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The method of approximate particular solutions (MAPS) was first proposed by Chen et al. in Chen, Fan,
and Wen, Numer Methods Partial Differential Equations, 28 (2012), 506–522. using multiquadric (MQ)
and inverse multiquadric radial basis functions (RBFs). Since then, the closed form particular solutions for
many commonly used RBFs and differential operators have been derived. As a result, MAPS was extended
to Matérn and Gaussian RBFs. Polyharmonic splines (PS) has rarely been used in MAPS due to its condi-
tional positive definiteness and low accuracy. One advantage of PS is that there is no shape parameter to be
taken care of. In this article, MAPS is modified so PS can be used more effectively. In the original MAPS,
integrated RBFs, so called particular solutions, are used. An additional integrated polynomial basis is added
when PS is used. In the modified MAPS, an additional polynomial basis is directly added to the integrated
RBFs without integration. The results from the modified MAPS with PS can be improved by increasing the
order of PS to a certain degree or by increasing the number of collocation points. A polynomial of degree
15 or less appeared to be working well in most of our examples. Other RBFs such as MQ can be utilized in
the modified MAPS as well. The performance of the proposed method is tested on a number of examples
including linear and nonlinear problems in 2D and 3D. We demonstrate that the modified MAPS with PS is,
in general, more accurate than other RBFs for solving general elliptic equations. © 2017 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 000: 000–000, 2017

Keywords: MAPS; polyharmonic splines; multiquadric; variable coefficient PDEs; radial basis functions

I. INTRODUCTION

During the last decade, radial basis functions (RBFs) [1–5] have been broadly applied for solving
various kinds of partial differential equations (PDEs). A RBF, φj (x) is a function that depends
only on the distance to a center point xj . Thus, it can be rewritten as φj (x) = φ(‖x−xj‖) = φ(r),
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TABLE I. List of commonly used RBFs.

Name of RBFs Formulation

Gaussian (GA) φ(r) = exp
(−cr2

)
, c > 0

Multiquadric (MQ) φ(r) = √
r2 + c2, c > 0

Inverse multiquadric (IMQ) φ(r) = 1/
√

r2 + c2, c > 0

Matérn of order m φ(r) =
{

(cr)mKm(cr), r > 0
m�(m), r = 0

Polyharmonic splines (PS) of order m φ(r) = r2m ln(r),

φ(r) = r2m−1

where r = ‖x − xj‖. This notation indicates the numerical procedure involving RBFs in high-
dimensional space will be the same as for problems in one-dimensional space, except that the
distance needs to be redefined. The RBFs may also have a shape parameter c, in which case φ(r)

can be replaced with φ(r , c). Some of the commonly used RBFs are given in Table I, in which
all but polyharmonic splines (PS) have shape parameters. Multiquadric (MQ) is one of the most
commonly used RBFs.

One category of the methods that use RBFs to solve PDEs is the collocation method. The RBF
collocation method discretizes PDEs into a system of algebraic equations. There is no mesh or
integration needed in the discretization process. The only information we need is the discretized
data points and the distance between pairwise points. Distances are easy to compute in any num-
ber of space dimensions, so working on higher-dimensional problems using the RBF collocation
method does not increase the difficulty. One of the attractions of RBF collocation methods for
solving PDEs is the simplicity. It is flexible with respect to the geometry of the domain and is
computationally efficient.

Among all of the collocation methods, the collocation process can be done in two different
ways. Traditionally, an RBF expansion is introduced with unknown coefficients for the solution
to the PDE, then differentiated and collocated. We call it the direct RBF collocation method.
On the other hand, indirect RBF collocation can be done by integration instead of differenti-
ation. The method of approximate particular solutions (MAPS) [6–8], is a collocation method
that is a recently developed indirect RBF collocation method. In MAPS, the experimental data
(inhomogeneous term) are interpolated by RBFs, then integrated in the polar coordinate system
and collocated strictly on the governing equation and boundary conditions. It is slightly more
accurate compared to the direct RBF collocation techniques. MAPS has been extended to many
RBFs including Gaussian, MQ, IMQ, and Matérn RBFs [9–11]. These RBFs all contain shape
parameters and are infinitely smooth.

In addition, when RBFs containing the shape parameters are used, we can usually justify the
shape parameter to find an optimal approximation to the solutions to PDEs without increasing
the size of the data samples. However, finding an optimal shape parameter can be a challenge
[12–18]. PS [19, 20], conversely, does not contain a shape parameter. In the past, PS was not
seriously considered in the implementation for solving PDEs due to its low convergence. Another
difficulty is the handling of the augmented polynomial terms for high-order PS which is quite
tedious. As a result, PS has not been fully explored in the area of RBF collocation methods.
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In this article, we investigate and discover the impact of these additional augmented polyno-
mials on the accuracy when the order of PS is sufficiently large. As we shall see in many of our
numerical examples, the accuracy continues to move up when the order of PS goes higher (up to
order 15 in all examples but Example 2). In Example 2, which is a Poisson problem involving
Runge function, MAPS with PS works slightly better than with MQ when polynomials of degree
2 to 4 are used.

