
Applied Numerical Mathematics 115 (2017) 68–81
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Piece-wise moving least squares approximation ✩

Wen Li a,b, Guohui Song b, Guangming Yao b,∗
a School of Mathematics, Taiyuan University of Technology, 030024, China
b Department of Mathematics, Clarkson University, Potsdam, NY 13699, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2016
Received in revised form 31 December 2016
Accepted 4 January 2017
Available online 10 January 2017

Keywords:
Moving least square
RBF
PDE
Interpolation

The standard moving least squares (MLS) method might have an expensive computational
cost when the number of test points and the dimension of the approximation space are
large. To reduce the computational cost, this paper proposes a piece-wise moving least
squares approximation method (PMLS) for scattered data approximation. We further apply
the PMLS method to solve time-dependent partial differential equations (PDE) numerically.
It is proven that the PMLS method is an optimal design with certain localized information.
Numerical experiments are presented to demonstrate the efficiency and accuracy of the
PMLS method in comparison with the standard MLS method in terms of accuracy and
efficiency.

Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The moving least squares (MLS) [21] is a popular method of approximating a function from a set of its values at some
scattered data points. It is a flexible meshless method that does not require the construction of a mesh on the domain. It has
been widely used in curve and surface fitting [7,21,27,32], and many meshless weak-form methods for solving PDEs, such as
the diffuse element method (DEM) [29], the element-free Galerkin methods (EFG) [5] and the meshless local Petrov–Galerkin
(MLPG) approach [3], etc.

For each test point, the approximation function of the MLS method is assumed to lie in a finite-dimensional approxima-
tion space with certain basis and its coefficients are calculated through a weighted least-squares problem with the weights
concentrating at the region around the point. We point out that the weight is depending (moving) on the test point. That
is, for different test points, we need to solve different least square problems with the size given by the dimension of the
approximation space. The MLS might have a very expensive computational cost when the number of the test points and the
dimension of the approximation space are large.

To reduce the computational cost of the standard MLS, many techniques have been introduced in the literature [23]. We
propose in this paper a piece-wise moving least squares (PMLS) method. The standard MLS considers a “point-wise” weight
that is different for each test point. We will use a “piece-wise” weight instead in the PMLS method. Specifically, we would
decompose the domain into some small and disjoint regions and define the weight function for each region rather than for
each test point. It is in particular useful in reducing the computational cost when there are many test points lying in the
same region.

Moreover, we will consider the PMLS in the view of optimal recovery. In particular, we shall show that it is an optimal
design with certain localized information. For the approximation spaces in our numerical experiments, we will focus on two

✩ This work is supported in part by grant NSF-DMS 1521661.

* Corresponding author.
E-mail addresses: liw2@clarkson.edu (W. Li), gsong@clarkson.edu (G. Song), gyao@clarkson.edu (G. Yao).
http://dx.doi.org/10.1016/j.apnum.2017.01.001
0168-9274/Published by Elsevier B.V. on behalf of IMACS.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:liw2@clarkson.edu
mailto:gsong@clarkson.edu
mailto:gyao@clarkson.edu
http://dx.doi.org/10.1016/j.apnum.2017.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2017.01.001&domain=pdf

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 69
different basis functions: polynomials and radial basis functions (RBF). The use of RBFs in engineering and sciences leads
to many advantages in terms of simplification in high-dimensional problems [8,10,12]. We will test the performance of the
proposed PMLS method in scattered data approximation of some benchmark test functions.

We will further apply the PMLS method in numerical solutions of some time-dependent PDEs. There are generally two
kinds of approaches for solving time-dependent PDEs numerically [30]. One way is to convert the PDE to a system of
ordinary differential equations (ODE) [1,2]. Many traditional techniques of solving system of ODEs could be employed af-
terwards. The other approach is to apply time discretization and spatial discretization respectively [4,6,16]. Two approaches
are basically the same except that the first approach transfers a PDE into a system of ODEs by discretization of the spatial
domain first. This is in contrary to the second approach that usually discretizes the time domain first and then discretizes
the spatial domain afterwards. A series of PDEs usually needs to be solved in the second approach. We will take the latter
approach in this paper. When an explicit time stepping method is used, the time dependent PDE becomes a fitting problem
of the solution to the PDEs at the previous time step and approximation of its derivatives. Specifically, we will use the
traditional forward Euler formula to discretize the time domain and then apply the PMLS method in spatial discretization
of each time step.

The rest of this paper is organized as follows. In section 2, we introduce the piece-wise moving least squares (PMLS)
method for scattered data approximation. We prove that the PMLS method is an optimal design with certain localized
information in Section 3. We implement in Section 4 the PMLS method in both scattered data approximation and numerical
solution of time-dependent PDEs. In particular, we compare the accuracy and efficiency of the proposed PMLS method with
the standard MLS method there.

2. Piece-wise moving least squares

We will introduce the PMLS method for scattered data approximation in this section. To this end, we first review the
standard MLS method and some notations.

We first give a brief description of the standard MLS as described in [13]. Suppose � ⊆ R
d is the domain of an unknown

function f and x j ∈ �, 1 ≤ j ≤ N , are some scattered data points in the domain. We are given function values f = (f (x j) :
1 ≤ j ≤ N) on such data points. Assume the approximation space U is a finite-dimensional space with basis {u1, u2, . . . , um}.
For any x ∈ � and a weight function w : R →R, we define a weighted �2 inner product for functions g1, g2 on �

〈g1, g2〉wx =
N∑

i=1

g1(xi)g2(xi)w(‖xi − x‖),

where ‖ · ‖ is the Euclidean norm. For a test point y ∈ �, we will try to find the best approximation function T y in the
approximation space U = span{u1, . . . , um} such that it is “close” to f with respect to the norm ‖ · ‖w y induced by the
above weighted inner product 〈·, ·〉w y . That is, we define

T y = argming∈U‖g − f ‖w y . (2.1)

