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a b s t r a c t

In this paper, we propose a meshless scheme based on compactly supported radial basis functions (CS-
RBFs) for solving the Cauchy problem of Poisson's equation and the inverse heat conduction problems in
2D. By assuming the unknown boundary condition to be a polynomial function, the inverse problems
can be solved using a procedure similar to the process for solving forward problems. We employ
Tikhonov regularization technique under L-curve regularization parameter to obtain a stable numerical
solution. Numerical results verify the effectiveness and stability of this method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems arise in scientific, engineering and even medical
fields such as non-destructive testing in stress and strain analysis,
cardiography, and the heat conduction problem. As we know, these
kinds of problems are ill-posed, which means the solutions do not
depend continuously on the boundary conditions. Since any small
errors caused by the measurement of input data on the boundary or
interior of the domain can result in highly amplified errors in the
numerical solutions, traditional methods for well-posed forward
problems are not suitable for solving inverse problems. Therefore,
developments of effective and stable numerical algorithms are
essential.

During the last few decades, many numerical methods have
been presented for solving inverse problems [1–11]. Among these
papers, most of the numerical algorithms are based on the method
of fundamental solution (MFS) [1–5,7], the finite difference
method (FDM) [6,8], and the finite element method (FEM) [9–
11]. However, every method has its own limitations. For FDM and
FEM, the cost of generating meshes for three dimensional pro-
blems is quite high. Furthermore, the adaptability of FDM to
complex domains is poor. Although FEM has better versatility
and adaptability to irregular domains, the computational cost in
time and space is extremely high for solving large-scale inverse

problems. MFS was first applied to solve elliptic boundary value
problems by Fairweather and Karageorghis [12]. The pure MFS is
limited for solving homogeneous equations when the fundamental
solutions are available. Although MFS can be used to solve
inhomogeneous problems by combining with the dual reciprocity
method (DRM) [13,14], the severe ill-conditioning of the coeffi-
cient matrix and the uncertainty for setting the fictitious boundary
hinder its application in practical problems.

The meshless methods based on the radial basis functions (RBFs)
are of competitive edge, due to their simplicity in selecting interpola-
tion points and high adaptability to domain shape and equation type.
Hon andWu [15] gave the first approach in applying RBFs to solve the
Cauchy problem for Laplace equations. Since then, some papers in this
area have been published [16–19]. In these papers, the main idea for
solving inverse problems is to approximate the solution by a linear
combination of RBFs and directly substitute the approximated solution
into the governing equation, the boundary conditions, and the over-
specified conditions. As we know, the main difficulty in designing an
algorithm stems from the ill-posedness of the inverse problem and the
ill-conditioning of the coefficient matrix. Furthermore, the condition
number of the coefficient matrix increases dramatically with an
increase in the number of interpolation points. Therefore, for large-
scale problems, where a large number of interpolation nodes are
necessary, the coefficient matrix based on the commonly used globally
defined RBFs can be dense and highly ill-conditioned. For this reason,
compactly supported RBFs (CS-RBFs) which are positive-definite and
can result in a sparse matrix are suitable for solving large-scale
problems. CS-RBFs have been extensively used for solving forward
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problems. CS-RBFs have been used in the dual reciprocity boundary
element method (DRBEM) for solving Poisson's equation [20–22],
Stokes Flow problems [23], in MPS-MFS for solving 3D Hemholtz-type
equations [24], and in the collocation method for solving shallow
water equations [25]. However, to the best of the authors' knowledge,
CS-RBFs have not been used for solving inverse problems yet.

In this paper we propose a stable local meshless numerical
method based on CS-RBFs for solving 2D inverse problems with a
small number of sensors installed inside the domain. We deter-
mine the Dirichlet boundary data on an unreachable boundary.
Unlike other direct methods [15–19], we design a novel scheme by
first assuming the unknown boundary condition to be a poly-
nomial function and then creating equations based on CS-RBFs in
an ingenious process. It is worth mentioning that the size and the
number of non-zero elements of the coefficient matrix in the
proposed method are much smaller than the traditional direct
method using CS-RBFs. Thus, the condition number of the coeffi-
cient matrix is significantly smaller.