One of the advantages of the shape parameter of MQ is that one can increase the accuracy by
adjusting the shape parameter properly without additional cost. However, finding a good shape
parameter can be challenge and time consuming. Furthermore, numerical experiments suggest
that PS is more attractive compared to MQ in general in MAPS, since we do not need to handle
the shape parameter in PS and we do not gain accuracy when we use MQ. We can increase the
order of PS to improve the accuracy with very little additional cost. We believe this discovery
is significant to RBF collocation methods. Although the idea of adding additional polynomial
basis to RBF basis are not new, emphasis of this article is the combination of the polyharmonic
splines integrated in radial space with non-integrated polynomial basis leads better results than
other RBFs in our experiments of linear and nonlinear PDEs.

The structure of the article is as follows. In Section II, we propose to reformulate MAPS based
on PS and polynomial kernels. In Section III, five examples in 2D and 3D are given to demonstrate
the effectiveness of the proposed modified MAPS using PS and MQ. A short conclusion is drawn
in Section IV.

II. MAPS USING POLYHARMONIC SPLINES

In this section, MAPS using PS is presented for solving elliptic PDEs of the form

Lu(x) = f (x), x ∈ �, (1)

Bu(x) = g(x), x ∈ ∂�. (2)

where L and B are linear partial differential operators, � ⊂ R
d , d = 2, 3, is a bounded and closed

domain with boundary ∂�. RBF collocation methods discretize linear PDEs into a linear system
of equations by collocation. The coefficient matrix in the linear system is called the collocation
matrix. The interpolation matrix generated by PS RBFs can be singular, even with non-trivial
sets of distinct centers [19, 20]. Typically, to insure the invertibility of the collocation system, a
low-order polynomial basis has to be augmented to the RBF basis. Furthermore, the PS RBFs are
called conditionally positive definite. Let {xi}n

i=1 ∈ Rd , d = 2, 3, be all interpolation points. Let
Pd

m be the set of d-variate polynomials of degree up to m and {pl}w
l=1 be a basis of Pd

m where

w =
(

m + d

d

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
(m + 2)(m + 1), in R2,

1

6
(m + 1)(m + 2)(m + 3), in R3,

(3)

is the dimension of the polynomial space Pd
m. MAPS can approximate the solution to (1)–(2) at a

discrete set of evaluation points. For simplicity, we will introduce MAPS by approximation of the
solution at the given interpolation points, {xi}n

i=1. Let φ(r) be PS of degree m (see Table I), and

Numerical Methods for Partial Differential Equations DOI 10.1002/num



4 YAO, CHEN, AND ZHENG

{pl}w
l=1 be the polynomial basis. In MAPS, we assume the solution to (1)–(2) can be approximated

by the particular solutions and the polynomials in the following manner:

u(x) ≈ û(x) =
n∑

j=1

αj�(‖x − xj‖) +
w∑

l=1

αn+lpl(x), (4)

where
{
αj

}
is the undetermined coefficient, � is a particular solution with respect to φ and

differential operator L,

L�(r) = φ(r), (5)

and the augmented polynomial bases are shown as follows:

pl(x) =
{

xi−j yj , 0 ≤ j ≤ i, 0 ≤ i ≤ m, in R2,

xi−j−kyj zk , 0 ≤ k ≤ i − j , 0 ≤ j ≤ i, 0 ≤ i ≤ m, in R3,

where m is the order of the polynomial basis as shown in (3). By direct differentiation, we obtain
a set of polynomials ql(x) such that

Lpl(x) = ql(x), l = 1, 2, · · · , w. (6)

As stated in [21], the use of polynomial is somewhat arbitrary. That says any other set of w linearly
independent basis functions could also be used. It is easy to see that the addition of polynomials
of total degree at most m guarantees polynomial precision provided the points in the domain from
an m-unisolvent set. In other words, if the data come from a polynomial of degree less than or
equal to m, then they are fitted exactly by the expansion of the basics, assuming that no Runge’s
phenomenon arises. There are many other numerical issues while using polynomial basis. We will
test the effect of the additional polynomial basis with integrated polyharmonic splines through
numerical examples.

For any point x ∈ �, by interpolating the forcing term in (1) using the PS and polynomial
kernels, we have

n∑
j=1

αjφ(‖x − xj‖) +
w∑

l=1

αn+lql(x) = f (x). (7)

Let the first ni points be the interior points in �, and the next nb points be the boundary points on
∂�. The total number of collocation points is n = ni + nb. Then, by the collocation method, we
have the following linear system in �:

Lû(xk) =
n∑

j=1

αjφ(‖xk − xj‖) +
w∑

l=1

αn+lql(xk) = f (xk), k = 1, 2, . . . , ni . (8)

As there are w additional degrees of freedoms in (8), the standard polynomial insolvency constraint
[3] must be applied

ni∑
j=1

αjql(xj ) = 0, l = 1, 2, . . . , w. (9)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE II. The closed form particular solutions ��(r) = φ(r) in R2.

RBF φ(r) �(r)

PS r2m ln(r)
r2m+2 ln r

4(m + 1)2 − r2m+2

4(m + 1)3

MQ
√

r2 + c2 1
9

(
4c2 + r2

) √
r2 + c2 − c3

3 ln
(
c + √

r2 + c2
)

TABLE III. The particular solutions ��(r) = φ(r) in R3.