We next give a reformulation of T y in the convenience of computation. We also assume that for any y ∈ �, U =
span{u1(· − y), . . . , um(· − y)}. For example, the space of polynomials with degree no more than m would satisfy this
assumption. We could then write the best approximation function T y in the following form

T y(x) =
m∑

j=1

c j(y)u j(x − y), x ∈ �,

where the coefficients c(y) = (c1(y), c2(y), . . . , cm(y)) are given by

c(y) := argmina∈Rm

N∑
i=1

⎡
⎣ f i −

m∑
j=1

a ju j(xi − y)

⎤
⎦

2

w(‖xi − y‖). (2.2)

We remark that it is a quadratic form and we are able to find the closed form of c(y). Let

G(y) := [〈ui(· − y), u j(· − y)〉w y

]m
i, j=1 ,

and

L y(f) = [〈 f , u j(· − y)〉w y

]m
j=1 . (2.3)

It follows from a direct calculation (also presented in [11,13]) that

c(y) = [G(y)]−1 L y(f). (2.4)

70 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
We are assuming that the Gram matrix G(y) is invertible in the above equality. Otherwise, we will use its Moore–Penrose
pseudo-inverse instead.

For each test point y, we shall use T y(y) to approximate the unknown function value f (y). That is, we approximate the
unknown function f by f̃ defined by f̃ (y) = T y(y) for y ∈ �.

It is direct to observe that the coefficients c depend on the test point y. For example, when U consists of polynomials,
T y is a polynomial with coefficients depending on y and the approximation function f̃ could be viewed as a “point-wise”
polynomial in this sense. We also note that the approximation function f̃ may not be a polynomial. When the dimension
m of the approximation space is small, it is possible to solve the above linear system analytically. For example, Shepard’s
method considers m = 1 and u1 = 1. The coefficients c in Shepard’s method [28] are given by

c = 1∑N
j=1 w(‖xi − y‖) L y(f) =

∑N
j=1 f (xi)w(‖xi − y‖)∑N

j=1 w(‖xi − y‖) .

However, the computational cost of solving the linear system will increase as m becomes large. In particular, when the
number of test points is also large, the computational cost might be very expensive since we need to solve a different linear
system for each test point.

To reduce the computational cost, we shall next introduce the PMLS method that considers a piece-wise weight function
instead. We first partition the domain � into some small subsets � j , 1 ≤ j ≤ n and select a point t j in each subset � j . For
any y ∈ �, we have y ∈ �k for some 1 ≤ k ≤ n and we shall consider the following best approximation Sk of f in U with
respect to the norm induced by 〈·,·〉wtk

. More specifically, for any 1 ≤ k ≤ n, we define

Sk(y) =
m∑

j=1

λk, ju j(y − tk), (2.5)

where λk = (λk, j : 1 ≤ j ≤ m) is given by

λk := argmina∈Rm

N∑
i=1

⎡
⎣ f (xi) −

m∑
j=1

a ju j(xi − tk)

⎤
⎦

2

w(‖xi − tk‖). (2.6)

The overall approximation function is defined as

S(y) =
n∑

k=1

Sk(y)χ�k (y), y ∈ �,

where χA denotes the indicator function, that is χA(x) = 1 if x ∈ A and 0 otherwise. Similarly, we have a closed form
solution of the coefficients λk . It follows from a direct computation that

λk = [G(tk)]−1 Ltk (f). (2.7)

We observe from the above formulation that we only need to solve a linear system for each subset �k of the domain �
rather than for each test point y. It will save the computational cost when the number of test points is large.

We shall introduce a localized PMLS method to further reduce the computational cost. In measure the “closeness” to the
given sampling data, we only consider the sampling points centered around the test point with certain distance. Specifically,
for a specified threshold q, we define

Sq
k(y) =

m∑
j=1

λ
q
k, ju j(y − tk),

where λq
k = (λ

q
k, j : 1 ≤ j ≤ m) is given by

λ
q
k := argmina∈Rm

∑
‖xi−tk‖≤q

⎡
⎣ f (xi) −

m∑
j=1

a ju j(xi − tk)

⎤
⎦

2

w(‖xi − tk‖).

The approximation function is defined as

Sq(y) =
n∑

k=1

Sq
k(y)χ�k (y), y ∈ �. (2.8)

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 71
3. Optimal design

We will show in this section that the PMLS method is an optimal design with certain localized information. To this end,
we shall next provide another point of view of the standard MLS method as a minimal norm interpolation problem. We
point out that we are not necessarily interpolating the function values but the vector L y(f) defined on (4.8).

We remark that the vector L y(f) could be viewed as a localized information of the unknown function f . It is a weighted
inner product with more weight on the function values of the sampling points closer to y . In other words, when approxi-
mating the function value at a given point y, we will use the function values of the sampling points around y and impose
more weight on the sampling points that are closer to y .

For the MLS approximation function T y , it is direct to observe that L y(T y) = L y(f). We next show that it is the mini-
norm “interpolation” of L y(f) with respect to the norm ‖ · ‖w y .

Proposition 3.1. For any y ∈ �, v ∈ U , and any function g on � with L y(g) = L y(f), there holds

〈T y − g, v〉w y = 0 and ‖T y‖w y ≤ ‖g‖w y .

Proof. Assume g is a function on � and L y(g) = L y(f). It is direct to see that L y(T y) = L y(f). It implies that
L y(T y − g) = 0. That is, 〈T y − g, u j(· − y)〉w y = 0 for all j = 1, . . . , m, which implies that 〈T y − g, v〉 = 0 for any v ∈ U . In
particular, 〈T y − g, T y〉w y = 0 since T y ∈ U . It follows that 〈T y, T y〉w y = 〈g, T y〉w y . By the Cauchy–Schwarz inequality, we
have 〈g, T y〉w y ≤ ‖g‖w y ‖T y‖w y , which implies the desired result. �

We then define the localized weighted inner product for any x ∈ � and functions g1, g2 on �

〈g1, g2〉wq
x
=

∑
‖t j−x‖≤q

g1(t j)g2(t j)w(‖t j − x‖),

where q is a constant to be specified later. For any y ∈ �, we define the corresponding localized information

Lq
y(f) =

[
〈 f , u j(· − y)〉wq

y

]m

j=1
.

