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a b s t r a c t

An emerging strategy for remediation of contaminated groundwater is the use of
permanganate cylinders for contaminant oxidation. The cylinders, which are only a few
inches in diameter, can be placed in wells or pushed directly into the subsurface. This work
focuses on the modeling and simulation of the reactive process to better understand the
design of a group of cylinders for large scale contaminated sites. The underlying model
is a coupled system of nonlinear partial differential equations accounting for advection,
dispersion, and reactive transport for a contaminant and the permanganate in two spatial
dimensions. Radial Basis Functions collocation method is used to simulate different spatial
arrangements of the cylinders to understand the behavior of the system and gain insight
into designing a remediation strategy for a large-scale contaminated region. Since the radial
basis function collocation method is a meshless method, the locations of the cylinders
are not tied to a numerical grid, making it an attractive choice for determining optimal
placement. Our focus is to (1) identify a domain of influence measuring the effectiveness
of the injected cylinders, (2) understand the placement for multiple cylinders required to
effectively clean-up a given domain, and (3) determine a protocol for injecting multiple
cylinders over time. We provide numerical results showing that domain of influence is a
way tomeasure the effectiveness of installed cylinders. Domain of influence of one through
three sources are simulated. Placement of two cylinders for an area of 13ft by 3ft and three
sources for an area of 26ft by 6ft are sufficient to clean the contaminantwithin a reasonable
time period. The average concentrations of oxidant and contaminant are simulated for the
cases of a third cylinder is installed at different time and locations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In Situ Chemical Oxidation (ISCO) with permanganate (MnO−

4 ) is a common technology used to treat contaminated
groundwater. ISCO is the delivery of chemical oxidants, typically via injection, to groundwater to degrade contaminants.
One challenge with traditional ISCO is the rapid dissolution and reaction of the oxidant in the environment. Often, the
oxidant concentration is very high immediately after injection, but decreases rapidly over time due to reactionwith reduced
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Fig. 1. MnO−

4 cylinders and their use in the field courtesy of Carus Corporation.

subsurface constituents, which is referred to as natural oxidant demand (NOD). Many injections typically need to be used
in succession to fully treat a contaminated site, thereby driving up costs [1]. Also, there are several design challenges for
ISCO (and other technologies involving delivery of liquid amendments). The first challenge occurs when a heterogeneous
contaminated site contains finer textured soils that do not accept liquid injections. When this happens, the chemical will
flow through the more permeable layers because this path offers the least resistance.

An approach to address these challenges is through the use of a encapsulated passive, slow-release oxidant, which
is inserted and allowed to dissolve and intercept the contaminant over numerous years. Encapsulation prevents instant
dissolution of the entire oxidant mass into the environment [2–4,1,5,6]. Studies have been conducted by Kang et al. [4]
on the most effective, least reactive coating. They determined that paraffin wax polymer can best extend the oxidation
lifespan. Some benefits of paraffin wax include that it is an environmentally benign product, it is safe to work with, it is solid
at ambient temperatures, and it is insoluble in water. Its insolubility in water ensures that the oxidant contained within the
shell is shielded from nonproductive use.

The first SlowRelease Permanganate Cylinders (SRPCs)weremanufactured in 2007. Now they are commercially available
and manufactured through Carus Corporation, see Fig. 1. The cylinders can be installed in new or existing vertical and
horizontal wells or installed using direct push technology. They can be vertically stacked and installed horizontally next
to each other to cover the width and depth of a contaminant plume. Much headway has already been made towards the
modeling of oxidant release into groundwater.

Mathematical modeling and simulation can be used to gain insight into the design of remediation strategies. Reactive
transportmodels have found increased application in recent years in porousmedia [7,8]. This kind ofmodels aims to provide
reaction and transport dynamics of multicomponent system [9,8]. Early studies developed the theoretical basis of such
models and necessary numerical tools to solve them. Some applications to problems of reactive contaminant transport in
groundwater and flow through reacting hydrothermal systems are introduced in [10,11]. Work was conducted by Wolf
(2013) [12] and Slaugh (2015) [13] to develop a slow-release oxidant design tool focused on the release of oxidant from
cylinders and its reactive transport in 1-D. The tool was based on the analytical solutions to two interactive chemical
unsaturated groundwater flowmodels. Laboratory datawere used to verify the oxidant release term. The toolwas developed
in Microsoft Excel, which was used because of its universal acceptance and its ease-of-use (Wolf, 2013) [12]. A draw back
in [12] is the restriction to one spatial dimension since the lateral interaction between cylinders was not considered.