RBF φ(r) �(r)

PS r2m−1 r2m+1

(2m + 1)(2m + 2)

MQ
√

r2 + c2

⎧⎪⎨
⎪⎩

(5c2 + 2r2)
√

r2 + c2

24
+ c4

8r
ln

(
r + √

r2 + c2

c

)
, r �= 0

c3

3 , r = 0

Similarly, on the boundary ∂�, we have

Bû(xk) =
n∑

j=1

αj B�(‖xk − xj‖) +
w∑

l=1

αn+lBpl(xk) = g(xk), k = ni + 1, 2, . . . , n, (10)

n∑
j=ni+1

αj Bpl(xj ) = 0, l = 1, 2, . . . , w. (11)

Rearranging (8)–(11), we have the following block matrix system

⎡
⎣ φnin

Qniw

B�nbn BPnbw

[QT
niw

, (BP)T
nbw] 0ww

⎤
⎦

⎡
⎢⎣

α1

...
αn+w

⎤
⎥⎦ =

⎡
⎣ fni

gnb

0w

⎤
⎦ , (12)

where the sub-indexes of the matrices and the vectors indicate the sizes of the matrices and
the vectors. The undetermined coefficients

{
αj

}n+w

j=1
can be obtained by solving the above linear

system.
A key feature of MAPS is that the particular solutions of a differential equation with a chosen

RBF need to be derived analytically. In the literature, particular solutions for various differential
operators for some commonly used RBFs have been derived [9, 11]. A list of the particular solu-
tions with respect to PS and MQ for the Laplacian � in R2 and R3 are listed in Tables II and
III.

One may notice that the particular solution of ��(r) = φ(r) is a commonly used RBF in
MAPS where φ(r) is an mth order PS. Even though the Laplacian operator is a self-adjoint oper-
ator, we cannot claim that the basis we are using is just the (m+1)th order of PS. The reason is
the following:

Consider the simplest elliptic PDE of form

�u = f

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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in which

〈f , φ〉 = 〈�u, φ〉 = 〈u, �φ〉.
This implies the solution to the PDE is approximated in functional space �φ which is equivalent
to PS of order m – 2. This is not the case in our article, as we are approximating the solution u by
a PS of order m + 2 with additional r2m+2, in addition to the orthogonal polynomial basis.

However, in some instances, when solutions to (5) are not available with respect to a given
RBF, the MAPS procedure discussed above cannot be directly utilized. To alleviate this difficulty,
a new formulation of (1) is needed:

L′u(x) = f (x) + (
L′ − L

)
u(x), (13)

where the differential operator L′ is chosen so that a particular solution �(r) for L′ with respect
to the given RBF φ(r) is known, that is,

L′�(r) = φ(r). (14)

Then MAPS can be applied to (13). In our initial development of the method, the basis is chosen
from L�(r) = φ(r), where � is a particular solution obtained analytically, which can be done
when differential operator L and chosen RBF φ are simple enough. However, this is not very
practical for most of PDEs we are dealing with in the real application. So we extend the idea
above to the main operator L′ in the operator L, for example when L = � + ∂/∂x, we chose
L′ = �. As previously demonstrated, for any xk ∈ �, we interpolate the right-hand side of (13),

n∑
j=1

αjφ(‖xk − xj‖) +
w∑

l=1

αn+lql(xj ) = L′û(xk). (15)

Therefore, from (14), we have

n∑
j=1

αj�(‖xk − xj‖) +
w∑

l=1

αn+lpl(xj ) = û(xk), (16)

where

L′pl(x) = ql(x), l = 1, 2, · · · , w. (17)

Then (13) becomes a linear system in �:

Lû(xk) =
n∑

j=1

αj L�(‖xk − xj‖) +
w∑

l=1

αn+lLpl(xj ) = f (xk), k = 1, 2, . . . , ni , (18)

nb∑
j=1

αj Lpl(xj ) = 0, l = 1, 2, . . . , w, (19)

and on the boundary ∂�

Bû(xk) =
n∑

j=1

αj B�(‖xk − xj‖) +
w∑

l=1

αn+lBpl(xj ) = g(xk), k = ni + 1, 2, . . . , n, (20)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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nb∑
j=1

αni+j Bpl(xj ) = 0, l = 1, 2, . . . , w. (21)

Rearranging (18)–(21), we can rewrite them in the following block matrix form

⎡
⎣ L� LP

B� BP
[LPT , (BP)T ] 0

⎤
⎦

⎡
⎢⎣

α1

...
αn+q

⎤
⎥⎦ =

⎡
⎣f

g
0

⎤
⎦ . (22)

Compared to the original MAPS using MQ, there are additional q degrees of freedom, which
is usually much smaller than the number of data points n in the domain. Thus, little additional
computational resource is required for the proposed modified MAPS. In the next section, we will
numerically demonstrate the high accuracy of the modified MAPS on complicated PDE linear
and nonlinear problems with variable coefficients on irregular domains.