We have a similar result for the PMLS method.

Corollary 3.2. For any 1 ≤ k ≤ n, v ∈ U , and any function g on � with Lq
tk

(g) = Lq
tk

(f), there holds

〈Sq
k − g, v〉wq

tk
= 0 and ‖Sq

k‖wq
tk

≤ ‖g‖wq
tk

.

Proof. It follows in a similar way as the proof of Proposition 3.1. �
We shall show that the PWLS method defined in (2.8) is an optimal design with the given localized sampling information

Lq
tk

(f). To this end, we will define the norm of measuring the approximation error. Let τx f := f (· − x), x ∈R
d . Suppose that

U ⊆ G , where G is a normed linear space of functions on Rd such that for any f ∈ G and x ∈ R
d , we have τx f ∈ G and

‖τx f ‖G = ‖ f ‖G . (3.1)

For example, G = Lp(R) satisfies this assumption for any p ∈ [1, ∞]. Moreover, any translation-invariant space would also
satisfy this assumption. We next define the best approximation error with respect to the norm ‖ · ‖G . Assume A : Rm → U
is a linear algorithm of approximating the unknown function f from its localized information Lq

tk
(f). We define its approx-

imation error as

Eq(A) := max
1≤k≤n

Eq,k(A),

where

Eq,k(A) = sup
{∥∥∥[

f − A(Lq
tk

(f))
]
χ�k

∥∥∥
G

: ‖ f ‖wq
tk

≤ 1
}
. (3.2)

The best approximation error is defined to be the smallest approximation error for all possible linear approximation algo-
rithms.

σq := inf{Eq(A) : A ∈ L(Rm,U)}, (3.3)

where L(Rm, U) denotes the set of operators from Rm to U . We will show that the PMLS approximation Sq defined in (2.8)
is an optimal design by showing that Eq(P) = σq , where P denotes the mapping from the localized information lq

tk
(f) to

the PMLS approximation function Sq . To this end, we introduce the following constant that plays a central role in the proof:

ρq := max ρq,k, (3.4)

1≤k≤n

72 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
where

ρq,k = sup{‖ f χ�k‖G : ‖ f ‖wq
tk

≤ 1, Lq
tk

(f) = 0}. (3.5)

Theorem 3.1. Suppose q is a positive constant and P is the PWLS operator. It holds that

Eq(P) = σq = ρq.

Proof. We will prove the desired equalities by showing that Eq(P) ≥ σq , σq ≥ ρq , and ρq ≥ Eq(Sq).
We first show that Eq(P) ≥ σq . It follows immediately from the definition of σq in (3.3) and the fact that P ∈ L(Rm, U).
We next show that σq ≥ ρq . By the definition of σq in (3.3), it is equivalent to show Eq(A) ≥ ρq for any A ∈ L(Rm, U).

Suppose A ∈ L(Rm, U). We will show it by proving Eq,k(A) ≥ ρq,k for any 1 ≤ k ≤ n. Assume g ∈ U satisfies ‖g‖wq
tk

≤ 1 and

Lq
tk

(g) = 0. It follows from the definition of Eq,k(A) in (3.2) that

Eq,k(A) ≥
∥∥∥[

g − A(Lq
tk

(g))
]
χ�k

∥∥∥
G

= ∥∥[g − A(0)]χ�k

∥∥
G

Note that −g also satisfies ‖ − g‖wq
tk

≤ 1 and Lq
tk

(−g) = 0, which implies

Eq,k(A) ≥ ∥∥[−g − A(0)]χ�k

∥∥
G = ∥∥[g + A(0)]χ�k

∥∥
G

It follows from applying triangle inequality with the above two inequalities that

Eq,k(A) ≥ ∥∥gχ�k

∥∥
G .

Since it holds for arbitrary g satisfying ‖g‖wq
tk

≤ 1 and Lq
tk

(g) = 0, it follows from the definition of ρq,k in (3.5) that

Eq,k(A) ≥ ρq,k.

It remains to prove ρq ≥ Eq(P). It is enough to show ρq,k ≥ Eq,k(P) for all 1 ≤ k ≤ n. Assume 1 ≤ k ≤ n is arbitrary but
given and ‖ f ‖wq

tk
≤ 1. Since P is the PMLS approximation, it follows from Corollary 3.2 that

〈P (Lq
tk

(f)) − f , P (Lq
tk

(f))〉wq
tk

= 〈Sq
k − f , Sq

k〉wq
tk

= 0,

which implies

‖ f − P (Lq
tk

(f))‖2
wq

tk

= ‖ f ‖2
wq

tk

− ‖P (Lq
tk

(f))‖2
wq

tk

≤ ‖ f ‖wq
tk

≤ 1.

Note that Lq
tk

(f) = Lq
tk

(P (Lq
tk

(f))). It follows from the definition of ρq,k in (3.5) that

ρq,k ≥ ‖(f − P (Lq
tk

(f)))χ�k ‖2
G .

Since it holds for arbitrary f satisfying ‖ f χ�k ‖wq
tk

≤ 1, we have ρq,k ≥ Eq,k(P), which finishes the proof. �
4. Numerical experiments

We will test the proposed PMLS method with some numerical experiments in this section. In particularly, we will test
it in two kinds of problems: scattered data approximation of seven benchmark test functions and numerical solutions of
time-dependent PDEs and system of PDEs.

4.1. Scattered data approximation

We shall present numerical experiments for some scattered data approximation problems in this subsection. In particular,
we shall compare the proposed PMLS method with the standard MLS method in terms of accuracy and efficiency.

Example 1. We will consider the following Franke’s six benchmark test functions [15] on the unit square [0, 1] × [0, 1]:

(1) F1(x, y) = 3
4 exp

(
− 1

4

(
(9x − 2)2 + (9y − 2)2

)) + 3
4 exp

(
− 1

49 (9x + 1)2 − 1
10 (9y + 1)2

)
+ 1

2 exp
(
− 1

4 (9x − 7)2 − 1
4 (9y − 3)2

)
− 1

5 exp
(−(9x − 4)2 − (9y − 7)2

)
.