In this paper, the reaction between MnO−

4 and a single contaminant in an ISCO diffusion–transport reaction model is
simulated by a system of coupled partial differential equations in two-dimensional space. Radial basis function collocation
method (RBFCM) is used to simulate different spatial arrangements of the injection pointswhen planning the system. RBFCM
is a method that uses scattered points in domains and the function values at the points to approximate solutions to PDEs.
Mesh and numerical integration are not needed in the discretization process. The first RBFCM was introduced by Kansa in
1990 [14]. Since then, RBFCMhave beenwidely used for solving various kinds of science and engineering problems, including
heat transfer [15], porousmedia flow [16], the classical De Vahl Davis natural convection problem [17] etc. [18–20]. Themain
attraction of RBFCM is its effectiveness in dealing with high dimensional problems and complicated domains.

To the best of our knowledge, the earliest application of radial basis function (RBF) to groundwater problems is in
2002 [21]. The authors applied RBFCM to a steady state problem and a single linear transport equation in 2D and 3D. Since
then, many researchers applied meshless methods to groundwater modeling problems to overcome the difficulties from
other numerical techniques such as the finite difference methods, the finite volumemethod, the finite element method and
others [22,23]. The focus of this work is to apply RBFCM to a coupled system of transient nonlinear PDEs in groundwater
problems. An oxidant source term is included to represent the slow release of the oxidation cylinder. There aremore complex
and robust cases of applications of RBF collocation method on nonlinear system of PDEs that have been previously reported
in the literature. For example, [24] focuses on numerical performance of RBFmethod on different kinds of PDEs. [25] focuses
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on application of a local RBFmethod on a biomedical numerical simulations. This paper aims to find the domain of influence
of oxidant cylinder for groundwater remediation, which is an specific application of RBF methods on proposed model with
realistic oxidant source term.

Ultimately, the design of a chemical oxidation strategy requires determining the number and locations of cylinders in a
contaminated region as well as when to change out ineffective cylinders over time. Practitioners are furthermore interested
in the associated costs involved in cleaning up a contaminated site, which depends on the performance of the remediation
system. The purpose of this study is to develop a numerical approach to aid in the design of large-scale remediation systems.
The simulation tool aids in identifying the zone of influence of a cylinder under various physical subsurface conditions as
well as insight into the interaction of multiple cylinders within a certain region. Numerical simulation of solutions to a
system of diffusion–reaction–advection PDEs with experimental point source reported in [12] is utilized. The use of radial
basis function on such kind of equations is not new, except the point source term is from realistic data. The purpose of the
paper is not to develop a new technique for the model nor investigating numerical solution techniques of such kind PDEs.
We aim to define a domain of influence of the oxidant released from the cylinder from the experimental data, and seek
insight on scheduling replacement and new installation locations of the cylinders. We proceed by describing the physical
models for reactive transport in groundwater flow in Section 2, give an overview of RBFCM in Section 3, and then present
the test problems and numerical simulations in Section 4.We conclude and point the way towards future work in Section 5.

2. Reactive transport in groundwater model

Contaminant and oxidant interaction in saturated groundwater flow can bemodeled with coupled advection–dispersion
equations given by

R∂C1

∂t
= Dx

∂2C1

∂x2
+ Dy

∂2C1

∂y2
− ∇ · vC1

− kC1C2
+ frelease(x, y, t), (1)

R∂C2

∂t
= Dx

∂2C2

∂x2
+ Dy

∂2C2

∂y2
− ∇ · vC2

− kC1C2, (2)

where C1 is the oxidant (MnO−

4 ) and C2 is the contaminant. Furthermore, R is a retardation factor, v is the velocity, k is a
second order reaction rate for the interaction of the contaminant and oxidant, and Dx and Dy as dispersion coefficients in
the x and y directions. The source term is defined by

frelease(x, y, t) =


s(t), if (x, y) in the cylinder,
0, otherwise (3)

and s(t) which is released oxidant at the source (cylinders). Lee and Schwartz [1,26] simulate MnO−

4 release frelease that
captures the release of a solid via diffusion from a finite-height controlled release matrix of cylindrical form, described by
an analytical differential equation model by Roseman and Higuchi [27]. In this study, the release of oxidant from cylinders
is modeled in [12].