The paper is organized as follows. In Section 2, we briefly
review CS-RBFs. In Section 3, we propose the scheme on how to
solve inverse problem for Poisson's equation using CS-RBFs. In
Section 4, we propose a 2D IHCP algorithm by following the
method presented in Section 3 to further verify the stability of the
approach. Furthermore, the Tikhonov regularization method with
L-curve scheme is applied to obtain a stable solution. In Section 5,
the efficiency and stability of the proposed method are tested in
comparison with the conventional direct method used in most
papers based on the same CS-RBF.

2. CS-RBFs

Radial basis functions are simple and effective tools in approx-
imating multivariate functions. Let E¼ fejglj ¼ 1 be a set of pairwise
distinct points in a domainΩDR2 with associate values ff ðejÞglj ¼ 1.
For the commonly used global RBFs φ such as Guassians and
multiquadrics, the interpolation matrix AE ¼ φ Jek�ej J

� �� �
1r j;kr l

is non-sparse. To obtain a more accurate solution for inverse
problems, we want to use as many points as possible when
conditions allow. However, for a large number of interpolation
points, the condition number of the coefficient matrix based on
the global basis function can be quite large, leading to a loss of
stability and numerical accuracy. Furthermore, the cost of matrix
inverting and storing AE could be enormous. To overcome all these
difficulties, compactly supported RBFs (CS-RBFs) have been intro-
duced as local basis functions. The construction of the CS-RBFs was
first established by Wu [26], followed by Wendland [27], and later
by Buhmann [28]. In this paper we will focus on the CS-RBFs
constructed by Wendland [27]. These functions are piecewise
polynomial with minimal degree in terms of the given order of
smoothness. The interpolation matrix AE based on CS-RBF is
sparse and positive definite. A list of 2D CS-RBFs is given in
Table 1. In this table, the cut-off function ðrÞþ is defined to be r
if rZ0 and to be zero elsewhere.

In Table 1, the radius of the support of the function has been
normalized to 1. In the real application, we can re-scale the
function in this table with the support of radius α using φðr=αÞ
for α40: The sparseness of the interpolation matrix AE can be
suitably adjusted by choosing the scaling factor α: If α is too small,

the reproduction quality is poor, while if α is too large, the matrix
AE is no longer sparse and it will lost its attractiveness in real
applications. Hence, a reasonable choice of the scaling factor α is
crucial to compromise between the stability and quality of the
approximation.

3. The local meshless method for a stationary inverse heat
conduction equation

First, consider the following inverse problem for Poisson's
equation:

ΔuðxÞ ¼ f ðxÞ; xAΩ; ð1Þ

uðxÞ ¼ gðxÞ; xA∂Ω1; ð2Þ

uðxÞ ¼ hðxÞ; xA∂Ω2; ð3Þ
where ΩDR2 is a bounded domain with boundary ∂Ω, and
∂Ω¼ ∂Ω1 [ ∂Ω2, ∂Ω1 \ ∂Ω2 ¼∅ and ∂Ω2a∅. Δ is the Laplacian,
f and g are given functions, and h is unknown. Note that x¼ ðx; yÞ.
In addition, the over-specified condition is given as follows:

uðxn

i Þ ¼ qðxn

i Þ; xn

i AΩ; i¼ 1;2;…;nq; ð4Þ
where xn

i , i¼ 1;2;…;nq, are certain interior points at which
sensors are fixed in the reachable part of the domain. Therefore,
the measured values qðxn

i Þ ði¼ 1;2;…;nqÞ are known.
In the inverse problem described above, u at any points on

boundary ∂Ω2 and in Ω should be determined. In Section 3, the
main idea and process of applying a local meshless method based
on CS-RBF to solve this kind of problem will be explained.