(2) F2(x, y) = 1 (tanh(9y − 9x) + 1).
9

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 73
Fig. 1. Franke’s six benchmark test functions [15].

(3) F3(x, y) = 1.25+cos(5.4y)

6[1+(3x−1)2] .

(4) F4(x, y) = 1
3 exp

[
− 81

16

((
x − 1

2

)2 +
(

y − 1
2

)2
)]

.

(5) F5(x, y) = 1
3 exp

[
− 81

4

((
x − 1

2

)2 +
(

y − 1
2

)2
)]

.

(6) F6(x, y) = 1
9

[
64 − 81

((
x − 1

2

)2 +
(

y − 1
2

)2
)]

− 1
2 .

We also display these functions in Fig. 1.

We will decompose the domain � = [0, 1]2 into n2
s squares {�k : 1 ≤ k ≤ n = n2

s } of the same size with ns ranging from
11, 21, . . . , 101. The anchor points {tk} are chosen to be the centers of �k correspondingly. Fig. 2 shows an example of the
evenly distributed sampling points and the anchor points in the square domain.

For both the MLS and PMLS methods, we aim to approximate the function values of the test function f (x) at test points
xe

j , j = 1, 2, · · · , 1012 that are evenly distributed in the unit square. We will compare both methods in terms of the following
three measures of accuracy:

εrms = 1√
nt

‖ f (xe) − f̂ (xe)‖2, εr = ‖ f (xe) − f̂ (xe)‖2

‖ f (xe)‖2
, ε∞ = ‖ f (xe) − f̂ (xe)‖∞, (4.1)

where f̂ (xe) are the approximated values at xe , nt is the number of test points need to be evaluated by MLS method and
PMLS method.

We will use the same RBF weight function w(x) = (1 − x
rw

)2+ for both the MLS and the PMLS, where rw is a constant to
be specified later.

The efficiency of PMLS method can be illustrated by comparing its asymptotic computational complexity with MLS
method. We need to calculate c in Eq. (2.4) for nt times using MLS method. For each time, we use k–d tree technique to

74 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
Fig. 2. Nodes distribution, where blue dots represent the boundary points, red stars represent sampling points, and black circles represent the anchor points.

Table 1
Comparison of MLS and PMLS with polynomials basis, ns = 11, rw = 0.1.

Function εrms εr ε∞ CPU(s)

PMLS MLS PMLS MLS PMLS MLS PMLS MLS

F1 6.61E−5 1.46E−5 1.62E−4 3.59E−5 6.62E−4 1.79E−4 0.17 3.30
F2 9.59E−5 2.34E−5 6.44E−4 1.57E−4 5.77E−4 9.42E−5 0.19 3.24
F3 1.73E−6 2.54E−7 1.18E−5 1.73E−6 1.18E−5 2.67E−6 0.16 3.23
F4 3.95E−7 4.30E−8 2.20E−6 2.39E−7 1.29E−6 5.55E−7 0.15 3.26
F5 7.18E−6 8.74E−7 7.81E−5 9.50E−6 3.74E−5 5.75E−6 0.17 3.25
F6 4.24E−8 1.31E−8 8.20E−9 2.54E−9 4.65E−7 2.60E−7 0.14 3.24

Fig. 3. Errors of the PMLS method for F1 using polynomial basis function with ns ranging from 11,21, . . . ,101.

search the support nodes in the support domain with radius of rw . Suppose the number of support nodes in a support do-
main is nw , the asymptotic computational complexity for calculating coefficient c in (2.4) is O(log N + nwm2) [33,34]. Then
the computational complexity for all coefficients is O(nt(log N + nwm2)) using MLS method. Whereas, the computational
complexity for computing all the coefficients λk in (2.7) using PMLS is O(n2

s (log N + nwm2)). Since the other operations
are almost the same for both methods except decomposing subdomain needed by PMLS, the difference of the running time
between two methods are mainly due to the computational complexity of the coefficients calculation. Note that n2

s
 nt .
Thus, the PMLS method is more efficient than the MLS method.

We first consider the space U to be the polynomials of degree no more than 4. For ns = 11, rw = 0.1 and N = 512

evenly distributed sampling points, we present the comparison of the MLS and the PMLS in terms of the three measures of
accuracy defined above and the running time in Table 1. Furthermore, for the test function F1, we increase the number of
anchor points (subdomains) ns from 11 to 21, 31, . . . 101 using the same polynomial basis and display the convergence of
the approximation errors of the PMLS method in Fig. 3.

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 75
Table 2
Comparison of MLS and PMLS with polyharmonic splines basis, ns = 11, rw = 0.15, and δ = 0.2.

Function εrms εr ε∞ CPU(s)

PMLS MLS PMLS MLS PMLS MLS PMLS MLS

F1 7.44E−5 4.03E−5 1.83E−4 9.92E−5 8.55E−4 4.54E−4 0.67 13.95
F2 4.96E−5 2.41E−5 3.33E−4 1.62E−4 6.23E−4 9.30E−4 0.74 14.20
F3 2.25E−6 1.36E−6 1.53E−5 9.21E−6 1.98E−6 5.77E−5 0.70 13.54
F4 4.46E−7 4.69E−7 2.48E−6 2.61E−6 3.32E−6 3.18E−5 0.76 13.57
F5 8.05E−6 4.71E−6 8.75E−5 5.12E−5 4.84E−5 1.09E−4 0.76 14.37
F6 5.29E−8 5.72E−7 1.02E−8 1.11E−7 6.08E−7 4.32E−5 0.70 13.59

Table 3
Comparison of MLS and PMLS with polyharmonic splines basis, ns = 11, rw = 0.15, and δ = 0.8.