For this study, we assume the domain is the rectangle given by [0, Lx] × [0, Ly] with flow from left to right. In this case,
the velocity component in the x direction is constant and is 0 in the y component so that the advective terms in Eqs. (1) and
(2) simplify to:

R∂C1

∂t
= Dx

∂2C1

∂x2
+ Dy

∂2C1

∂y2
− vx

∂C1

∂x
− kC1C2

+ frelease, (4)

R∂C2

∂t
= Dx

∂2C2

∂x2
+ Dy

∂2C2

∂y2
− vx

∂C2

∂x
− kC1C2, (5)

with boundary conditions for C1 and C2

∂C1

∂x


x=Lx

= 0,
∂C2

∂x


x=Lx

= 0, (6)

C1(0, y, t) = 0, C2(0, y, t) = Ĉ2, (7)

vyC1
− Dy

∂C1

∂y


y=0

= 0, vyC2
− Dy

∂C2

∂y


y=0

= 0, (8)

vyC1
− Dy

∂C1

∂y


y=Ly

= 0, vyC2
− Dy

∂C2

∂y


y=Ly

= 0, (9)

where (6) allows for default outflow of the contaminant from the domain. Since we assume the cylinders are the only source
of oxidant in the region, we impose a zero boundary condition for oxidant. A constant source of contaminant at the left hand
boundary of the region is proposed since we assume contaminant continues to flow in to the region from left to right.
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3. RBFCM

In this section, we introduce the explicit time stepping method and RBFCM to numerically solve the proposed model.

3.1. Explicit time-stepping method for general diffusion equation

We will first consider the following general nonlinear reaction transport equation in 2D

∂u (x, t)
∂t

= Dx
∂2u (x, t)

∂x2
+ Dy

∂2u (x, t)
∂y2

− vx
∂u (x, t)

∂x
+ f (x, t, u (x, t)) (10)

for all x in a closed spatial domain Ω , and for time t , where u(x, t) is the concentration at the point x and time t . The source
function f (x, t, u) is known.

We denote the time step by 1t , and define the grid in the time direction by tm = m1t , where m ∈ N. Throughout this
section, we discuss current and previous time steps in relation to each other; when referring to two consecutive time steps,
tm and tm−1, tm is referred to as ‘current’, while tm−1 is referred to as ‘previous’. For tm−1 < t ≤ tm, we approximate u and
its derivatives using a one-step difference scheme, i.e., the values of u(x, t), ∂u(x, t)/∂x, ∂u(x, t)/∂y, ∂2u(x, t)/∂x2, and
∂2u(x, t)/∂y2 in the interval (tm−1, tm] are determined by the value at the previous time step, tm−1. For sufficiently small
1t ,

∂u(x, t)
∂t

=
u(x, tm) − u(x, tm−1)

1t
+ O(1t). (11)

Then (10) can be approximated by

ûm − ûm−1

1t
= Dx

∂2ûm−1

∂x2
+ Dy

∂2ûm−1

∂y2
− vx

∂ ûm−1

∂x
+ f


x, t, ûm−1


(12)

where ûm−1 = û(x, tm−1) and ûm = û(x, tm) are approximations to u(x, tm−1) and u(x, tm). The above equation can be
rewritten as

ûm = ûm−1 + 1tDx
∂2ûm−1

∂x2
+ 1tDy

∂2ûm−1

∂y2
− 1tvx

∂ ûm−1

∂x
+ 1tf


x, t, ûm−1


. (13)

This is a commonly used explicit time-stepping strategy that approximates u(x, tm) by using u(x, tm−1). The right-hand side
of (13) includes derivatives of û at t = tm−1. Thus, to evaluate u(x, tm), we need only find a suitable approximation to the
derivatives. This will be done through RBF interpolation in next section.