Here, we use a polynomial of degree d to approximate the
Dirichlet boundary condition on ∂Ω2, which means

hðxÞC ĥðxÞ ¼ b0þb1xþb2yþb3x2þb4xyþb5y2þ⋯þbdðdþ3Þ=2y
d:

ð5Þ
The above polynomial can be represented in vector form:

ĥðxÞ ¼ pðxÞb; xA∂Ω2 ð6Þ
where

pðxÞ ¼ ð1 x y x2 xy y2 ⋯ ydÞ
b¼ b0 b1 ⋯ bdðdþ3Þ=2

� �T ð7Þ
In order to solve problems (1)–(4), we tentatively assume that

hðxÞ is known as shown in (6), which means b in (6) is given. Then
problems (1)–(4) can be taken as the well-posed forward problem.
We apply Kansa's method [29] based on compactly supported
RBFs to solve this hypothetical forward problem. We proceed in
the following way.

Let xj
� �n

j ¼ 1 be a set of uniformly distributed pairwise distinct
interpolation points in Ω [ ∂Ω. Note that xj

� �ni
j ¼ 1DΩ, xj

� �niþnb1
j ¼ niþ1

D∂Ω1, and xj
� �n

j ¼ niþnb1þ1D∂Ω2, and n¼ niþnb1þnb2. J � J
denotes the Euclidean norm. Then we seek to approximate u by
û as follows:

uðxÞC ûðxÞ ¼ ∑
n

i ¼ 1
ajφαðrjÞ; xAΩ [ ∂Ω; ð8Þ

where rj ¼ Jx�xj J , and φαðrjÞ ¼φðrj=αÞ is a CS-RBF with scaling
factor α.

According to Kansa's method [29], the coefficient aj
� �n

j ¼ 1 can
be obtained by the collocation approach

∑
n

j ¼ 1
ajΔφα Jxi�xj J

� �¼ f ðxiÞ; 1r irni; ð9Þ

∑
n

j ¼ 1
ajφα Jxi�xj J

� �¼ gðxiÞ; niþ1r irniþnb1; ð10Þ

Table 1
Wendland's CS-RBFs in 2D.

ð1�rÞ2þ AC0

ð1�rÞ4þ ð4rþ1ÞAC2

ð1�rÞ6þ ð35r2þ18rþ3ÞAC4
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∑
n

j ¼ 1
ajφα Jxi�xj J

� �¼ ĥðxiÞ; niþnb1þ1r irniþnb1þnb2: ð11Þ

The system of Eqs. (9)–(11) can be formulated in the following
block matrix form:

