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a b s t r a c t

In this paperwe improve the localizedmethod of approximate particular solutions (LMAPS)
in Yao et al. (2011) by utilizing the polyharmonic splines (PS) radial basis function (RBF)
for solving elliptic partial differential equations (PDEs). LMAPS has been widely circulated
since it is published in 2010. The multiquadric (MQ) has been considered as the most
popular choice among all RBFs. However, adjusting the shape parameter is a critical
issue when utilizing the original LMAPS. In this paper, we modified LMAPS by combining
conditionally positive definite RBF-PS and an additional low degree of polynomial basis
in the localization process. The accuracy of the proposed LMAPS is significantly improved.
We can simply increase the order of PS to achieve even higher accuracy. Other than the
unexpected high accuracy, there is no need to deal with the difficult issues of choosing
optimal shape parameter. This is a huge advantage in the RBF simulations of PDEs. In the
numerical experiments, we will present the pros and cons of improved LMAPS (ILMAPS)
using PS and some commonly used RBFs (MQ, Matérn, and Gaussian) versus the original
LMAPS (OLMAPS).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A global version of the method of approximate particular solution (MAPS) has been developed to solve various types of
partial differential equations (PDEs) [1,2]. Similar to the indirect radial basis function (RBF) collocation method (IRBFCM)
introduced in [3–5], this numerical scheme interpolates the forcing term, and then the interpolation is integrated and
collocated on the domain of interest. Unlike IRBFCM which integrates RBFs in the Cartesian coordinate system, MAPS
integrates RBFs in the radial coordinate system, which constitutes a very simple and very effective scheme. In MAPS, the
particular solutions of a differential operator with typical RBFs in the right-hand side leads to the particular solutions
depending on the radius only, i.e., they are radial basis functions too. As shown by many other researchers, the use of
particular solutions is slightly more accurate compared with the use of other typical RBFs directly [6,4].

In [7,8], we proposed a localized meshless methods, the localized method of particular solutions (LMAPS), which can be
applied to many problems in science and engineering [9–12]. A main feature of LMAPS is that collocation by MAPS takes
place on overlapping local domains. This drastically reduces the size of the collocation matrix. The price paid, however, is
that many small matrices must now be solved. Additionally, a global sparse system has to be constructed and to be solved
for the approximations. It is apparent that LMAPS can compete with traditional numerical methods for solving large-scale
PDEs. Numerical integration is not needed in LMAPS, which makes it easy for this approach to handle extremely irregular
domains.
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In [8], the multiquadric (MQ) and inverse multiquadric (IMQ) are used in LMAPS. Thereafter, Chen [13,11] et al. extended
the method to Gaussian and Matérn RBFs. The particular solutions of the Laplace and the modified Helmholtz operators
with multiple RBFs such as MQ, Matérn, and Gaussian in the right-hand side are available in the literature [13,11,8]. These
are positive definite RBFs [14–16]. In this paper, we improve LMAPS so that conditional positive definite RBF-polyharmonic
splines (PS) can be also used for solving elliptic PDEs using LMAPS. This is not a trivial extension as the invertibility of the
small matrices generated during the localization process cannot be achieved unless a low-order polynomial basis is added
to the PS kernels [17–19]. The method becomes extremely accurate without much computational cost added.

In Section 2,wepropose the formulation of the improved LMAPSutilizing PS on a general elliptic boundary value problem.
In Section 3, we list the RBFs considered, and corresponding particular solutions (see Appendix). In Section 4, three elliptic
PDEs are considered in irregular domains. We will illustrate performance of our improved method through numerical
experiments on a Poisson equation, a modified Helmholtz equation, and eventually a general variable coefficient second-
order elliptic PDE in irregular domains. A comparison of improved LMAPS using PS, MQ, Gaussian, andMatérn RBFs with the
original LMAPS is done on these three examples, in terms of accuracy, efficiency, and stability. In Section 5, we draw some
conclusions on the use of PS in LMAPS compared to other RBFs.

2. Improved LMAPS for elliptic PDEs using polyharmonic splines

In this section we present the improved LMAPS for solving elliptic PDEs of the form

L u(x) = f (x), x ∈ Ω, (1)
Bu(x) = g(x), x ∈ ∂Ω. (2)

where L and B are linear partial differential operators, Ω ⊂ R2 is a bounded and closed domain with boundary ∂Ω . We
propose to revise LMAPS using PS in the two-dimensional case. The improved LMAPS can be extended by replacing PS by
other RBFs.

The PS RBFs in R2 are defined as:

φ(r) = r 2m ln(r),

where m ∈ N, in which PS is a general case of the thin plate splines (TPS): φ(r) = r2 ln(r). Franke [20] and Buhmann [21]
demonstrated the importance of polyharmonic splines in even-dimensional spaces. The interpolation matrix generated
by PS can be singular, even with non-trivial sets of distinct centers [22,23]. Typically, to insure the invertibility of the
interpolation system, a low-order polynomial basis has to be added to the RBF interpolant. Furthermore, the PS RBFs is
conditionally positive definite. Let P be a polynomial function space of dimension q, where

q =
(m + 2)(m + 1)

2
.