Function εrms εr ε∞ CPU(s)

PMLS MLS PMLS MLS PMLS MLS PMLS MLS

F1 8.11E−5 5.97E−5 2.00E−4 1.47E−4 8.45E−4 8.07E−4 0.72 14.34
F2 9.45E−5 4.75E−5 6.34E−4 3.19E−4 8.99E−4 5.93E−4 0.75 13.71
F3 2.34E−6 1.73E−6 1.59E−5 1.18E−5 1.58E−5 3.29E−5 0.73 13.68
F4 5.49E−7 4.80E−7 3.06E−6 2.67E−6 7.01E−6 1.85E−5 0.73 13.71
F5 9.50E−6 7.74E−6 1.03E−4 8.42E−5 9.98E−5 6.70E−5 0.73 13.94
F6 4.40E−8 2.02E−7 8.51E−9 3.91E−8 7.07E−7 1.90E−5 0.67 13.95

We next consider the polyharmonic splines [10,26,36] of degree no more than 4. That is, U is spanned by the following
basis with nr = 9 and α = 4:

r2α
1 ln(r1), r2α

2 ln(r2), · · · , r2α
nr

ln(rnr),1, x, y, x2, xy, y2, · · · , xα, xα−1 y, · · · , yα,

where ri = ‖x − xtk
i ‖, and xtk

i , i = 1, 2, · · · , nr are the nearest nr sampling points of the anchor point tk in the subset �k
that the point x belongs to.

To verify the stability of PMLS, the sampling data points {x j = (x̃ j, ỹ j) : 1 ≤ j ≤ N} are chosen to be N = 512 randomly
distributed points in the following way:

x̃ j = x j + xrand
j Dxδ, ỹ j = y j + yrand

j D yδ, (4.2)

where (x j, y j), i = 1, 2, · · · , 512 are the evenly distributed points in the unit square [0, 1]2, Dx = D y = 1/50 are the distance
between two adjacent points in x and y directions, xrand

i and yrand
i are random numbers in [0, 1], and δ is a constant that

represents the degree of randomness. We will present the numerical experiments for a few different δ’s later.
We set ns = 11, rw = 0.15, and δ = 0.2. The numerical comparison of the MLS and the PMLS method is presented in

Table 2. For the same polyharmonic splines basis, we next increase the degree of randomness δ = 0.8 and show the numeric
results in Table 3.

From Tables 1, 2 and 3, we observe that the PMLS method has a much less computational time while maintaining a
similar level of accuracy in all of such cases. To illustrate, we compare the CPU times of MLS and PMLS with polyharmonic
splines basis in Tables 2 and 3. The CPU time for calculating coefficients c in (2.4) is around 13.30 seconds which accounts
for most of the running time listed in the Tables 2 and 3, and for λk in (2.7) is about 0.16 seconds. The ratio of CUP time
of MLS and PMLS for calculating the coefficients, which is 83, is nearly equal to the ratio of their asymptotic computational
complexity, which is nt/n2

s ≈ 84.
We also observe from Fig. 3 that the approximation error of the PMLS method will converge as the number of anchor

points increases. Fig. 4 shows the εrms ratio of PMLS method and MLS method related to the ratio of the number of anchor
points and test points. We can clearly see from this figure that the error of PMLS method converges to that of the MLS
method as the number of anchor points approaches to the number of test points.

In many practical applications, the mesh plays a important role in determining the solution and many solvers loose
their accuracy if the mesh is poorly constructed. An advantage of the least squares method is that it does not require grids
to approximate the function. There are a number of important factors that effect the performance of PMLS, including the
number of the scattered data, size of the support domain, the degree of the polynomial basis, choice of replacing polynomial
basis by radial basis functions (RBFs) and such [14,19,22]. In this section, we introduced PMLS for solving fitting problems
in terms of accuracy and efficiency.

4.2. Solving time-dependent PDEs using piecewise MLS

In this section, we will further validate the proposed PMLS method on parabolic PDEs or system of parabolic PDEs. To
solve the heat conduction problem

76 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
Fig. 4. The error ratio of PMLS method and MLS method for F1 versus the ratio of the number of anchor points and test points using polynomial basis
function with ns ranging from 11, 21, . . . , 101.

∂ f

∂t
(x, t) = ∇2 f (x, t), x ∈ �, t > 0, (4.3)

with initial condition

f (x,0) = f 0(x), x ∈ � ∪ ∂� (4.4)

and boundary condition

B f (x, t) = g(x, t), x ∈ ∂�, t > 0,

where B is a boundary operator.
MLS and PMLS are essentially methods for data fitting. In meshless methods based on MLS approximation for solving

PDEs [3,5], MLS method is used to construct shape functions. For the meshless weak-form methods for solving PDEs, im-
posing the essential boundary conditions is a kind of tough problem. Some techniques are proposed for imposition of the
essential boundary conditions [5,17,18,25,39]. For some strong-form meshless methods based on radial basis functions [9,
38], the essential boundary conditions are easy to be enforced. If the shape functions are constructed by MLS method, which
do not have the Kronecker delta function property, we can use discretization method to enforce the essential boundary con-
ditions while assembling global matrices [24]. In this paper, we use strong-form method combined with forward difference
scheme for approximating ∂ f /∂t , which is more straightforward, so that we can evaluate and compare the PMLS and the
MLS methods for solving time-dependent PDEs more directly. Using forward difference to approximate ∂ f /∂t at every time
step th , h = 1, 2, · · · , we have:

f h − f h−1

t
= ∇2 f h−1, h = 1,2, · · ·

where
t is the size of the time step and f h = f (x, th). Thus,

f h = f h−1 +
t∇2 f h−1, h = 1,2, · · · (4.5)

The idea of solving this heat conduction problem using PMLS is to approximate ∇2 f h−1 by

∇2 f h−1 = ∇2uT (x − tk)λ
q,h−1
k , x ∈ �k,k = 1,2, · · · ,n2

s , (4.6)

where u = (u j : 1 ≤ j ≤ m) and

λ
q,h−1
k := argmina∈Rm

∑
‖xi−tk‖≤q

⎡
⎣ f h−1(xi) −

m∑
j=1

a ju j(xi − tk)