ΔΦI

ΦB1

ΦB2

0
B@

1
CAa¼

f
g

ĥ

0
B@

1
CA ð12Þ

where

ΔΦI ¼ ΔφαðJxi�xj J Þ
� �

1r irni;1r jrn

ΦB1 ¼ φαðJxi�xj J Þ
� �

niþ1r irniþnb1;1r jrn

ΦB2 ¼ φαðJxi�xj J Þ
� �

niþnb1þ1r irn;1r jrn

and

a¼

a1
a2
⋮
an

0
BBB@

1
CCCA; f ¼

f ðx1Þ
f ðx2Þ
⋮

f ðxniÞ

0
BBBB@

1
CCCCA; g¼

gðxniþ1Þ
gðxniþ2Þ

⋮
gðxniþnb1Þ

0
BBBB@

1
CCCCA; ĥ ¼

ĥðxniþnb1þ1Þ
ĥðxniþnb1þ2Þ

⋮
ĥðxnÞ

0
BBBB@

1
CCCCA:

From (6), we have

f
g

ĥ

0
B@

1
CA¼

0ni�ðdþ 1Þðdþ 2Þ
2

f

0nb1�ðdþ 1Þðdþ 2Þ
2

g

P 0nb2�1

0
BB@

1
CCA b

1

� �
ð13Þ

where

P¼

pðxniþnb1þ1Þ
pðxniþnb1þ2Þ

⋮
pðxnÞ

0
BBBB@

1
CCCCA:

We denote

Φ¼
ΔΦI

ΦB1

ΦB2

0
B@

1
CA; H1 hf

� 	
¼

0ni�ðdþ 1Þðdþ 2Þ
2

f

0nb1�ðdþ 1Þðdþ 2Þ
2

g

P 0nb2�1

0
BB@

1
CCA:

Then, from (13), (12) becomes

Φa¼ H1 hf

� 	 b
1

� �
: ð14Þ

Consequently, we can obtain a by

a¼Φ�1 H1 hf

� 	 b
1

� �
¼Φ�1H1bþΦ�1hf : ð15Þ

However, b in (6) is unknown. Once b is obtained, the Dirichlet
boundary data at any point on ∂Ω2 can be approximated by (6)
and the coefficient vector a can be calculated by (15). Then, we can
also approximate the value of u at any node inΩ by (8). Therefore,
it is crucial to determine b.

Next, we approximate u by û as shown in (8) by fitting the
given data set xn

i

� �nq
i ¼ 1 in domain Ω with the imposed conditions

(4):

uðxn

i ÞC ûðxn

i Þ ¼ ∑
n

j ¼ 1
aiφα Jxn

i �xj J
� �¼ qðxn

i Þ; i¼ 1;2;…;nq: ð16Þ

It follows that (16) can be reformulated as

Φna¼ q ð17Þ
where

Φn ¼ φαðJxn

i �xj J Þ
� �

1r irnq;1r jrn

q¼ qðxn

1Þ qðxn

2Þ ⋯ qðxn

nqÞ
� 	T

:

From (15) and (17), we have

ΦnðΦ�1H1bþΦ�1hf Þ ¼ΦnΦ�1H1bþΦnΦ�1hf ¼ q: ð18Þ
Denote A1 ¼ΦnΦ�1H1, h2 ¼ΦnΦ�1hf , (18) can be written as

A1bþh2 ¼ q ð19Þ
which is equivalent to

A1b¼ q�h2: ð20Þ
Due to the ill-posedness of the original problem, we need to

adopt a regularization method to solve the linear system (20). In
this paper, we use the Tikhonov regularization technique [30]
because this method has been proved very effective compared
with other techniques for solving ill-posed problems [31] and
widely used in meshless methods [4,5,19]. Some other outstanding
regularization approaches committed to get stable numerical
solutions have also been developed [31,32], but they will not be
further discussed in this paper. The Tikhonov regularized solution
for (20) can be obtained by solving the following minimization
problem:

min
b

fJA1b�ðq�h2ÞJ2þβ2 JbJ2g ð21Þ

where the regularization parameter β is to be determined. The L-
curve method is suitable for both the square matrix and non-
square matrix cases [31]. Since the coefficient matrix in (20) might
be non-square, we adopt the L-curve method to get an appropriate
value of β. The L-curve method was employed by Lawson and
Hanson [33] in 1974 and by Hansen and O'Leary [34] in 1993.

As mentioned above, once b is determined, the value of u at any
point on ∂Ω2 and in Ω can be approximated by using (6), (8), and
(15).

4. The local meshless method for an IHCP

The inverse heat conduction problem (IHCP) is a typical time
dependent inverse problem. In this section, we consider solving a
2D IHCP using the procedure formulated in the last section.
Consider the IHCP as follows:

∂
∂t
uðx; tÞ ¼Δuðx; tÞ; xAΩ; 0rtrT ; ð22Þ

uðx;0Þ ¼ f tðxÞ; xAΩ [ ∂Ω; ð23Þ

uðx; tÞ ¼ gtðx; tÞ; xA∂Ω1; 0rtrT ; ð24Þ

uðx; tÞ ¼ htðx; tÞ; xA∂Ω2; 0rtrT ; ð25Þ
where T denotes the terminal time, and ft and gt are given
functions, and ht is unknown. ΩDR2 is a bounded domain with
boundary ∂Ω¼ ∂Ω1 [ ∂Ω2, ∂Ω1 \ ∂Ω2 ¼∅.