III. NUMERICAL RESULTS

To illustrate the effectiveness of our proposed approach, we consider several two-dimensional
and three-dimensional problems on irregular domains. Throughout this section, ni denotes the
number of nodes in the domain �, nb the number of nodes on the boundary ∂�, n = ni + nb the
total number of points, and nt the number of randomly selected test points on the boundary and
inside the domain. We try to distribute the boundary and interior points as uniformly as we can
in the computational process. The root mean squared error, the maximum absolute error, and the
maximum relative absolute error are defined as follows:

ε∞ = nt
max
k=1

|ûk − uk|, ε2 =
√√√√ 1

nt

nt∑
k=1

(
ûk − uk

)
, εrel = nt

max
k=1

| ûk − uk

uk

|,

where ûk = û(xk) is the approximated solution, and uk = u(xk) is the exact solution. We exam-
ine the proposed modified MAPS using PS and MQ on two second-order variable coefficients
linear PDEs on complicated irregular domains in 2D and 3D. To distinguish the techniques in the
modified MAPS from the original MAPS, we list the key components in the algorithms:

1. RBF Basis: RBF (Kansa’s Method) or integrated RBF (MAPS);
2. Polynomial basis: included on top of the RBF (modified MAPS) or not included for RBFs

other than polyharmonic splines (original MAPS);
3. Basis with the shape parameters (MQ) or without the shape parameters (PS).

Throughout the following five examples, we compared the different combinations of those key
components in terms of accuracy and rate of convergence for various kinds of elliptic PDEs.

Example 1. To demonstrate that proposed method with PS is effective in term of accuracy com-
pared to original Kansa’s method using MQ, we perform the stress tests for the following Poisson
equation with large forcing term:

�u(x, y) = 41e−4x+5y , (x, y) ∈ �, (23)

u(x, y) = e−4x+5y , (x, y) ∈ ∂�, (24)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Example 1: The profile of the forcing term f (x, y).

where � is the unit square domain. The exact solution is given by

uexact(x, y) = e−4x+5y , (x, y) ∈ � ∪ ∂�.

The profile of the forcing term f (x, y) is shown in Figure 1. We note that the range of forcing
term is between 0 and 4416. It is a challenge to obtain even a reasonable result under such large
forcing term.

In the numerical implementation, we choose 324 uniformly distribute interior points and 76
boundary points. To measure the accuracy, we choose 784 uniformly distributed test points inside
the domain. In Table IV, we observe excellent results using various orders of polyharmonic splines.
We note that the accuracy keep improving for higher order of polyharmonic splines. Conversely,
we compare with the Kansa’s method [14] using normalized MQ (

√
1 + r2c2) as the basis. In this

test, we use exactly the same number of boundary, interior, and test points as mentioned above. In
such case, we can only achieve accuracy of 1.59×10−3 for the best choice of the shape parameter
c = 1.986. There is a sharp contrast in accuracy using the polyharmonic splines and normalized
MQ which considered to be one of the best RBFs.

Example 2. In this example, we consider the Poisson equation with Dirichlet boundary con-
dition in the square domain [−1, 1]2. The forcing term and boundary condition are given based
on the analytical solution u(x, y) = 1/(1 + 25(x2 + y2)), see Figure 2. It is well known that
such function appears to form the Runge’s phenomena wherein the approximation errors near the
end of the data support at ±1 can become unacceptably large. We will compare the performance
of proposed method using PS with MQ, when the polynomial basis functions are added in both
cases. The evenly spaced interior and boundary nodes are used: ni = 784, nb = 116, and the number
of randomly distributed test points is nt = 1024.

Table V shows the corresponding maximum absolute errors and the root mean squared errors
using MAPS with various orders of PS and MQ with the same order of polynomial basis. We
observe that PS clearly outperforms MQ in terms of accuracy when the order of polynomials is
between 2 and 4. The shape parameter in MQ plays an important role in terms of accuracy of
MAPS. We tested multiple values of c between 0.001 and 10, and found that MAPS performs

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE IV. Example 1: ε∞andε2 using various orders m of PS.

m ε∞ ε2

5 4.01 × 10−4 1.34 × 10−4

7 1.07 × 10−4 3.48 × 10−5

9 2.83 × 10−6 9.22 × 10−7

11 5.40 × 10−7 1.09 × 10−8

13 5.09 × 10−8 6.14 × 10−9

15 2.40 × 10−8 4.70 × 10−9

FIG. 2. Example 2: The profile of the analytical solution. [Color figure can be viewed at wileyonlineli-
brary.com]

TABLE V. Example 2: ε∞ and ε2 using various orders of PS and MQ in MAPS, with ni = 784, nb =
116, nt = 1024.

PS MQ
m ε∞ ε2 ε∞ ε2 c

1 2.49 × 10−3 1.65 × 10−4 1.40 × 10−2 9.90 × 10−4 0.001
2 3.55 × 10−4 3.11 × 10−5 1.40 × 10−2 9.90 × 10−4 0.001
3 1.80 × 10−4 2.25 × 10−5 1.40 × 10−2 9.90 × 10−4 0.001
4 1.58 × 10−4 2.60 × 10−5 1.40 × 10−2 9.90 × 10−4 0.001
5 1.83 × 10−3 4.20 × 10−4 1.40 × 10−2 9.90 × 10−4 0.001

better using MQ when c is small. As shown in Table V the best results using PS is in the order
of magnitude 10−5. The results using MQ tend to stay at the same level of accuracy. We suspect
the effect of the polynomial basis in MAPS when we use MQ is not much. However, when the
polynomial degree is higher, the method is more stable using MQ than using PS.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 3. Example 2: The profile of the approximate solution and the absolute error using MAPS with PS
of order 4. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3 shows the absolute errors of the approximate solutions using PS of order 4. Note that
a low order of polynomial basis is used. In this situation, a higher order polynomial basis will not
perform better. In fact, order 2, 3, and 4 of polynomials performs similar, but others do not work
well.