Let {p1, p2, . . . , pq} be a basis of P . Let {pj}
N
j=1 ∈ Ω ∪ ∂Ω be given interpolation points, where the first NI interior points

are in Ω , followed by NB boundary points on ∂Ω , and N = NI + NB. If {f (pj)}
NI
j=1 and {g(pj)}

N
j=NI+1 are given, LMAPS can

approximate the solution to (1)–(2) at a set of evaluation points. For simplicity, we consider the approximation of u at given
interpolation node pj, j = 1, 2, . . . ,N , and denote the approximate values by û(pj), j = 1, 2, . . . ,N .

For any point p ∈ Ω ∪ ∂Ω , we create an influence domain Ωp, which contains the n nearest interpolation points to p,
where n ≪ N . For convenience, we denote that the local domain of influence at interpolation point pj by Ωj = {pk, k =

1, 2, . . . , n}. Note these points are associated with the point pj. To discretize (1)–(2) at every pj, we apply MAPS on every
local domain Ωj. To overcome the difficulty of singularity from utilizing particular solutions of PS, we add an additional
polynomial basis to the particular solution kernels. The solution to (1)–(2) can be approximated by particular solutions
(which are RBFs too) and the augmented polynomials in the following manner:

u(p) ≈ û(p) =

n
i=1

αiΦ(∥p − pi∥) +

q
l=1

αn+lpl(p), p ∈ Ωj (3)

with additional polynomial basis pl(p) = xlyq−l, l = 1, 2, . . . , q, and

L Φ(r) = φ(r), (4)

where φ(r) = r2m ln(r). Since there are q additional degrees of freedoms in (3), the standard polynomial insolvency
constraint [3] must be applied. Thus the collocation technique gives the following linear system:

n
i=1

αiΦ(∥pk − pi∥) +

q
l=1

αn+lpl(pk) = û(pk), k = 1, 2, . . . , n, (5)

n
i=1

αipl(pi) = 0, l = 1, 2, . . . , q. (6)
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Note that (5)–(6) is a linear system of equations with n + q coefficients which are to be determined. Denote the coefficient
matrix in the first term in (5) as 8nn, and the second term as Pnq. Note the sub-indices indicate the size of the vector or the
matrices. Then the system (5)–(6) can be rewritten in block matrix form

8nn Pnq

PT
nq 0qq


αn+q =


ûn
0q


, (7)

where ûn = [û(p1), û(p2), . . . , û(pn)]
T , αn+q = [α1, α2, . . . , αn+q]

T .
Denote the coefficient matrix in (7) as 8n+q. It can be proved that 8n+q is non-singular such that the inverse matrix can

always be computed provided that all of the nodal points inside Ωj are distinct points. The unknown coefficients in (5)–(6)
can be written as follows

αn+q = 8−1
n+q


ûn
0q


. (8)

Hence, for any p ∈ Ωj, û(p) can be expressed in terms of the function values at n nodal points, ûn, i.e.

û(p) =

n
i=1

αiΦ(∥p − pi∥) +

q
l=1

αn+lpl(p)

= 8n+q(p)αn+q

= 8n+q(p)8−1
n+q


ûn
0q


= 9n+q(p)


ûn
0q


= 9n(p)ûn, (9)

where

8n+q(p) =

Φ(∥p − p1∥), . . . , Φ(∥p − pn∥), 1, x, y, x2, xy, y2, . . . , xq, xq−1y, . . . , xyq−1, yq


,

and

9n+q(p) = 8n+q(p)8−1
n+q, (10)

with 9n(p) is a sub-vector whose components are the first n elements of 9n+q(p).
Let

û = [û(p1), û(p2), . . . , û(pN)]T . (11)

We will reformulate (9) in terms of global û instead of local ûn. This can be done by padding the vector 9n(p) with zero
entries based on the mapping between ûn and û. It follows that

û(p) = 9(p)û (12)

is equivalent to (9), where 9(p) is a vector with N components and is obtained by inserting N − n zeros into 9n(p) at the
proper places. From (1)–(2) by collocation, we have

L 9(pj)û = f (pj), j = 1, 2, . . . ,NI , (13)

B9(pj)û = g(pj), j = NI + 1,NI + 2, . . . ,N. (14)

This is an N × N linear system, and each equation in the system contains n non-zero entries. The system is a sparse system
with N unknowns {û(pj)}

N
j=1. Even though an additional polynomial basis needs to be added when we create local small

linear systems in LMAPS using PS, the resulting global sparse system remains the same size as in LMAPS using other positive
definite RBFs.

3. RBFs and selection of shape parameters

In the past, MQ was primarily the basis function adopted in LMAPS. Recently, Lamichhane and Chen et al. found [13,11]
the analytical particular solutions for∆ and∆−λ2 with Gaussian andMatérn RBFs. Then LMAPS has been extended to those
RBFs as well. In this paper, we will test the numerical performance of the proposed LMAPS with PS and compare to other
RBFs listed in Table 1, which includes Gaussian (GA), multiquadric (MQ), and Matérn. Note Ki, i = 2, 3 denote the modified
Bessel functions of the second kind of order two and three, respectively. We denote the Matérn of order two by Matérn2,
and the Matérn of order three by Matérn3, and so on. We denote the polyharmonic splines of order four by PS4, of order
five by PS5, and so on. We also denote GA as Gaussian. All of the RBFs listed in Table 1 have shape parameters except PS.
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Table 1
List of RBFs used in LMAPS in this paper.