⎤
⎦

2

w(‖xi − tk‖). (4.7)

Since it follows from a direct computation that

λ
q,h−1 = [G(tk)]−1 Lq

(f h−1),
k tk

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 77
Table 4
Errors of numerical methods at different time in Example 2 using polynomial basis function, where
t = 0.0001, N = 1681, ni = 1521, ns = 20, α = 5,
rw = 0.15.

t εrms εr ε∞ CPU(s)

PMLS MLS PMLS MLS PMLS MLS PMLS MLS

10−3 5.54E−3 5.52E−3 6.01E−3 5.99E−3 3.33E−2 2.26E−2 163.70 603.81
10−2 1.52E−3 1.29E−3 2.18E−3 1.85E−3 1.34E−2 2.65E−3 166.43 606.47
10−1 9.21E−4 2.30E−4 7.97E−3 2.00E−3 4.59E−3 4.47E−4 170.11 635.97

Table 5
Errors of numerical methods at different time in Example 2 using polyharmonic splines basis function, where
t = 0.0001, N = 2601, ni = 2401, ns = 10,
nr = 9, α = 4, rw = 0.1.

t εrms εr ε∞ CPU(s)

PMLS MLS PMLS MLS PMLS MLS PMLS MLS

10−3 6.50E−3 4.84E−3 7.09E−3 5.27E−3 5.38E−2 2.41E−2 36.04 628.10
10−2 1.38E−3 9.74E−4 1.99E−3 1.40E−3 8.45E−3 2.26E−3 40.89 635.65
10−1 1.97E−4 2.23E−4 1.71E−3 1.94E−3 5.03E−4 4.78E−4 48.31 640.21

where

Lq
tk

(f h−1) =
[
〈 f h−1(xi), u j(· − tk)〉wq

tk

]m

j=1
, ‖xi − tk‖ ≤ q, (4.8)

equation (4.6) can be written as

∇2 f h−1 = ∇2�T (x − tk) f h−1(xi), x ∈ �k,k = 1,2, · · · ,n2
s , ‖xi − tk‖ ≤ q,

where ∇2�T (x − tk) are the Laplace shape functions. Since f 0(xi), i = 1, 2, · · · , N are known, we can solve the problem
iteratively. Here, we just need to compute the Laplace shape functions ∇2�T (x − tk) once, and store them for being used in
each time step for calculating f h in Eq. (4.5), which is efficient [20]. If we use backward difference scheme to approximate
∂ f /∂t , the Eq. (4.5) will become a modified Helmholtz equation. We need to assemble and solve the global matrix to get
the f h . By using above methods, even though smaller time interval is requested, we do not need to assemble and solve the
global system. Furthermore, the Dirichlet boundary conditions can be naturally used in the iterations for solving the values
at interior points.

Example 2. In this example, we consider the following heat conduction problem in the bounded domain � ∪ ∂� =
[−0.5, 0.5]2.

∂ f

∂t
(x, y, t) = ∇2 f (x, y, t), (x, y) ∈ �, t > 0, (4.9)

with initial condition f (x, y, 0) = 1, for (x, y) ∈ � ∪ ∂� and Dirichlet boundary condition f (x, y, t) = 0, for (x, y) ∈ ∂�,
t > 0. The analytical solution is given by

f (x, y, t) = 16

π2
f s(x, t) f s(y, t)

where

f s(η, t) =
∞∑

i=0

(−1)i exp[−(2i + 1)2π2t] cos[(2i + 1)πη]
(2i + 1)

,

with η = x or y.

The process for solving this kind of heat conduction equations using PMLS has been given in Eq. (4.3)–(4.7). Table 4
shows the errors of numerical results when t = 10−3, 10−2 and 10−1 by using PMLS and MLS. Polynomial of degree α = 5
is the basis function. ni is the number of interior points. The computational complexity of MLS method and PMLS method
for calculating Laplace shape functions are O(ni(log N + nwm2)) and O(n2

s (log N + nwm2)). Their CUP time are 602 seconds
and 106 seconds respectively, which account for majority of the total running time in Table 4. We can see the ratio of
CUP time 602/106 ≈ 3.7 for Laplace shape functions computation is consistent with the ratio of asymptotic computational
complexity, which is ni/n2

s ≈ 3.8. The accuracy of the two methods are in the same order of magnitudes.

78 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
Fig. 5. The numerical solutions of heat conduction problem in Example 2 using PMLS with polyharmonic splines basis function.

Fig. 6. The error ratio of PMLS method and MLS method versus the ratio of the number of anchor points and interior points based on polynomial basis
with ns = 10, 20, 30, 39 (left) and polyharmonic splines basis with ns = 10, 20, 30, 40, 49 (right).

Next, we replace the polynomial basis function by polyharmonic splines. We increase the number of sampling points
from 1681 to 2601, decrease ns from 20 to 10 and rw from 0.15 to 0.1. As shown in Table 5, although the CPU time of PMLS
is much less than MLS, former method is almost as accuracy as the latter one. Fig. 5 shows the profile of the numerical
solutions. Therefore, for solving this kind of time-dependent PDEs iteratively, which is time consuming, the efficient and
effective PMLS is a better choice than traditional MLS. The convergence of the PMLS method based on polynomial and
polyharmonic splines basis functions for solving this heat conduction problem is show in Fig. 6.

The accuracy from PMLS is even better than the results with smaller time interval reported in [37]. The computational
costs of PMLS for Laplace shape functions is usually more expensive compared to that of the explicit method in [37], which
is O(ni(logN + m3)), due to the number of basis m we chose in PMLS is usually higher than m = 5 basis in [37] and
nw >> 5.