3.2. RBFCM for approximation of the derivative functions

We will first interpolate the given concentration of oxidant and contaminant at previous time step u(x, tm−1) by
RBFs. Then the unknown terms in (13), ∂ ûm−1/∂x, ∂2ûm−1/∂x2, and ∂2ûm−1/∂y2 can be approximated in terms of the
concentrations at the previous step tm−1. Since RBFs are used to deal the spatial variables at the ‘previous’ time step only, we
will omit the time variables tm−1 in the following derivations in this subsection. For simplicity, we use the transformation
v(x) := u(x, tm−1).

We begin by introducing some basic features of RBFs. We denote a set of scattered data in the domain by X :=

{x1, x2, . . . , xN} ∈ Ω , where N represents the number of points. The standard RBFCM uses an N-dimensional trial space
of functions spanned by a kernel φ with respect to the point set X . Let R2 be a 2-dimensional Euclidean space. Let xc ∈ R2

and φ : R2
→ R be an invariant function whose value at any point x ∈ R2 depends only on the distance from the fixed point

xc , and can be written as

φ(∥x − xc∥), (14)

where ∥ · ∥ indicates the Euclidean norm. Then the function φ is a radial basis function, where xc is the center of φ. The
variable r = ∥x − xc∥ is often used in RBFs, and so is adopted in this study. Several commonly used RBFs are multiquadrics
(MQ), inverse multiquadrics, Gaussian, thin-plate splines, polyharmonic splines, etc. MQ RBF has been proven to have a
high-order rate of convergence. Thus, in this paper we use MQ

φ(r) =


r2 + c2, (15)

where c > 0 is called a shape parameter. The RBF shape parameter in MQ plays a major role in improving the accuracy
of numerical solutions [28–32]. In general, the optimal shape parameter depends on the densities and distributions of the
scattered nodes, and the function values at the nodes.

In the collocation method, the value of derivatives of v(x) at each node xi, i = 1, 2, . . . , N , is approximated by the
values at the nodal points v(x). From the time stepping method, the concentration, v(xi), is known at every node xi. To
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approximate the derivatives of v(xi), we interpolate v(x) on Ω using RBFs φ(r) with different centers xk, k = 1, 2, . . . ,N .
Thus, we have

v(xj) =

N
k=1

φ(∥xj − xk∥)αk, j = 1, 2, . . . , N. (16)

This is an N by N system of linear equations:
v(x1)
v(x2)

...
v(xN)

 =


φ(∥x1 − x1∥) φ(∥x1 − x2∥) · · · φ(∥x1 − xN∥)
φ(∥x2 − x1∥) φ(∥x2 − x2∥) · · · φ(∥x2 − xN∥)

...
...

...
...

φ(∥xN − x1∥) φ(∥xn − x2∥) · · · φ(∥xN − xN∥)




α1
α2
...

αN

 . (17)

It can be written in matrix notation as

v = Mα, (18)

where α = [α1, α2, . . . , αN ]
T and Mjk = φ(∥xj − xk∥) is the jth row and the kth column entry of the matrixM, and

v = [v(x1), v(x2), . . . , v(xN)]T . (19)

The unknown coefficients, α, can be obtained by inverting the matrix in Eq. (18), i.e.,

αk =

N
j=1

M−1
kj v(xj), k = 1, 2, . . . , N. (20)

Note thatM−1
kj is the kth row and jth column element of inverse matrix,M−1. Thus,

v̂(x) =

N
k=1

φ(∥x − xk∥)
N
j=1

M−1
kj v(xj). (21)

It is clear that theN-dimensional trial space of functions spanned by a kernelφ with respect to a point setX is reparametrized
in terms of nodal values via the inverse of the kernel matrixM with entries φ(xj, xk), 1 ≤ j, k ≤ N .