Name of RBFs Formulation Shape parameter

Gaussian φ(r) = exp

−cr2


, β > 0 c

MQ φ(r) =
√
r2 + c2, c > 0 c

IMQ φ(r) = 1/
√
r2 + c2, c > 0 c

Matérn of order
m

φ(r) =


(cr)mKm(cr), r > 0
mΓ (m), r = 0 c

PS of orderm φ(r) = r2m ln(r) None
Thin plate spline φ(r) = r2 ln r None

Thus, one of the advantages of using LMAPS with PS RBF is that there is no shape parameter involved in the approximation
process.

To solve the Poisson equation

1u(x, y) = f (x, y) (15)

by LMAPS, we need particular solution Φ(r) of the Laplace operator with respect to the chosen RBF, φ(r) in the right-hand
side:

1Φ(r) = φ(r). (16)

For the modified Helmholtz equation of the form

(∆ − λ2)u(x, y) = f (x, y) (17)

there are two main operators involved in LMAPS: the Laplace operator ∆ and the modified Helmholtz operator ∆ − λ2. We
have the choice of using the particular solutions of the Laplace:

1Φ(r) = φ(r), (18)

or the particular solutions of the modified Helmholtz operator:

(∆ − λ2)Φ(r) = φ(r). (19)

Wewill compare the numerical performance of the proposed improved LMAPS on both choices. Formore details on how the
Laplace operator is used in the modified Helmholtz equation, we refer readers to [8]. For most of the other kinds of elliptic
equations of second order, for example, the Laplace equation with variable coefficient convection–reaction terms, using the
particular solutions of the Laplacian operator in LMAPS will be an easier choice. A list of particular solutions can be found in
the Appendix at the end of this paper [13,11,8].

Searching for an optimal shape parameter in RBFs is an outstanding research topic. Despite the efforts in [24–27] and
references therein, selection for a suitable shape parameter for RBFs remains a challenge. In this paper, we employ two
techniques on the local n × n linear systems, where n is the number of points in the local influence domains, to find an
optimal shape parameter. The first technique is called the leave-one-out-cross-validation (LOOCV) [19,25]. LOOCV is an
estimation of the optimal parameter of a model of n samples trained on n−1 samples, which has a high variance. In general,
the more collocation points we have, the better shape parameter c can be selected by LOOCV. When n is not too small, we
will couple LMAPS with LOOCV to select a good shape parameter of MQ, Gaussian, and Matérn RBFs. However, when n is
small, such as n = 5, LOOCV will not work well. Then, we will utilize the scaling technique, where the shape parameter is
scaled by the maximum nodal distance in the local domains. We refer readers to [28,29] for further details.

4. Numerical results

Throughout this section, the following notations are used: m is the order of PS or the maximum degree of polynomials
added to the RBF kernels, n is the number of interpolation points in the domain of influence, NI is the number of interior
points, NB is the number of boundary points, and N = NI +NB is the total number of interpolation points. We compare all of
the numerical results with the analytical solutions. We also compare our results of the improved LMAPS with the Localized
Kansa‘s Method (LKM) [30]. We use the maximum relative absolute error ε1 and the root mean square error ε2 to measure
the numerical accuracy. The definitions of these errors are given as follows:

ε1 =
N

max
k=1

 ûk − uk

uk


ε2 =

 1
N

N
k=1


ûk − uk


,
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Fig. 1. The profiles of the computational domain and the analytical solution in Example 1.

Table 2
Comparison of PS and MQ for variousm using n = 25.

m PS MQ
CPU(s) ε2 CPU(s) ε2 c

0 – – 3.27 2.83 × 10−5 1.64 OLMAPS
1 5.18 6.92 × 10−3 4.81 8.61 × 10−5 1.64
2 5.50 1.40 × 10−5 4.07 1.82 × 10−4 2.19
3 6.65 1.04 × 10−7 4.46 5.32 × 10−5 2.19
4 6.84 1.91 × 10−9 5.57 5.29 × 10−6 3.28

where ûk = û(pk) is the approximated solution, and uk = u(pk) is the exact solution. To distinguish the performance of the
original LMAPS from the improved method, we marked the corresponding results from the original method with OLMAPS
or (O), and the results from the improved method with ILMAPS or (I).

Example 1. In this example, we consider the following Poisson problem:

1u(x, y) = 5e2x+y, (x, y) ∈ Ω, (20)

u(x, y) = e2x+y, (x, y) ∈ ∂Ω (21)

whereΩ and the analytical solutions are shown in Fig. 1. The boundary ∂Ω is defined by the following parametric equation:

∂Ω = {(x, y)|x = ρ cos θ + 1.5, y = ρ sin θ + 1.5, 0 ≤ θ < 2π},

where

ρ =


cos(3θ) +


2 − sin2(3θ)

 1
3

.

In the numerical implementation in this example, we choose NI = 9189 and NB = 300. In OLMAPS with MQ as shown
in [8], there is no need to add a polynomial basis. However, to test the effect of the polynomial basis added to PS in LMAPS,
we add a polynomial basis of degree up tom to MQ, and compare it with the numerical results from PS of orderm.

Table 2 shows ε2 when we use PS of order m = 1 to m = 4, and MQ with polynomial basis of degree up to m = 4 and
n = 25. Note thatm = 0 in MQ indicates OLMAPS without additional polynomial basis. It produces error ε2 = 2.83× 10−5

which is similar to the results when a polynomial basis of degree up to three is added to MQ. Furthermore, LMAPS with PS
of order one performs poorly compared to the others. However, as we further increase the order of PS, the numerical results
become far more accurate than MQ. In addition, with the scaling technique, the range of good shape parameters for MQ can
be very large. However, we still need to determine what range and what values of the shape parameter produces relatively
better results than other values of c , which is time-consuming and inefficient. Unlike MQ, we do not need to search for an
optimal shape parameter for PS.