Example 3. We next consider a nonlinear system of reaction-diffusion equations: the Brusselator system in two dimensional
space � = [0, 1]2:

νt = β(νxx + νyy) + b2 − (b1 + 1)ν + ν2ω (4.10)

ωt = β(ωxx + ωyy) + b1ν − ν2ω (4.11)

where ν(x, y, t) and w(x, y, t) represent concentrations of two chemicals at time t and position (x, y). The diffusion coeffi-
cient is β = 0.002. b1 = 0.5, b2 = 1. The initial conditions are given by

ν(x, y,0) = 1

2
x2 − 1

3
x3, (4.12)

ω(x, y,0) = 1
y2 − 1

y3, (4.13)

2 3

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 79
Fig. 7. The initial concentration of ν and ω.

Fig. 8. The solutions of ν and ω using MLS (on the top) and PMLS (on the bottom) respectively at t = 10.

and the boundary conditions are zero flux Neumann’s boundary conditions shown below

∂ν

∂n
(x, y, t) = 0, (4.14)

∂ω

∂n
(x, y, t) = 0, (4.15)

where (x, y) ∈ ∂�, t > 0. As we know, for small β , if 1 − b1 + b2
2 > 0, the solution of Brusselator system converges to the

equilibrium point (b2, b1/b2) [31,35].

The initial conditions are shown in Fig. 7. The approximation of the ν and ω at t = 10 using MLS and PMLS with
polynomial basis of order 4 are shown in Fig. 8. 1681 randomly distributed nodes are used with δ = 0.8, rw = 0.15. ns = 10
anchor points are arranged in each axis direction. From Fig. 8, we can see that no matter which method we use, the solution
at t = 10 at every node is very close to the equilibrium solution. The solutions at (0.5, 0.5) as a function of time are shown
in Fig. 9. From Fig. 10, we can see the results ν and ω of PMLS method converge to those of MLS method as n2

s approaches
to N , and PMLS method has very similar accuracy with MLS method regardless the number of anchor points n2

s .
Furthermore, the PMLS is more efficient than the MLS. It takes 94 seconds for a simulation to t = 10 with time step size

0.01 using PMLS. The computational time using MLS is 516 seconds.

80 W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81
Fig. 9. The solution of ν and ω at point (0.5,0.5) versus t using MLS (on the top) and PMLS (on the bottom) respectively.

Fig. 10. The error ratio of PMLS method and MLS method versus the ratio of the number of anchor points and test points with ns = 10,20,30,41.

5. Conclusion

We propose a piece-wise MLS method in this paper to reduce the computational cost of the standard MLS method.
We prove the proposed PMLS method is an optimal design with certain localized information. We further implement it in
some scattered data approximation problems and some time-dependent PDEs. Numerical comparisons with the standard
MLS method show that the proposed PMLS method is more efficient while maintaining a similar level of accuracy.

Acknowledgement

The authors wish to thank Dr. Gregor Kosec for useful discussions and suggestions which results in an improved
manuscript.

References

[1] William F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, 2014.
[2] Uri M. Ascher, Steven J. Ruuth, Raymond J. Spiteri, Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations, Appl.

Numer. Math. 25 (2) (1997) 151–167.

http://refhub.elsevier.com/S0168-9274(17)30001-6/bib616D6573323031346E756D65726963616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib61736368657231393937696D706C69636974s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib61736368657231393937696D706C69636974s1

W. Li et al. / Applied Numerical Mathematics 115 (2017) 68–81 81
[3] Satya N. Atluri, Tulong Zhu, A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech. 22 (2) (1998)
117–127.

[4] R.K. Beatson, W.A. Light, S. Billings, Fast solution of the radial basis function interpolation equations: domain decomposition methods, SIAM J. Sci.
Comput. 22 (5) (2001) 1717–1740.

[5] Ted Belytschko, Yun Yun Lu, Lei Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37 (2) (1994) 229–256.
[6] Gregory Beylkin, James M. Keiser, Lev Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (2)

(1998) 362–387.
[7] Piotr Breitkopf, Hakim Naceur, Alain Rassineux, Pierre Villon, Moving least squares response surface approximation: formulation and metal forming

applications, Comput. Struct. 83 (17) (2005) 1411–1428.
[8] Martin D. Buhmann, Radial basis functions: theory and implementations, in: Cambridge Monographs on Applied and Computational Mathematics,

vol. 12, 2003, pp. 147–165.
[9] C.S. Chen, C.M. Fan, P.H. Wen, The method of approximate particular solutions for solving certain partial differential equations, Numer. Methods Partial

Differ. Equ. 28 (2) (2012) 506–522.
[10] C.S. Chen, Y.C. Hon, R.A. Schaback, Scientific Computing with Radial Basis Functions, vol. 39406, Department of Mathematics, University of Southern

Mississippi, Hattiesburg, MS, 2005.
[11] G.E. Fasshauer, Meshfree Methods, Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, 2005.
[12] Gregory E. Fasshauer, Meshfree Approximation Methods with Matlab, vol. 6, World Scientific, 2007.
[13] Gregory E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific Publishing Co., Singapore, 2007.
[14] Gregory E. Fasshauer, Michael J. McCourt, Stable evaluation of gaussian radial basis function interpolants, SIAM J. Sci. Comput. 34 (2) (2012) A737–A762.
[15] Richard Franke, Scattered data interpolation: tests of some methods, Math. Comput. 38 (1982) 181–200.
[16] M.A. Golberg, C.S. Chen, A.S. Muleshkov, The method of fundamental solutions for time-dependent problems, WIT Trans. Model. Simul. 23 (1970).
[17] Norbert Heuer, Thanh Tran, Radial basis functions for the solution of hypersingular operators on open surfaces, Comput. Math. Appl. 63 (11) (2012)

1504–1518.
[18] Norbert Heuer, Thanh Tran, A mixed method for Dirichlet problems with radial basis functions, Comput. Math. Appl. 66 (10) (2013) 2045–2055.
[19] Arta A. Jamshidi, Michael J. Kirby, A radial basis function algorithm with automatic model order determination, SIAM J. Sci. Comput. 37 (3) (2015)

A1319–A1341.
[20] G. Kosec, A local numerical solution of a fluid-flow problem on an irregular domain, Adv. Eng. Softw. (2016), http://dx.doi.org/10.1016/j.advengsoft.