Note that we used about 31 equal spaced interpolation points in each axis direction, the order
of polynomial basis m = 4 indicates we are trying to approximation the solution by a solutions
space formed by PS and polynomial basis of degree 4. However, we still achieve reasonable accu-
racy (order of 10−5) in the approximation of the solutions to the PDE. In general, the oscillation
at the edges of an interval occurs even when 5th polynomial is used over a set of equispaced
interpolation points.

Example 3. In this example, we consider the following PDE with variable coefficients

�u + x2yu + y3 sin(x)
∂u

∂x
− y2 cos(x)

∂u

∂y
= f (x, y), (x, y) ∈ �, (25)

u(x, y) = y cos(x) + x cos(y), (x, y) ∈ ∂�, (26)

where f (x, y) is given according to the following analytical solution

u(x, y) = y cos(x) + x cos(y), (x, y) ∈ � ∪ ∂�. (27)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 4. Example 3: The profile of the gear-shape domain and the absolute error using MAPS with PS of
order 10. [Color figure can be viewed at wileyonlinelibrary.com]

The gear-shape domain is defined by the following parametric equation:

∂� =
{
(x, y) : x = ρ(θ) cos

(
θ + 1

2
sin(8θ)

)
, y = ρ(θ) sin

(
θ + 1

2
sin(8θ)

)
, 0 ≤ θ ≤ 2π

}
,

(28)

where

ρ(θ) = 1

2

(
2 + 1

2
sin(8θ)

)
. (29)

The profile of the gear-shape domain is shown in Figure 4. The domain has eight sharp cor-
ners which are generally difficult to simulate with mesh-based methods. It is indeed a challenge
to solve such a PDE with variable coefficients, especially on complicated domains with sharp
corners.

For the numerical implementation, we choose uniformly distributed interior points ni = 834,
boundary points nb = 250, and randomly distributed test points nt = 340. Table VI shows the cor-
responding maximum absolute errors and the root mean squared errors using MAPS with various
orders of PS and MQ. We observe that PS clearly outperforms MQ in terms of accuracy. When
utilizing other RBFs containing shape parameters, we need to justify the shape parameter to find
an ‘optimal’ choice which leads to an “optimal” approximate solution. This is still an outstanding
research topic. To make sure to have a fair comparison, we have done our best to find a good shape
parameter. In fact, for some reason the shape parameter of MQ is insensitive in this case. Con-
versely, when we use PS in the modified MAPS, we can simply increase the order of PS to improve
the accuracy. With a small amount of collocation points and a high order PS, a numerical accuracy
of 10−10 can be easily achieved. The additional computational cost is marginal comparing to a
lower order PS and the original MAPS.

Table VII shows the maximum absolute errors and the root mean squared errors with various
numbers of collocation points and MQ and PS of order m = 3, where the number of test points

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE VI. Example 3: ε∞andε2 using various orders of PS and MQ in MAPS, with ni = 834, nb =
250, nt = 340.

PS MQ
m ε∞ ε2 ε∞ ε2 c

1 3.92 × 10−3 1.29 × 10−3 2.02 × 10−1 4.87 × 10−2 2
3 4.88 × 10−5 1.18 × 10−5 1.34 × 10−2 3.87 × 10−3 2
5 1.13 × 10−5 2.31 × 10−6 2.20 × 10−3 5.91 × 10−4 2
7 2.63 × 10−7 3.78 × 10−8 3.71 × 10−6 8.57 × 10−7 2
10 7.30 × 10−10 6.92 × 10−11 6.33 × 10−8 1.49 × 10−8 1.5

TABLE VII. Example 3: ε∞ and ε2 using different numbers of boundary and interior points, nb and ni ,
with PS and MQ in MAPS, where nt = 340, m = 3.

PS MQ
nb ni ε∞ ε2 ε∞ ε2 c

250 834 4.88 × 10−5 1.18 × 10−5 1.34 × 10−2 3.87 × 10−3 2
250 3342 4.35 × 10−5 1.37 × 10−5 2.66 × 10−2 5.64 × 10−3 2
250 7498 9.91 × 10−5 1.54 × 10−5 5.07 × 10−2 1.29 × 10−2 2

is nt = 340. Further increasing the number of collocation points will increase the computational
cost, but there is little or no improvement in terms of accuracy. Furthermore, if we increase the
order of PS to 4 (m = 4), the numerical accuracy will improve compared to PS of order 3. Thus,
to achieve higher accuracy, we recommend increasing the order of PS. With m = 3, the results
from MQ cannot compete with PS no matter what value the shape parameter c is used. To obtain
a reasonable numerical result using MQ, we recommend to use a higher degree of augmented
polynomial basis.

The Cauchy problem for an elliptic equation is a classical ill-posed problem and occurs in
many important applications. Even if some of the theoretical investigations are quite general, the
numerical procedures proposed are typically for the two-dimensional case and often only valid
for the problem with constant coefficients. To the best of our knowledge, it is rare in the literature
to treat the numerical solutions of elliptic Cauchy problems in three dimensions with all three
coefficients depending on (x, y, z), and achieve high accuracy in irregular domains. We consider
such problems in the following example.