From Eqs. (15) and (16), we have

Dv(xi) =

N
k=1

Dφ(∥xi − xk∥)αk, (22)

where D is a differential operator. By direct differentiation,

∂φ(r)
∂x

=
x

√
r2 + c2

,
∂φ(r)

∂y
=

y
√
r2 + c2

, (23)

∂2φ(r)
∂x2

=
y2 + c2

(r2 + c2)3/2
,

∂2φ(r)
∂y2

=
x2 + c2

(r2 + c2)3/2
. (24)

As a result,

∂v(x)
∂x

=

N
k=1

∂φ(∥xi − xk∥)
∂x


N
j=1

M−1
jk v(xj)


,

∂v(x)
∂y

=

N
k=1

∂φ(∥xi − xk∥)
∂y


N
j=1

M−1
jk v(xj)


, (25)

∂2v(x)
∂x2

=

N
k=1

∂2φ(∥xi − xk∥)
∂x2


N
j=1

M−1
jk v(xj)


,

∂2v(x)
∂y2

=

N
k=1

∂2φ(∥xi − xk∥)
∂y2


N
j=1

M−1
jk v(xj)


. (26)

Then the unknown terms in (13), ∂ ûm−1/∂x, ∂2ûm−1/∂x2, and ∂2ûm−1/∂y2 are approximated in terms of the concentrations
at the previous step tm−1, u(xj, tm−1), j = 1, 2, . . . ,N . Then Eq. (13) gives an approximation of u(xi, tm) using Eq. (27):

ûm(xi) = ûm−1(xi) + 1tDx

N
k=1

∂2φ(∥xi − xk∥)
∂x2


N
j=1

M−1
jk ûm−1(xj)



+ 1tDy

N
k=1

∂2φ(∥xi − xk∥)
∂y2


N
j=1

M−1
jk ûm−1(xj)



− 1tvx

N
k=1

∂φ(∥xi − xk∥)
∂x


N
j=1

M−1
jk ûm−1(xj)


+ 1tf


xi, tm−1, ûm−1


. (27)
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3.3. Solution procedure for the proposed model

In this section, the solution procedure to approximate spatial–temporal concentrations is presented. The coupled system
of PDEs is solved by the following steps:
1. Set the initial conditions and boundary conditions at the domain nodes;
2. Solve the diffusion–reaction equations for each time-step (e.g., from tm−1 to tm):

2.1 Calculate the weights, α1
=
N

j=1 M
−1
jk C1

m−1(xj) and α2
=
N

j=1 M
−1
jk C2

m−1(xj);
2.2 Calculate the reaction term;
2.3 Approximate the derivatives of C1, C2 at tm−1;
2.4 Use the initial conditions to approximate C1 and C2 at tm using Eq. (27);
2.5 Update C1 and C2 with the concentrations at tm;

3. Repeat Step 2.

Since we used a global RBFCM, there is a full matrix M of dimension N × N that needs to be inverted. The positive
definiteness of MQ RBF guarantees the existence of the inverse matrix. Since the weights depend only on the locations of
the scattered data and are time-independent, the inverse matrixM−1 can be pre-computed and stored before the iteration.
Then we will need to find the weights in every time step α1 for C1 and α2 for C2.

The most time-consuming parts of the procedure are Steps 2 and 3 because the solutions of the diffusion–reaction
equations have to be iteratively updated. To find the steady-state solution to the system of PDEs, the following convergence
criterionmay be used:max |u(x, tm)−u(x, tm−1)| ≤ ϵ, where ϵ is chosen as the steady-state convergencemargin. However,
all the simulations in this paper were conducted for a fixed time period t ∈ [0, 100] days if it is not less. Thus, the
computational cost will depend on the time-step size. In explicit time stepping methods, a small sampling distance in space
generally implies the need for a small time-step, which apparently results in slow convergence. However, large time-steps
often lead to diverging or oscillating numerical results. A good choice of time-step size can improve the rate of convergence
and the stability as well. On the other hand, an explicit time discretization form is only conditionally stable and the stability
analysis for diffusion equations yields the following Courant–Friedrichs–Lewy condition [33]: µ1t/h2

≤ 1/2, where µ is
the diffusion coefficients of oxidant and contaminant in the present work,1t is the time-step size, and h is the grid distance.
The above requirement is equivalent to: 1t ≤ h2/2µ. In our explicit time-stepping strategy, the minimum grid distance
h = 0.3 ft has been used. Due to the slow release rate Dx = 0.01 and Dy = 0.001, the time-step size restriction is very
flexible. All numerical results are performed using FORTRAN90 on virtual machine running with a single CPU and 2 GB of
ram. The host is an IBM HS20 blade server with Intel Xeon E5-2640 CPU‘s running at 2.5 GHz.