Table 3 shows the results using various RBFs and n in OLMAPS and ILMAPS. Table 4 shows the corresponding condition
numbers of global sparsematrices. For RBFswith shape parameter,weuse LOOCV to search for a good shape parameterwhen
n is sufficiently large. The initial search interval for LOOCV is [0, b] where b = 2, 3, 15 depending on the basis functions and
n. We need to be careful how to find appropriate values of b for each case. This is not the focus in this paper, so we simply
listed the corresponding optimal shape parameters in the table. When n = 5, we use the scaling technique and manually
select an acceptable shape parameter after a few experiments. The shape parameters after scaling are listed in Table 3. As
we can see, PS of orderm = 4 outperforms all of the other RBFs. LKM introduced in [30] has similar accuracy as LMAPSwhen
MQ is used (data not shown). We can simply increase the number of points in the local influence domains or the order of PS
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Table 3
ε2 for various n and RBFs.

n GA(O) c MQ(O) c Matérn 3(O) c PS4(I)

5 2.51 × 10−4 1.16 2.72 × 10−4 0.58 3.36 × 10−4 0.58 –
15 4.04 × 10−5 0.98 5.30 × 10−5 0.81 1.82 × 10−5 2.07 2.40 × 10−5

25 2.69 × 10−5 0.98 1.01 × 10−4 3.75 6.88 × 10−5 1.99 1.91 × 10−9

35 3.51 × 10−5 1.77 2.01 × 10−5 5.21 3.69 × 10−5 2.29 7.68 × 10−10

45 3.64 × 10−5 1.24 7.53 × 10−5 1.46 5.82 × 10−4 1.29 4.76 × 10−10

Table 4
Condition numbers of the sparse matrices for various n and RBFs.

n GA(O) MQ(O) Matérn 3(O) PS4(I)

5 2.75 × 105 2.34 × 105 2.59 × 105 –
15 1.43 × 1010 1.72 × 1010 5.78 × 106 6.78× 1019

25 1.65 × 1010 5.64 × 109 1.01 × 1010 2.21 × 105

35 2.11 × 108 2.23 × 109 5.99 × 109 2.82 × 105

45 4.49 × 1010 1.76 × 1010 8.30 × 1010 3.54 × 105

Table 5
ε1 with increasing noises on f and g for various RBFs using n = 25.

η GA(O) c MQ(O) c Matérn 3(O) c PS4(I)

1.0 8.81 × 10−2 4.92 4.46 × 10−2 0.10 6.08 × 10−2 2.73 2.51× 10−2

0.1 8.04 × 10−3 4.92 4.91 × 10−2 0.58 2.85 × 10−3 2.73 1.50× 10−3

0.01 1.35 × 10−3 4.92 4.59 × 10−2 0.58 3.83 × 10−4 2.73 1.00× 10−4

0.001 1.44 × 10−3 3.28 4.09 × 10−3 1.64 5.55 × 10−5 2.73 1.04× 10−5

0.000 3.62 × 10−4 4.92 1.02 × 10−3 0.58 3.31 × 10−6 2.73 3.49× 10−9

Fig. 2. The absolute error in Example 1 usingm = 4 and N = 27 644.

to improve the numerical accuracy when PS is utilized. Furthermore, LMAPS using PS with n = 25 is very accurate. Further
increasing the number of neighboring points in the local influence domains does not cause any ill-conditioning.

From Table 4, it is clear that the condition numbers from PS4 do not increase much when the number of local points
increases. However, the RBFs with shape parameter produce much larger condition numbers when n becomes larger. PS is
more stable than the other RBFs in terms of accuracy with respect to the number of local points in the influence domains.

One may notice that we did not list any results for LMAPS with PS4 on five neighboring points in the local domains in
Table 3. In this case, the small matrices 8nn in (7) are singular. When singular value decomposition (SVD) is used, we can
obtain ε2 = 1.2537 × 10−4, which is similar in accuracy to the other RBFs. The corresponding condition number is only
1.66 × 105. To compare all the RBFs fairly, we used only Gaussian elimination to construct the global sparse matrices in all
of the numerical results listed in the tables. Thus, we did not list the better results after SVD is used in ILMAPS with PS4.

Fig. 2 shows the profile of absolute errors when PS4 is used in ILMAPS. The maximum absolute error is in the order of
10−8 which is far more accurate than OLMAPS.

Fig. 3 shows the rate of convergence using various RBFs with respect to different total numbers of points, N . OLMAPS
with GA,MQ andMatérn3 have similar rates of convergence. ILMAPSwith PS4 has order of four convergence approximately,
which is more rapid than the others once the number of points in the domain reaches a certain level.

To test the stability using various RBFs, we add noise to the forcing term and the boundary conditions by η%. The
maximum relative absolute error, ε1 is shown in Table 5, where η = 0 means that noise is not added. The corresponding
optimal shape parameters for RBFs with shape parameters are also listed.When η becomes large, all of the RBFs perform the
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Fig. 3. The rate of convergence of LMAPS for various RBFs and N in Example 1.

Fig. 4. The profiles of computational domain and the analytical solution in Example 2.

same. When the noise is relatively small, Matérn and PS perform slightly better than the others. Again, we have to search
for the best approximation when Matérn is used. In this example, we conclude that PS4 has the best performance in terms
of accuracy and stability.