Example 4. In this example, we propose to examine MAPS with PS and MQ on an ill-posed
Cauchy problem for an elliptic PDE with variable coefficients in 3D as follows:

(aux)x + (buy)y
+ (cuz)z = f (x, y, z), (x, y, z) ∈ �, (30)

u(x, y, z) = ex+y+z, (x, y, z) ∈ ∂�1, (31)

ux(x, y, z) = ex+y+z, (x, y, z) ∈ ∂�2, (32)

where a(x, y, z) = xyz + 1, b(x, y, z) = x(y + 1)+ 1, c(x, y, z) = x + y + z + 1, and f (x, y, z)
is given according to the following analytical solution

u(x, y, z) = ex+y+z, (x, y, z) ∈ � ∪ ∂�1 ∪ ∂�2. (33)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Example 4: (Left) The profile of the bumpy sphere containing ∂�1 (yellow surface) and ∂�2 (green
surface). (Right) The profile of the exact solution on the boundary surface. [Color figure can be viewed at
wileyonlinelibrary.com]

The parametric equation of the surface of the domain, which is known as the bumpy sphere, is
defined as follows:

∂�1 ∪ ∂�2 = {(x, y, z) : x = ρ sin(φ) cos(θ) + 1.5, 0 ≤ θ ≤ 2π ,

y = ρ sin(φ) sin(θ), 0 ≤ φ ≤ π ,

z = ρ cos(φ), ρ = 1 + sin(5θ) sin(7φ)/5}.

Note that ∂�1 is the surface where y ≥ 0, and ∂�2 the surface where y < 0. Figure 5 (left) shows
the profile of the boundary surface of the bumpy sphere where ∂�1 is colored with a yellow
surface and ∂�2 a green surface. On the right side of Figure 5, we show the profile of the exact
solution on the boundary surface.

Table VIII shows the maximum absolute errors and the root mean squared errors using MAPS
with various orders of PS and MQ, where ni = 3948, nb = 1000, and nt = 9488. Table IX shows
similar results using ni = 1295, nb = 500, and nt = 441. By comparing those two tables, we see that
numerical accuracy is similar when a higher order of polynomial basis is used, even though the
number of collocation points in Table IX is much smaller. Similar to our previous example, the
numerical accuracy improved dramatically with a higher order of PS. With a small amount of
collocation points and a higher order of PS (m = 15), the numerical accuracy can be easily reached
to an order of 10−8 in 3D which is significant. The accuracy obtained using MQ is slightly better
than the one shown in Example 1. However, the accuracy is still low if a lower order polynomial
basis is used. In addition, we have made an effort to find an appropriate shape parameter c for
MQ which is very time-consuming. The PS has a clear advantage than the MQ in this case.

Table X shows the errors using the modified MAPS with various numbers of collocation points.
Further increasing the number of collocation points will improve the numerical accuracy in 3D,
but the rate is not as rapid as increasing the order of PS. The modified MAPS with MQ produces
acceptable numerical results (order of 10−2) as we can see from many literature for a 3D problem
on an irregular domain. But the modified MAPS with PS produces an order of 10−3 error using
only a small number of interior and boundary collocation points. Furthermore, we can easily
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TABLE VIII. Example 4: ε∞andε2 using various orders, m of PS and MQ in MAPS, with ni = 3948, nb =
1000, nt = 9488.

PS MQ
m ε∞ ε2 ε∞ ε2 c

7 9.83 × 10−5 7.45 × 10−6 4.65 × 10−1 6.38 × 10−2 0.001
10 1.45 × 10−5 7.45 × 10−7 4.73 × 10−2 5.70 × 10−3 0.001
12 3.36 × 10−7 1.79 × 10−8 2.93 × 10−4 1.97 × 10−5 0.001
15 2.08 × 10−7 1.01 × 10−8 7.74 × 10−7 4.45 × 10−8 0.001

TABLE IX. Example 4: ε∞, ε2 and εrel using different orders, m of PS and MQ in MAPS, with
ni = 1295, nb = 500, nt = 441.

PS MQ
m ε∞ ε2 ε∞ ε2 c

7 1.66 × 10−3 1.57 × 10−4 3.24 × 10−1 4.33 × 10−2 0.1
10 9.28 × 10−5 6.27 × 10−6 5.01 × 10−3 5.91 × 10−4 0.1
12 3.42 × 10−6 2.99 × 10−7 6.50 × 10−4 6.31 × 10−5 0.1
15 5.91 × 10−7 3.77 × 10−8 1.70 × 10−6 1.79 × 10−7 0.1

TABLE X. Example 4: ε∞andε2 using various numbers of boundary and interior points with PS and MQ
in MAPS, where nt = 9488, m = 7.

PS MQ
nb ni ε∞ ε2 ε∞ ε2 c

250 163 5.57 × 10−3 6.83 × 10−4 1.05 × 10−1 1.22 × 10−2 0.1
500 1120 6.26 × 10−4 4.07 × 10−5 2.90 × 10−1 4.72 × 10−2 0.1
500 1295 1.66 × 10−3 1.57 × 10−4 3.24 × 10−1 4.33 × 10−2 0.1
750 2205 7.29 × 10−4 4.88 × 10−5 7.58 × 10−1 1.17 × 10−1 0.1
1000 3948 9.83 × 10−5 7.45 × 10−6 4.65 × 10−1 6.38 × 10−2 0.001

improve the accuracy using more collocation points or higher order PS. Figure 6 shows the rate
of convergence of the modified MAPS using PS of order 7 and we observe a quadratic rate of
convergence.