4. Numerical results

Thepurpose of the numerical study is to understand the impact of the slow-release cylinders on the contaminateddomain
and provide guidance to practitioners in the development of remediation strategies. To this end,we pose a suite of numerical
experiments using the simulation tool to determine a zone of influence around a single cylinder and then consider the
interaction of multiple cylinders. A domain of β% influence of the oxidant is defined by

Ωβ% = {(x, y) ∈ Ω : C2(x, y) < β%C2
0 (x, y)}.

We use Ω70% to measure the level of the effectiveness of the cylinders. To distinguish the effectiveness of different
experiments, we look at the average contaminant concentration over time:

C
1

=
1
N

N
i=1

C1
i , C

2
=

1
N

N
i=1

C2
i ,

where N is the total number of points in the domain.

4.1. Physical setting

Our hydrological settings are homogeneous rectangles of 13 ft by 3 ft, 13 ft by 6 ft or 26 ft by 6 ft. The physical
constants and parameters are summarized in Table 1. The source term in Eq. (1) is the oxidant release from the cylinder. The
concentration of the oxidant at the source is described in [12]. Fig. 3 shows the oxidant release from the cylinders generated
by Carus Corporation fromday 0 to day 100.Weuse cubic splines to evaluate the source at the intermediate times. To observe
the effect of oxidant at different times and locations, we use six observation points downstream of the installed cylinders at
(2.6, 1.5), (2.925, 1.5), (3.9, 1.5), (4.875, 1.5), (7.15, 1.5), and (12.025, 1.5) ft, see Fig. 2.

4.2. Results

We perform a suite of numerical experiments to understand the placement and interactions of cylinders over time.
Specifically, we determine the domain of influence for up to three cylinders;we numerically estimate the optimal placement
of a total of two cylinders in the domain; and we examine performance of a total of three cylinders with various installation
locations and times of the third cylinder.
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Fig. 2. Physical setting of the model.

Fig. 3. Oxidant level C1 at the source point.

Table 1
Physical parameters used in this paper.

Value Unit Symbol/name

119 mg/mmol Molecular weight of oxidant
6 mg/L Initial concentration of contaminant
1 Unitless Retardation factor for contaminant
1 Unitless Retardation factor for oxidant
0.01 ft2/day Dx

0.001 ft2/day Dy
0.340157491 ft/day vx
88.11 mg/mmol Molecular weight of contaminant
0.00435456 L/mmol-day Reaction constant
13 ft Lx
3 or 6 ft Ly
0.104166667 ft Cylinder radius
6 Unitless Number of observation points
1,4-dioxane Unitless Contaminant type

4.2.1. Number and placement of the cylinders
Case 1. Single cylinder
Consider a single cylinder fixed at (1.95, 1.5) ft. A total of 447 points are uniformly distributed in the domain and used in
the RBFmethod. Time step size is chosen as1t = 0.002 days. It takes about 102 s for a simulation time of 100 days. Figs. 4
and 5 show the oxidant and the contaminant concentration at six different observation points downside of the stream.
Notice that the oxidant concentration at observation points close to the cylinder behaves as expected (similar to the
source model). Further away from the cylinder, there is less oxidant present when it reaches the observation points, so it
has less impact on the contaminant (see the lower-right figures). During the simulation, we keep track of the percentage
of the domain that is lower than 70% of the original contaminant concentration to determine when the maximum area
of the domain of influence is met. At t = 30 days, the oxidant reaches the maximum domain of 70% influence. The
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Fig. 4. Oxidant concentration with one source located at (1.95, 1.5) ft at six different observation points over time.