Example 2. In this example, we consider the following modified Helmholtz equation:

(∆ − 100) u(x, y) = f (x, y), (x, y) ∈ Ω

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,

where

f (x, y) =


−

π2

36
− 9

π2

16
− 100


sin

πx
6


cos


3πy
4


, and

g(x, y) = sin
πx

6


cos


3πy
4


.

The analytical solution is given by

u(x, y) = sin
πx

6


cos


3πy
4


. (22)

The star-shape domain Ω is defined by the following parametric equation:

Ω = {(x, y)|x = ρ cos(θ), y = ρ sin(θ), 0 ≤ θ < 2π},

where

ρ = 1 + cos2(4θ).

The profiles of the computational domain and the analytical solution are shown in Fig. 4.
In this example we use NI = 18 456 and NB = 1000 in our numerical implementation. Fig. 5 shows the absolute errors

when the particular solution of the Laplace operator with PS4 and n = 25 are used. The absolute errors are in order of 10−10

which is extremely accurate compared to the other RBFs.
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Fig. 5. The absolute error in Example 2 using particular solution for ∆ of orderm = 4.

Table 6
ε2 of ILMAPS with ∆ and ∆ − λ2 using PS and n = 25.

m ∆ ∆ − λ2

CPU(s) ε2 CPU(s) ε2

1 11.17 8.22 × 10−5 11.55 1.57× 10−4

2 11.92 9.94 × 10−7 14.87 1.02× 10−6

3 13.29 2.00 × 10−7 19.59 2.25× 10−7

4 13.88 5.60 × 10−10 28.92 3.67× 10−9

Table 7
ε2 of ILMAPS using PS3 for various n.

n ∆ ∆ − λ2

15 2.36× 10−7 2.64× 10−7

25 2.00× 10−7 2.25× 10−7

35 9.46× 10−8 1.03× 10−7

45 7.16× 10−8 7.86× 10−8

55 5.67× 10−8 5.68× 10−8

100 2.39× 10−8 2.09× 10−8

Table 8
ε2 using various RBFs using ∆ and n.

n GA(O) c Matérn 3(O) c MQ(O) c PS4(I)

5 5.77 × 10−5 1.86 1.15 × 10−4 4.05 8.12 × 10−5 1.86 –
15 3.08 × 10−7 4.05 1.01 × 10−6 1.35 2.97 × 10−7 0.45 2.41 × 10−4

25 2.02 × 10−6 5.72 1.04 × 10−6 1.91 9.04 × 10−7 0.31 5.60 × 10−9

35 3.51 × 10−7 7.24 1.51 × 10−6 7.24 3.74 × 10−7 0.31 2.30×10−10

45 7.38 × 10−7 8.09 1.38 × 10−6 8.09 1.63 × 10−6 0.17 1.50×10−10

Table 6 shows ε2 using the Laplace operator ∆ and the modified Helmholtz operators ∆ − λ2 with PS of different orders
and n = 25. The computational time using either operator is relatively close. The numerical accuracy is similar when
m < 4. Our experiments in this table show that the particular solution w.r.t. the Laplace operator in themodified Helmholtz
equation produces relatively stable numerical approximations.

Table 7 shows ε2 using particular solutions of PS3 for different operators with various n. We notice that there is a little
difference in terms of accuracy. Since the particular solutions for themodifiedHelmholtz operator usingMQ, GA, andMatérn
are not available, particular solutions of the Laplace operator are used in our following numerical tests.

Table 8 shows ε2 using different RBFs, including GA, Matérn3, MQ, and PS4 with various n. We tried our best to find ‘the
best’ shape parameters for RBFs other than PS4 and they are listed in Table 8. Notice that GA and Matérn3 are relatively
stable in terms of the best shape parameters. We used the scaling technique to find the best shape parameters, where GA
and Matérn3 do not require much of the tests before we found the ‘best’ shape parameter. On the other hand, MQ is more
sensitive to the shape parameters. We do not need to use any optimization technique for PS. We can simply increase the
order of the basis, or the number of points in the local domains to increase the accuracy. With n = 15, PS4 is less accurate
compared to any other RBF. However, PS3 could easily outperform other RBFs with n = 15 (data not shown). When n
becomes larger, PS4 outperforms all of the other basis functions by more than three order of magnitudes.
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Table 9
Condition numbers and computational time using various RBFs with ∆ for various n.

n Cond. # CPU(s)
GA(O) Matérn 3(O) MQ(O) PS4(I) GA(O) Matérn 3(O) MQ(O) PS4(I)

5 1.54 × 104 1.41 × 104 6.60 × 103 – 5 9 3 –
15 1.28 × 104 3.00 × 105 4.13 × 104 2.05 × 1016 8 18 5 9
25 1.76 × 104 1.95 × 105 8.40 × 108 2.08 × 104 19 30 10 14
35 2.46 × 105 1.99 × 104 1.03 × 109 2.48 × 104 24 49 10 21
45 3.66 × 107 1.91 × 104 4.63 × 104 2.37 × 104 39 75 12 29

Table 10
ε2 with increasing noises on f and g for various RBFs using n = 25.