2016.05.010.
[21] Peter Lancaster, Kes Salkauskas, Surfaces generated by moving least squares methods, Math. Comput. 37 (155) (1981) 141–158.
[22] Leevan Ling, E.J. Kansa, Preconditioning for radial basis functions with domain decomposition methods, Math. Comput. Model. 40 (13) (2004)

1413–1427.
[23] Leevan Ling, Robert Schaback, An improved subspace selection algorithm for meshless collocation methods, Int. J. Numer. Methods Eng. 80 (13) (2009)

1623–1639.
[24] Gui-Rong Liu, Yuan-Tong Gu, An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, 2005.
[25] Y.Y. Lu, T. Belytschko, Lu Gu, A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng. 113 (3–4) (1994)

397–414.
[26] Wally R. Madych, S.A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory 60 (2) (1990) 141–156.
[27] Gia G. Maisuradze, Donald L. Thompson, Albert F. Wagner, Michael Minkoff, Interpolating moving least-squares methods for fitting potential energy

surfaces: detailed analysis of one-dimensional applications, J. Chem. Phys. 119 (19) (2003) 10002–10014.
[28] Joseph J. Monaghan, An introduction to SPH, Comput. Phys. Commun. 48 (1) (1988) 89–96.
[29] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10 (5) (1992)

307–318.
[30] E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann. 102 (1930) 650–670.
[31] Ahmad Shirzadi, Vladimir Sladek, Jan Sladek, A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using

moving least square approximation, Eng. Anal. Bound. Elem. 37 (1) (2013) 8–14.
[32] N. Sukumar, R.W. Wright, Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Int. J. Numer.

Methods Eng. 70 (2) (2007) 181–205.
[33] R. Trobec, G. Kosec, M. Šterk, B. Šarler, Comparison of local weak and strong form meshless methods for 2-d diffusion equation, Eng. Anal. Bound.

Elem. 36 (3) (2012) 310–321.
[34] Roman Trobec, Marjan Šterk, Borut Robič, Computational complexity and parallelization of the meshless local Petrov–Galerkin method, Comput. Struct.

87 (1) (2009) 81–90.
[35] E.H. Twizell, A.B. Gumel, Q. Cao, A second-order scheme for the “brusselator” reaction–diffusion system, J. Math. Chem. 26 (4) (1999) 297–316.
[36] G. Yao, An improved localized method of approximate particular solutions for solving elliptic PDEs, Comput. Math. Appl. 71 (1) (2016) 171–184.
[37] G. Yao, C.S. Chen, Marina Jelen, B. Sarler, Meshless solutions of temperature fields for use in dendritic growth simulations, in: International Conference

on Optimization Using Exergy-Based Methods and Computational Fluid Dynamics, 2009.
[38] Guangming Yao, Joseph Kolibal, C.S. Chen, A localized approach for the method of approximate particular solutions, Comput. Math. Appl. 61 (9) (2011)

2376–2387.
[39] T. Zhu, S.N. Atluri, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free

Galerkin method, Comput. Mech. 21 (3) (1998) 211–222.

http://refhub.elsevier.com/S0168-9274(17)30001-6/bib61746C757269313939386E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib61746C757269313939386E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib646F693A31302E313133372F5331303634383237353939333631373731s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib646F693A31302E313133372F5331303634383237353939333631373731s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib62656C79747363686B6F31393934656C656D656E74s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6265796C6B696E313939386E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6265796C6B696E313939386E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib62726569746B6F7066323030356D6F76696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib62726569746B6F7066323030356D6F76696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6275686D616E6E3230303372616469616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6275686D616E6E3230303372616469616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6368656E323031326D6574686F64s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6368656E323031326D6574686F64s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6368656E32303035736369656E7469666963s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6368656E32303035736369656E7469666963s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib46617373686175657232303035s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib666173736861756572323030376D65736866726565s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib46617373686175657232303037s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib646F693A31302E313133372F313130383234373834s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6672616E6B65s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib676F6C62657267313937306D6574686F64s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib68657565723230313272616469616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib68657565723230313272616469616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6865756572323031336D69786564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib646F693A31302E313133372F313330393438323532s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib646F693A31302E313133372F313330393438323532s1
http://dx.doi.org/10.1016/j.advengsoft.2016.05.010
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C616E636173746572313938317375726661636573s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib4C494E473230303431343133s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib4C494E473230303431343133s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C696E6732303039696D70726F766564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C696E6732303039696D70726F766564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C697532303035696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C75313939346E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6C75313939346E6577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6D616479636831393930706F6C796861726D6F6E6963s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6D616973757261647A6532303033696E746572706F6C6174696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6D616973757261647A6532303033696E746572706F6C6174696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6D6F6E616768616E31393838696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6E6179726F6C65733139393267656E6572616C697A696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib6E6179726F6C65733139393267656E6572616C697A696E67s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib526F74686531393330s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib736869727A616469323031336C6F63616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib736869727A616469323031336C6F63616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib73756B756D6172323030376F76657276696577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib73756B756D6172323030376F76657276696577s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib74726F62656332303132636F6D70617269736F6Es1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib74726F62656332303132636F6D70617269736F6Es1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib74726F62656332303039636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib74726F62656332303039636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib7477697A656C6C313939397365636F6E64s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib79616F32303136696D70726F766564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib79616F6574616C32303039s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib79616F6574616C32303039s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib79616F323031316C6F63616C697A6564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib79616F323031316C6F63616C697A6564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib7A6875313939386D6F646966696564s1
http://refhub.elsevier.com/S0168-9274(17)30001-6/bib7A6875313939386D6F646966696564s1
http://dx.doi.org/10.1016/j.advengsoft.2016.05.010

	Piece-wise moving least squares approximation
	1 Introduction
	2 Piece-wise moving least squares
	3 Optimal design
	4 Numerical experiments
	4.1 Scattered data approximation
	4.2 Solving time-dependent PDEs using piecewise MLS

	5 Conclusion
	Acknowledgement
	References