To further demonstrate the effectiveness of the proposed improved MAPS, we consider the
well-known Stanford Bunny as the computational domain whose boundary data points are avail-
able at the website of the Stanford Computer Graphics Laboratory [22]. We consider the same
differential equation as above. In the following test, 1899 boundary collocation points, 690 interior
points, and 2345 interior test points are used. The profile of the Stanford Bunny and 1889 scanned
boundary points are shown in Figure 7 (left) and the exact solution on the surface of the domain
(right). We consider the front side of the Bunny as ∂�1 which contains the first half of boundary
data points. The other half of boundary points reside on ∂�2 which is the back side of the Bunny.
Furthermore, since the scale of the original data from the Bunny is too small, we enlarge all the
above data by 10 times. In Table XI, we show the results of using PS and MQ with orders 8, 10,
and 12. Despite the extremely complicated geometric shape of the domain, the accuracy remains
excellent.

Example 5. In this example, we consider the following nonlinear Poisson-type problem:

�u(x, y) = 3u2, (x, y) ∈ �, (34)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 6. Example 4: The rate of convergence of MAPS with PS of order 7. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 7. Example 4: The profile of the Stanford Bunny and its 1889 boundary points (left) and the exact
solution on the surface of the domain (right). [Color figure can be viewed at wileyonlinelibrary.com]

u(x, y) = g(x, y), (x, y) ∈ ∂�, (35)

where � is the unit square domain and g(x, y) is given based on the exact solution

uexact(x, y) = 4

(3 + x + y)2 , (x, y, z) ∈ � ∪ ∂�.

For the implementation, we choose 324 interior points and 116 boundary points both uni-
formly distributed inside the square domain and its boundary. We use direct Picard method for
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TABLE XI. Example 4: ε∞ and ε2 using various orders m of PS and MQ in MAPS with ni = 690, nb =
1889, nt = 2345 in the Stanford Bunny domain.

PS MQ
m ε∞ ε2 ε∞ ε2 c

8 1.30 × 10−9 6.91 × 10−11 1.37 × 10−5 1.72 × 10−5 0.001
10 7.78 × 10−11 4.20 × 10−12 1.02 × 10−5 1.29 × 10−6 0.001
12 1.93 × 10−9 4.66 × 10−11 1.41 × 10−7 1.35 × 10−8 0.001

TABLE XII. Example 5: ε∞andε2 using various orders m of PS.

m ε∞ ε2

5 2.96 × 10−9 1.62 × 10−9

7 2.73 × 10−9 1.43 × 10−9

9 2.75 × 10−9 1.44 × 10−9

11 2.69 × 10−9 1.41 × 10−9

13 2.16 × 10−8 5.51 × 10−9

the nonlinear iteration. We set the initial guess value u0(x, y) = 0 for all (x, y) ∈ �. When
‖ui+1 − ui‖ < 10−7, we stop the iteration and take ui+1 as the approximate solution of (34)–(35).
In Table XII, we show the numerical results using various orders of polyharmonic splines. From
the table, we again observe very high accuracy of the modified MAPS with PS of order up to 13.
When the order becomes higher, the accuracy will not improve anymore.

Example 6. In this example, we consider the following blow-up problem [23]

�u = −δeu, in �, (36)

u = 0, on ∂�. (37)

It is shown that the existence of the solution of the above problem depends on the value of δ. There
is a critical value, δ∗ such that if δ < δ∗ there is a positive solution, whereas if δ > δ∗ there exists
no solution. In [24], the authors showed that if δ > δ∗ the solution of the time dependent problem
becomes infinite in finite time irrespective of initial values. As the critical values generally cannot
be computed analytically, especially when the domain of the PDE is complicated, we usually
resort to numerical methods to approximate δ∗. In the past, both the finite element method (FEM)
and boundary element method (BEM) have been used for this purpose. In [23], the author used the
method of fundamental solutions (MFS) to approximate δ∗ in comparison with BEM and FEM.
In this article, we will use the MAPS with PS to estimate δ∗. The monotone iteration introduced
in [23] is used.

Table XIII shows the critical values the problem when three different geometric shapes of
domain �, a square of [0, 2] × [0, 2] the unit circle, and an ellipse with semi-major axis 2 and
semi-minor axis 1, are used. The MAPS with PS is used to solve the nonhomogeneous Poisson
equation at each iteration. Our method estimates the critical value with a higher accuracy than
what was reported in [23].

Next, we will test the convergence rate numerically at a particular point. A profile of the solu-
tion when δ = 1.703863 is shown in Figure 8. The maximum value of the solution appears at the
center of the domain. We will focus on the center of the regular square domain [0, 2]2 to eliminate
the effect the domain shape to the convergence rate. Specifically, we will estimate u(1, 1) with
different minimum distance between nodes. When the nodes become denser, a smaller degree of
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TABLE XIII. Example 6: critical values δ∗ using PS of order 5tolerance10−10 on different shapes of �.