η GA(O) c MQ(O) c Matérn 3(O) c PS4(I)

1.0 1.81 × 10−3 7.56 1.71 × 10−2 13.71 4.64 × 10−3 5.65 1.71 × 10−3

0.1 1.66 × 10−4 7.56 1.58 × 10−2 0.57 8.04 × 10−4 5.65 1.69 × 10−4

0.01 1.00 × 10−5 7.56 1.83 × 10−3 0.57 4.25 × 10−4 5.65 1.72 × 10−5

0.001 8.84 × 10−6 7.56 2.15 × 10−4 0.57 3.86 × 10−4 2.93 1.68 × 10−6

0 3.42 × 10−6 3.63 3.21 × 10−6 0.57 4.21 × 10−5 2.93 5.41×10−10

Aswe increase the number of neighboring points in the local influence domains, the numerical results using GA,Matérn3
and MQ remain at similar accuracy. However, PS4 has significantly better results than those basis functions containing a
shape parameter. Even with n = 100 neighboring points in the local domains, PS4 has no stability issues (data not shown).
Thus, if we require to use a larger n, it is suggested to use a higher-order of PS such as m = 4 with n > 15. We also tested
LKM on the modified Helmholtz problem. The numerical accuracy of LKM is similar to LMAPS with MQ using the Laplace
operator (data not shown).

The condition numbers of the global sparse matrices and computational time of the tests in Table 8 are listed in Table 9.
The condition numbers from PS4 are very stable once the number of local points reaches 25. However, when n = 15 the
condition number of the large sparsematrix by PS4 is quite large. As a result, the accuracy of PS4 is not as good as other RBFs
for n = 15. In fact, for n < 15, the condition numbers are high and the proposed method is not working well. However,
when n > 25, PS4 is much more accurate than the other RBFs, and the condition number remains low when we further
increase the number of local points. In addition, further increasing n will not cost any loss of accuracy. The computational
time for PS4 is not much more than GA, but relatively large compared to MQ. This is due to the augmented polynomials we
added to the basis. We used the symbolic math tools in MATLAB to define the augmented polynomials and compute their
derivatives in our simulation. It is an easier way than defining polynomial basis term by term but it is also time-consuming.
The reported computational time in themanuscript is from the codewith symbolic computation. It is possible to elimination
of the symbolic computations for reducing computational time.

Table 10 shows the accuracy using various RBFs when η% noise is added to the forcing term and the boundary condition.
When noise is 1%, there is not much difference between all of the RBFs tested. When η becomes smaller, PS and GA have
similar accuracy while MQ and Matérn3 are slightly worse. Our first example shows that PS and Matérn outperform the
other RBFs containing shape parameters. In both cases, PS is always one of the best choices, not to mention that there is no
need to search for optimal shape parameters. Thus, LMAPS is more stable when PS is utilized.

Fig. 6 shows the rate of convergence using various RBFs with respect to different numbers of interpolation points, N .
Similar to our previous example, LMAPS with GA, MQ and Matérn4 have similar rates of convergence, approximately linear
convergence. However, LMAPS with PS4 has an order of four convergent rate, which is much superior to other RBFs.

Example 3. In this example, we consider the following variable coefficient elliptic equation with advection–reaction terms

1u + x2yu + y3 sin(x)
∂u
∂x

− y2 cos(x)
∂u
∂y

= f (x, y), (x, y) ∈ Ω (23)

u(x, y) = y cos(x) + x cos(y), (x, y) ∈ ∂Ω (24)

where f (x, y) is given according to the analytical solution, which is given as

u(x, y) = y cos(x) + x cos(y). (25)

The domain is defined by the following parametric equation

∂Ω = {(x, y), x = ρ cos(θ), y = ρ sin(θ), 0 ≤ θ ≤ 2π}, (26)

where

ρ = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ). (27)
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Fig. 6. The rate of convergence of LMAPS with various RBFs and N in Example 2.

Fig. 7. The profiles of the computational domain and the analytical solution in Example 3.

Fig. 8. The absolute error using LMAPS with PS5 in Example 3.

The profiles of the amoeba-like domain and the analytical solution are shown in Fig. 7. Fig. 8 shows the absolute errors
using PS5 and n = 55. The accuracy reaches an order of 10−7.

However, OLMAPSwith GA,MQ orMatérn cannot approximate the solution correctly. On the other hand, ILMAPSwith PS
can produce acceptable numerical solutionswhen the order of PS is high enough.We also add the polynomial basis of degree
up to five to the other RBFs, which makes ILMAPS produce acceptable accuracy with GA, MQ or Matérn. Therefore, ILMAPS,
with all the RBFs considered in this paper, can be applied to the elliptic PDEs with variable coefficients. Thus, we conclude
the additional polynomial basis made OLMAPS possible to solve complicated elliptic equations with improved accuracy in
this example.

Fig. 9 shows the rate of convergence of ILMAPS for various RBFs. ILMAPS is relatively stablewithMQandPS5. Furthermore,
ILMAPS with PS5 outperforms all of these RBFs.
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Fig. 9. The rate of convergence of LMAPS for various RBFs in Example 3.