Fig. 5. Contaminant concentration with one source located at (1.95, 1.5) ft at six different observation points over time.

contaminant concentration on 31.32% of the domain, 12.2148 ft2, decreases to 70% of the initial contaminant.
Figs. 6 and 7 show the oxidant and contaminant concentration profile at different times. These profiles are consistent
with the work fromWolf (2013) [12] and Slaugh (2015) [13]. It illustrates the effect of lateral diffusion on the amount of
the oxidant present, which warrants further investigation in the presence of two cylinders.
Case 2. Two cylinders
For this study, we consider two cylinders and the impact of the distance between them on the domain of influence. For
this reason, we consider a larger domain 13 ft by 6 ft. A total of 857 points are uniformly distributed in the domain
and used in the RBF method. We increase the time step size for efficiency, so it took only 41 s for a simulation time of
100 days. We increase the vertical distance between two cylinders and determine the time and maximum area of the
domain of 70% influence. Table 2 shows these values. From Case 1 we saw the impact of the diffusion was within a 3 ft
distance for one cylinder. Table 2 shows that as the distance between them increases to 2.4 ft, the maximum area also
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Fig. 6. Oxidant concentration profile with one source located at (1.95, 1.5) ft at four different observation times.

Fig. 7. Contaminant concentration profile with one source located at (1.95, 1.5) ft at four different observation times.

Table 2
Impact of the placement of two cylinders in the vertical direction.

Cyl 1 (ft) Cyl 2 (ft) Distance (ft) Time (days) Area (ft2) Percent of domain

(1.95, 2.4) (1.95, 3.6) 1.2 30 26.8494 34.42%
(1.95, 2.1) (1.95, 3.9) 1.8 32 29.3936 37.69%
(1.95, 1.8) (1.95, 4.2) 2.4 31 30.6721 39.32%

increases, implying the optimal distance is between 2.4 and 3 ft. Note that our conclusion only holds for this test case.
The domain of interests is chosen so it is large enough to find out the domain of influence of the placed cylinders. The
source term in Fig. 14 is from our experimental data, while the oxidant releases from the cylinders that are produced by
Carus Corporation. Currently, we are tasked to give a general guidance on how to place these cylinders so we can reach
maximum oxidant effect from the cylinders. In fact, validation the model with experimental data is part of our future
work plan.
We repeat this experiment by changing the horizontal distance between the two cylinders. For this reason, we consider
an even larger domain 26 ft by 6 ft. We fixed cylinder one at (1.93, 3) ft and consider seven locations for the second
cylinder downstream of the first one. Those locations, the time taken to reach the maximum domain of 70% influence,
the corresponding area, and the percentage of the domain are shown in Table 3.
Note that having the second cylinder closer to the first cylinder appears the best results in terms of the largest domain
of influence, although it takes longer to reach that. However, the design objective is to have the largest area of oxidant
coverage over a long time horizon.
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Table 3
Impact of the placement of two cylinders in the horizontal direction.

Cyl 1 (ft) Cyl 2 (ft) Distance (ft) Time (days) Area (ft2) Percent of domain

(1.95, 3) (3.25, 3) 1.30 63 97.9323 62.78%
(1.95, 3) (5.85, 3) 3.90 57 93.5636 59.98%
(1.95, 3) (7.80, 3) 5.85 51 93.1995 59.74%
(1.95, 3) (10.40, 3) 8.45 67 86.4644 55.43%
(1.95, 3) (11.05, 3) 9.10 62 86.4644 55.43%
(1.95, 3) (13.00, 3) 11.05 62 84.6441 54.26%
(1.95, 3) (17.55, 3) 15.60 63 83.1879 53.33%

Fig. 8. Oxidant concentrations when one cylinder is located at (1.95, 3) ft and the other is located at y = 3 ft with various x locations over time.

Fig. 9. Contaminant concentrations when one cylinder is located at (1.95, 3) ft and the other is located at y = 3 ft with various x locations over time.

