962 3.156E-00
7 6.9950 2.676e-00
8 7.9941 4.723E-00
9 8.9934 1.046E-00
10 9.9940 1.179E-00

Example 4.3. We further test the proposed methods on the following eigenvalue problem

∆u(x,y)=−λu, (x,y)∈Ω, (4.6a)

u(x,y)=0, (x,y)∈∂Ω, (4.6b)

where Ω=[0,1]×[0,1]. The analytic eigenvalues and eigenvectors are given by223

λij =(i2+ j2)π2, uij(x,y)=sin(iπx)sin(jπy), i, j=1,2,3,··· . (4.7)

To find the eigenvalues numerically using LMAPS, rewrite the eigenvalue problem by224

−∆u=λu, where the coefficients matrix in the sparse system Eqs. (2.11a)-(2.11b) is gener-225

ated by following the same procedure for solving Laplace equation of the form −∆u=0.226

The MATLAB built-in function eigs is then used to find the eigenvalues of the sparse227

coefficient matrix. Similar to Example 4.1, we choose the test differential equation (4.3a)228

on the unit square with g(x,y) = x. The exact solution is given as u(x,y) = x. For the229

numerical implementation, 20×20 nodes in the unit square were selected. For c=1, the230

error profile for solving the test differential equation is given by Fig. 12. Using the same231

shape parameter, the first eight eigenvalues of Eq. (4.6a) are shown in Table 3. We have232

observed the similar connection between the smoothness of the error profile in Fig. 12 for233

the test problem on the left and the accurate approximation of eigenvalues in Table 3 as234

shown in Example 4.1.235

On the other hand, we choose a much larger shape parameter c = 10 in our imple-236

mentation for the test differential equation Eq. (4.3a) and the sought differential equation237

Eq. (4.6a). As shown in Fig. 12 on the right, despite a better accuracy than the case using238

c= 1 for the test differential equation, the accuracy of the eigenvalue problem becomes239

Table 3: The first eight eigenvalues of Eq. (4.6a) using c=1.

n 1 2 3 4 5 6 7 8
Exact 19.74 49.35 49.35 78.96 98.70 98.70 128.30 128.30

Numerical 19.74 49.34 49.34 78.97 98.57 98.58 128.27 128.28
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Figure 12: Example 4.2: The error profiles of Eq. (4.3a) in the unit square with g(x,y)= x using c=1 on the
left and c=10 on the right.

Table 4: The first eight eigenvalues of Eq. (4.6a) using c=10.

n 1 2 3 4 5 6 7 8
Exact 19.74 49.35 49.35 78.96 98.70 98.70 128.30 128.30

Numerical 7.52 19.31 19.64 25.66 25.66 29.65 29.65 31.44

worse as shown in Table 4. As we have seen in Fig. 12 on the right, many sharp spikes240

have appeared in the error profile. This is an indication that the smoothness of the ob-241

tained results for the test differential equation has an impact on stable solution of the242

given eigenvalue problem. By comparing Table 3 with Table 4, we find that if the test243

errors are smoothly distributed over the domain, then the results for the original given244

problem are expected to be stable.245

5 Conclusions246

In this paper, we propose a new approach for the selecting node distribution and how to247

choose a good shape parameter of RBFs for solving partial differential equations using248

the LMAPS and the concept of test differential equations.249

The node distribution suggested in this paper is similar to the typical finite difference250

techniques, where nodes on the boundary is suggested to be aligned with the nodes in-251

side the computational domain in each axis. This is what we called cross knot distribution252

(CKD).253

The test problem associated with the given differential equations are defined as an254

equation with the same differential operator and the same boundary conditions as the255

given equation, but with an simple known solution. In the numerical experiments we256

show some evidence of the smoothness of the error distribution for the test problem257

provides a way to choose a good shape parameter of RBFs for the original problem.258

This paper tested only several differential equations with Laplacian differential op-259
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erator in 2D, ∆. Thus, the simplest known solution to a Laplace equation with whether260

Dirichlet or Neumann boundary conditions, or even mixed boundary conditions, would261

be solutions of the form u(x,y)= ax+by. Due the linearly property of the equations in-262

volved, these simple known solutions will behavior similar to each other. Thus, we tested263

test problem with solution u(x,y)= x+y in Example 4.1 and Example 4.2 and u(x,y)= x264

in Example 4.3. We noticed that the behavior of the shape parameter in test problem265

(smoothness and accuracy) effected the behavior of the shape parameter in the original266

differential equations, one reason may be due to the similar behavior of the solutions to267

the test problem and to the original problem.268

The readers may noticed in [11], authors employed a node scalling technique based269

on the largest distance in each axis direction in the local domains, so the best shape pa-270

rameter for multiquadric RBF in their experiments is suggested to be approximately 30.271

The techniques in this paper on selecting a good shape parameter is based on test dif-272

ferential equations on a complicated domain as shown in the original domain, without273

scalling parameter. Both scalling and domain shape can effect the choice of the “best”274

shape parameter can be used in the problems. This needs our further investigations.275

Additionally, for problems in three dimensional space it is a challenge to specifically276

locate the boundary nodes so that they are correlated with the interior nodes. Further277

applications of the proposed method to solving real engineering problems are subject to278

future investigation.279
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