Table 11
ε2 of ILMAPS with ∆ using various orders of PS and NI = 23 851,NB = 500 in Example 3.

m CPU(s) ε2 Condition number n

1 10 3.21 × 10−2 1.09 × 106 5
2 14 5.04 × 10−2 8.62 × 1012 10
3 47 4.84 × 10−3 3.45 × 1012 35
4 52 4.03 × 10−5 3.77 × 1012 35
5 52 7.40 × 10−8 4.54 × 1011 35

Table 12
ε2 of ILMAPS using various RBFs, n and NI = 23 851,NB = 500 in Example 3.

n GA(I) c Matérn 4(I) c MQ(I) c PS5(I)

35 2.19 × 10−4 5.00 5.84 × 10−6 2000 5.91 × 10−7 105.22 7.40× 10−8

45 1.81 × 10−4 5.00 4.11 × 10−6 2000 9.08 × 10−8 119.98 6.75× 10−8

55 3.55 × 10−4 5.00 4.06 × 10−6 2000 1.58 × 10−7 137.20 4.18× 10−8

65 1.32 × 10−4 0.65 2.20 × 10−6 2000 1.94 × 10−7 223.22 1.58× 10−7

Table 13
Condition numbers and computational time of the sparse matrices using various RBFs, n, and NI = 23 851,NB = 500 in Example 3.

n Cond. # Time (s)
GA(I) Matérn4(I) MQ(I) PS5(I) GA(I) Matérn 4(I) MQ(I) PS5(I)

35 3.03 × 1010 8.96 × 109 3.88 × 1011 4.54 × 1011 60 158 36 52
45 6.04 × 1011 8.63 × 109 6.18 × 1010 7.28 × 1012 84 233 45 79
55 2.63 × 1011 5.36 × 1010 3.16 × 1010 4.56 × 1012 108 297 52 81
65 2.61 × 1010 2.83 × 109 1.09 × 1010 8.50 × 1012 107 400 71 94

Table 11 shows ε2, the corresponding computational time, condition numbers of the global sparse matrices using PS of
different orders, and different numbers of points in the local domains. The numerical accuracy becomes acceptable when
the order of PS ≥ 3. Compared to the previous two examples, we observe that we need to increase the number of local
points in this example. This is reasonable as we need more points in the local domains to support the approximation of the
partial derivatives. As shown in Table 11, when n ≥ 35, the numerical results become very accurate. In our test, it would
not improve the accuracy if we continue to increase the number of the local points n. On the other hand, when the total
number of interpolation points is chosen as N = 4309, further increasing n to 65 would decrease the accuracy. In this case,
the condition number of the global sparse matrix becomes fairly large as we will see in Table 14. Thus, it is suggested to use
a small n in the local influence domains, such as n = 35 in PS5.

Tables 12–15 show ε2, the corresponding computational time, condition numbers using GA, MQ and Matérn of order
four, and n points in the local domains. Tables 12–13 are the results using N = 24 351. Tables 14–15 are the results using
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Table 14
ε2 of ILMAPS using various RBFs, n, and NI = 3809,NB = 500 in Example 3.

n GA(I) c Matérn4(I) c MQ(I) c PS5(I)

35 1.10 × 10−4 5.00 4.86 × 10−7 500 8.98 × 10−7 118.38 7.07× 10−7

45 2.34 × 10−5 5.00 4.71 × 10−7 250 9.05 × 10−7 44.99 6.58× 10−7

55 4.82 × 10−5 5.00 4.99 × 10−7 200 2.16 × 10−6 51.45 4.55× 10−6

65 5.28 × 10−5 5.00 4.74 × 10−7 100 1.82 × 10−6 55.80 4.19× 10−4

Table 15
Condition numbers and computational time of the sparse matrices using various RBFs, ∆, n, and NI = 3809,NB = 500 in Example 3.

n Cond. # CPU (s)
GA(I) Matérn4(I) MQ(I) PS5(I) GA(I) Matérn4(I) MQ(I) PS5(I)

35 1.05 × 108 2.03 × 106 7.50 × 108 1.72 × 1010 8 27 5 12
45 1.52 × 109 2.41 × 106 9.28 × 108 3.79 × 1011 16 40 6 13
55 6.91 × 108 5.72 × 106 5.93 × 108 1.35 × 1012 21 51 7 13
65 3.92 × 109 3.33 × 106 4.43 × 108 2.28 × 1014 29 74 8 15

N = 4309. It is obvious that LMAPS with PS5 outperforms all of the other basis functions, not to mention the tedious and
expensive numerical process of seeking the optimal shape parameters for the other RBFs.

OLMAPS with Gaussian and Matérn performs poorly without polynomial basis. OLMAPS using MQ without augmented
polynomials has low accuracy for solving elliptic PDE with variable coefficients. With augmented polynomial basis,
especially polynomials of order five, MQ performs as well as PS5 in ILMAPS. The computational costs among four RBFs are
not as similar to each other as it was in our previous examples. However, the computational time using PS5 is only slightly
longer thanMQ.We tested the sensitivity of ILMAPS to the noise on the forcing term and on the boundary. Unfortunately we
are not able to produce very good results (ε2 ≈ 10−1 with η = 0.001) from any of the RBFs considered. Our understanding
is that this is a complicated variable coefficient PDE on a complicated computational domain. It is very challenging to even
approximate the solution accurately in general.

5. Conclusion

In this paper, the polyharmonic splines (PS) have been first utilized in the context of LMAPS. A low degree of polynomial
basis in added to insure the invertibility of the local systems in LMAPS. Unlike Gaussian, MQ or Matérn RBFs, there is no
need to search for optimal shape parameter in PS. The numerical accuracy of ILMAPS using PS can be improved by simply
increasing the number of points in the local influence domains, or increasing the order of PS RBFs.

We examined the numerical results of the proposed approach through three typical elliptic PDEs: a Poisson equation, a
modified Helmholtz equation, and a general variable coefficient second-order elliptic PDE on irregular domains. Numerical
tests show that ILMAPS with PS is far superior than using any other RBFs. This is a surprise and is unexpected.