We also show the average oxidant and contaminant concentrations over time for these experiments, see Figs. 8 and 9.
As the second cylinder is placed further away, more oxidant is leaving the right side boundary, so less is present. For the
initial times, the cylinders spaced further away, give an overall better results before a certain time (roughly around 57
days), but as time progresses past this point, it appears having the second cylinder closer is more beneficial.
To gain insight, consider the percentage of the domain of 70% influence over time for the four best cases, see Fig. 10.
Here we can see having the cylinder at x = 10.40 ft, y = 3 ft yields a much cleaner region up until roughly 41 days,
and does not change more than approximately 10% for the next 60 days. These experiments imply placing the second
cylinder further down stream achieves peak percentage of domain in Ω70% sooner and plateaus losing only about 10% of
the domain over the remaining time in the simulation.
Case 3. Three source points
To understand the impact of the third cylinder, we fix two cylinders at (1.95, 1.8) and (1.95, 4.2) in a domain of 26 ft
by 6 ft, and consider an additional cylinder with three possible locations and four possible installation times for total of
twelve experiments. It takes about 58 s to simulate one experiment. Table 4 shows all of the experiments. Exp.6 indicates
that the third cylinder is installed at location (10, 3) at day 27, see Fig. 11.
We tabulated the percent of the domain with contaminant less than 70% of the initial contaminant concentration. Lines
of the same color represents that the third cylinder is installed at the same location but at different times. From Fig. 12,
we see that the third cylinder installed at location (10.4, 30) at day 0 is the most efficient in terms of the domain of 70%
influence. All of the experiments on installing the third cylinder at days other than day 0 generate a very similar domain
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Table 4
Different simulation cases for the third cylinder.

Time (days)/location (ft) (8.45, 3) (10.4, 3) (11.5, 3)

0 Exp.1 Exp.5 Exp.9
27 Exp.2 Exp.6 Exp.10
31 Exp.3 Exp.7 Exp.11
35 Exp.4 Exp.8 Exp.12

Fig. 10. Percentage of domain in Ω70% influence over time.

Fig. 11. Physical setting of the three cylinder model.

of influence. From Figs. 12–14, we see that a slightly better result appears when we place the third cylinder at location
(8.45, 3) in terms of the average concentrations. These experiments suggest the optimal location for the third cylinder
is between 8 and 10 ft.

5. Conclusion

We have used radial basis functions to simulate coupled reactive transport in the context of remediation. The underlying
model is a system of nonlinear partial differential equations that describes the interaction of a MnO−

4 cylinder with a
contaminant in the saturated subsurface. The velocityweused in this systemof PDEs is being calculated using hydraulic head
gradients and conductivities. So it is a general PDEwithmany applications but porousmedia transport is one in this context.
In addition, the coupled NODmodel is specified by the soil type and included to represent bioremediation in porous media.
Themodel provides guidance in terms of understanding the placement and interaction of cylinders.We used severalmetrics
including a domain of influence in which the amount of contaminant present is less than a certain percentage of the initial
concentration. Our results indicate that cylinders should be place between 2.4 and 3 ft apart vertically and that subsequent
cylinders downstream should be roughly 8–10 ft downstream. These results are specific to the site groundwater velocity,
natural oxidant demand, contaminant type, and contaminant concentration used for these simulations and as shown in
Table 1. Results would vary as these site conditions vary.

The framework used here is flexible in that physical model parameters can easily be modified to understand the system
design for other hydrological settings. Our focus in thismanuscript is to use simple tools developed in the sciences (the global
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Fig. 12. Percentage of the domain with contaminant less than 70% of the initial contaminant concentration when two cylinders are installed at (1.95, 1.8)
and (1.95, 4.2) and the third cylinder is injected at different locations and times, as listed in Table 4. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Average oxidant concentrationwhen two cylinders are installed at (1.95, 1.8) and (1.95, 4.2) and the third cylinder is injected at different locations
and times, as listed in Table 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Average contaminant concentration when two cylinders are installed at (1.95, 1.8) and (1.95, 4.2) and the third cylinder is injected at different
locations and times, as listed in Table 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

methodwith the system of transport equations) to validate the real word applications for industry partners. The use of RBFs
also means that locations of cylinders are not tied to a grid. With existing numerical method on this PDE model, we were
able tomakemany useful suggestions to help guidewith the use of this emerging remediation tool, the oxidant cylinder.We
were able to advise Carus Corporation on how to design more efficient and effective contaminant treatment tools. The next
step in this work is to model installation and replacement costs. Such models can be paired with optimization algorithms
to understand efficient design strategies for large-scale clean-up sites. In particular, this work has provided initial insight
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that will assist in the development of constraints on the placements of a network of cylinders over a larger domain. Wemay
need a more robust local RBF method for such purpose with more complicate dispersion relation in the PDE model.
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