Shape ni nb BEM FEM MFS MAPS Exact

Square 361 236 1.770 1.703 1.703 1.701 1.7
Circle 305 120 2.031 2.001 2.001 2.000 2
Ellipse 242 120 1.252 1.234 1.235 1.2315 –

FIG. 8. Example 6: The profile of the solution on the square domain when δ = 1.703863. [Color figure
can be viewed at wileyonlinelibrary.com]

polynomial basis will be required. We will use a polynomial of degree 2, 4, and 6 to conduct the
convergence analysis so that denser nodes can be tested. Table XIV shows the rate of convergence,
where |ui −ui−1| is obtained by absolute difference between estimated u(1, 1) on two consecutive
h is used, and ratio is the ratio between two consecutive absolute errors. A rate of convergence of
quadruple convergence is expected when 4-th order polynomial basis is used. When the order of
polynomial basis increases, the rate of convergence decreased. Thus, when accuracy is a critical
aspect, we suggest to use higher order polynomial basis, but lower order polynomial is preferred
if we want fast convergence.

As our method is a global method, which uses all given discrete points in the domain to create a
large dense matrix. Thus, the efficiency of the method when given many points is poor, especially
in MATLAB. We will need a more sophisticated computer language or to improve the method to
a local method for improvement in computational efficiency. This will be our ongoing research
topic.

IV. CONCLUSION

In the past, PS RBF has not been used in MAPS due to the low performance in terms of accuracy.
In this article, we modified MAPS so conditionally positive definite PS RBF can be utilized to
solve various kinds of elliptic PDEs in two- and three-dimensional space. In the modified MAPS,
an additional polynomial basis is used in addition to the integrated RBFs. Thus, other RBFs such
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TABLE XIV. Example 6: rate of convergence at u(1, 1)f orδ = 1 using PS of order 2, 4, and 6 on a
square domain [0, 2]2, where |ui − ui−1| is obtained by absolute difference between estimated u(1, 1) on
two consecutive h is used, and ratio is the ratio between two consecutive absolute errors.

m h u(1, 1) |ui − ui−1| Ratio

2 1/4 0.3749
1/8 0.3919 0.0170

1/16 0.3947 0.0028 6.0714
1/32 0.3953 0.0006 4.6667

4 1/2 0.3544
1/4 0.3807 0.0263
1/8 0.3924 0.0117 2.2479

1/16 0.3948 0.0024 4.8750
1/32 0.3954 0.0006 4.0000

6 1/4 0.3830
1/8 0.3924 0.0094

1/16 0.3949 0.0025 3.7600

as MQ can be used in the modified MAPS as well. The difference between the original and the
modified MAPS is that a low-order polynomial basis needs to be added into the kernels in the
modified method. The polynomial basis is needed for PS to overcome the invertibility issues of
the collocation matrix. However, the original MAPS does not require additional polynomial basis
to the particular solution basis (integrated RBFs). Furthermore, we add a polynomial basis to the
kernels instead of integrating it like the original MAPS. To our surprise, PS outperforms MQ in
almost all of the numerical examples we tested.

There are many ways to select the basis functions for the RBF collocation methods. In the past,
among all kinds of RBFs, MQ is considered to be the best and the most effective and commonly
used RBFs. However, the quest of the optimal shape parameter for all types of RBFs including
MQ is still an outstanding research problem. Conversely, there is no shape parameter in PS. Thus,
the difficult issue of searching for the optimal shape parameter in MQ is alleviated. For scatter data
interpolation, we found the high order polyharmonic splines with high degree of augmented poly-
nomials have the negative effect on the accuracy. However, for solving PDEs, we obtain very high
accuracy for high order of integrated polyharmonic splines with additional polynomial basis. The
results using particular solution derived from polyharmonic splines with augmented polynomial
basis functions are normally superior to MQ. The original MAPS with PS requires integration of
additional augmented polynomial basics. The modified MAPS simply uses integrated RBFs with
non-integrated polynomial basis, which resulted in better accuracy from PS than from MQ. With
such high accuracy for solving PDEs, polyharmonic splines is expected to gain more popularity
in the future.

To improve the accuracy of the modified MAPS using PS, we found through our numerical
experiments, that we can (i) use more collocation points or (ii) use a higher order PS as the basis.
The numerical study indicates that the proposed method has high computational accuracy with
little additional computational cost comparing to other RBFs. The higher degree polynomial is
notorious in numerical implementation. We overcome the difficulty of implementing polynomials
with high degrees in our method. To our knowledge, this is the first time polyharmonic splines
with polynomial basis up to degree 15 has been implemented to solve the given PDEs.

We have noticed that the polynomial basis plays an important role in our approximation to
solutions to the PDEs. However, with polynomial basis only without polyharmonic splines, the
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numerical interpolation to an even analytical function failed numerically due to the highly ill-
conditioning of the resultant matrix. However, combine with the polyharmonic splines and even
with high order of polynomial terms, it works out nicely.

We believe that the selection of particular solutions derived from polyharmonic splines together
with polynomial basis provide tremendously advantages in terms of accuracy without loss of effi-
ciency. However, the global dense linear system generated by MAPS is costly in computation.
We will future focus on localization of the method to improve the efficiency. Conversely, there
are full of theoretical justification in the context of data interpolation using polyharmonic spline
[19, 20, 25–27]. The theoretical justification of polyharmonic splines for solving PDEs is another
open question that is worthy for further investigation.
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