The improved LMAPS with PS on the Poisson equation has much better accuracy than other high performance RBFs at
the order five magnitude which is quite significant. The numerical accuracy of ILMAPS with PS is better than LKM [30].

For the modified Helmholtz equations, we have the choices in LMAPS to use particular solutions of the Laplace operator
or the modified Helmholtz operator. We compared the numerical performance of the improved LMAPS on both operators.
The experimental results suggest that the improved LMAPS performs well with both operators, though the Laplace operator
performs slightly better than the modified Helmholtz operator.

For the general variable coefficient second-order elliptic equation, OLMAPS with MQ works on such problems but with
low accuracy. With any other basis function, the original LMAPS failed to produce reasonable results of such problems on
the irregular domains. On the other hand, ILMAPS with all of the RBFs work well on such problems. In some cases, MQ can
even compete with PS on accuracy and efficiency if we can find the optimal shape parameter. Therefore, ILMAPS with PS
remains to be the most accurate, efficient, and stable RBF comparing to other RBFs.

The proposed improved approach offers the prospect of an efficient algorithm for solving more challenging problems
in science and engineering. Advantages using the improved LMAPS includes: 1. There is no need to search for good shape
parameters for acceptable numerical results when utilizing PS. This makes the method efficient compared to other RBFs
with shape parameters; 2. We can improve the accuracy by simply increasing the order of polyharmonic splines, or the
number of interpolation points; With an order up to 20° polynomials, we can obtain amazingly high accuracy without
any ill-conditioning issues; 3. With additional polynomial basis, LMAPS becomes more stable. However, we also face some
challenges: 1. The symbolic math tool in MATLAB is time-consuming; 2. Small influence domain is not working well using
polyharmonic splines. We can improve the computational efficiency further by eliminating the symbolic computation.
Therefore, computational time for adding more influence points in the local influence domains will remain in a reasonable
range. Our ongoing research will use the time-stepping method or the higher-order discretization scheme in time space to
solve diffusion–reaction–convection equations.
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Table 16
List of particular solutions Φ(r) for ∆ using different RBFs φ(r), where 1Φ(r) = φ(r).

RBF φ(r) Kernel Φ(r)

Gaussian


1
4c

Ei(cr2) +
1
2c

log(r), r ≠ 0
1
4c

(−0.5772 + log(c)), r = 0

MQ 1
9


4c2 + r2

 √
r2 + c2 −

c3
3 ln


c +

√
r2 + c2


Matérn of orderm


m!

c2
m

j=0


2j

(m − j)!
(cr)m−jKm−j(cr) + 2m ln(cr),


, r ≠ 0

m!2m

c2


ln(2) − γ +

m−1

j=0

1
(m − j)!


, r = 0

PS of orderm r2m+2 ln r
4(m+1)2

−
r2m+2

4(m+1)3

Table 17
List of derivatives of particular solutions for ∆ using different RBFs, dΦ(r)

rdr .

Type of RBF Kernel ∂Φ(r)
r∂r

Gaussian


−e−cr2

+ 1
2r2c

, r ≠ 0
1
2
, r = 0

MQ 1
3

c
√

r2+c2+r2+2c2

c+
√

r2+c2

Matérn of orderm

−(cr)m−1Km+1(cr) +
2mm!

(cr)2
, r ≠ 0

2m−2(m − 1)!, r = 0
Kansa 1√

r2+c2

Table 18
List of particular solutions for ∆ − λ2 using PS RBFs [31].

RBF ϕ(r) Kernel Φ(r)

r2 ln r


−

4
λ4 (K0 (λr) + ln(r)) −

r2 ln r
λ2

−
4
λ4

, r > 0

4
λ4


γ + ln(

λ

2
)


+

4
λ4

, r = 0

r4 ln r


−

64
λ6 (K0 (λr) + ln(r)) −

r2 ln r
λ2


16
λ2

+ r2


−
8r2

λ4
−

96
λ6

, r > 0

−
64
λ6


γ + ln


λ

2


−

96
λ6

, r = 0

r6 ln r


−

2304
λ8 (K0 (λr) + ln(r)) −

r2 ln r
λ2


576
λ4

+
36r2
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
−
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λ4


40
λ2

+ r2


−
4224
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, r > 0

−
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
γ + ln


λ

2


−
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r6 ln r


−
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Appendix

We list all of the particular solutions used in our numerical comparison for different differential operators and different
RBFs.

Appendix A. Particular solutions for ∆ using different RBFs

Table 16 shows a list of particular solutions for ∆ using different RBFs, including GA, MQ Matérn order of m and PS of
orderm. Table 17 shows the corresponding derivatives dΦ(r)

rdr . Note that

∂Φ(r)
∂x

=
xdΦ(r)
rdr

,
∂Φ(r)

∂y
=

xdΦ(r)
rdr

.

For the boundary conditions other than Dirichlet or PDEs with lower order derivatives ∂Φ(r)
∂x or ∂Φ(r)

∂y , we would need the
derivatives listed in Table 17.

Appendix B. Particular solutions for ∆ − λ2 using PS

Table 18 shows the particular solutions for the modified Helmholtz operator ∆ − λ2 when PS is used. These particular
solutions are specifically used in Example 2 to test the effect of choices of the differential operators in theModifiedHelmholtz
equations.
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