The additional specification is given as follows:

uðxn

i ; tÞ ¼ qtðxn

i ; tÞ; xn

i AΩ; i¼ 1;2;…;nq; ð26Þ
where xn

i (i¼ 1;2;…;nq) are certain interior points at which
sensors are installed so that the temperature can be measured.

To solve this problem, the standard Euler difference scheme is
used to discretize the time variable. We choose time step size
τ¼ T=M . Then (22)–(26) can be discretized as

umþ1ðxÞ�umðxÞ
τ

¼Δumþ1ðxÞ; xAΩ; m¼ 0;1;…;M�1; ð27Þ

u0ðxÞ ¼ f tðxÞ; xAΩ [ ∂Ω; ð28Þ

umþ1ðxÞ ¼ gmþ1
t ðxÞ; xA∂Ω1; m¼ 0;1;…;M�1; ð29Þ

W. Li et al. / Engineering Analysis with Boundary Elements 57 (2015) 9–15 11



umþ1ðxÞ ¼ hmþ1
t ðxÞ; xA∂Ω2; m¼ 0;1;…;M�1; ð30Þ

and

umþ1ðxn

i Þ ¼ qmþ1
t ðxn

i Þ; xn

i AΩ; i¼ 1;2;…;nq; m¼ 0;1;…;M�1:

ð31Þ
We rewrite (27) as follows:

umþ1ðxÞ�τΔumþ1ðxÞ ¼ umðxÞ; xAΩ; m¼ 0;1;…;M�1; ð32Þ
where the superscript mþ1 means function values at time
t ¼ ðmþ1Þτ.

Similar to the process in Section 3, we approximate umþ1 by
ûmþ1 in the form of a linear combination of CS-RBFs as shown in
(8):

umþ1ðxÞC ûmþ1ðxÞ ¼ ∑
n

j ¼ 1
amþ1
j φα Jx�xj J

� �
; xAΩ; m¼ 0;1;…;M�1;

ð33Þ
and hmþ1

t by ĥ
mþ1
t as (6)

hmþ1
t ðxÞC ĥ

mþ1
t ðxÞ ¼ pðxÞbmþ1; xA∂Ω2: ð34Þ

The idea for solving this time-dependent problem is similar to
the time-independent problem described in the last section. We
just need to rewrite (12) as follows:

ΦI�τΔΦI

ΦB1

ΦB2

0
B@

1
CAamþ1 ¼

um

gmþ1
t

ĥt
mþ1

0
B@

1
CA ð35Þ

where um ¼ ðumðx1Þ umðx2Þ ⋯ umðxniÞÞT . Hence, (15) becomes

amþ1 ¼Φ�1
t H1b

mþ1þΦ�1
t hmþ1

u ð36Þ
where

Φt ¼
ΦI�τΔΦI

ΦB1

ΦB2

0
B@

1
CA; H1 ¼

0
0
P

0
B@

1
CA; hmþ1

u ¼
um

gmþ1
t

0

0
B@

1
CA:

Similarly, we can obtain coefficient vector bmþ1 at t ¼ ðmþ1Þτ by
solving

A1tb
mþ1 ¼ qmþ1

t �hmþ1
2 ð37Þ

where A1t ¼ΦnΦ�1
t H1, hmþ1

2 ¼ΦnΦ�1
t hmþ1

u and
qmþ1
t ¼ ðqmþ1

t ðxn

1Þ qmþ1
t ðxn

2Þ ⋯ qmþ1
t ðxn

nqÞÞT .
To be more specific, we describe the numerical procedure for

solving this IHCP as the iteration process as follows:

(a) Let m¼0, which means the initial time t¼0. Since
u0 ¼ ðu0ðx1Þ u0ðx2Þ ⋯ u0ðxniÞÞT has been given, hmþ1

u is known.
(b) Using the Tikhonov regularization technique with L-curve to

solve (37), we can obtain bmþ1.
(c) Obtain an approximate temperature on ∂Ω2 at time

t ¼ ðmþ1Þτ by (34).
(d) Calculate coefficient vector amþ1 ¼ ðamþ1

1 amþ1
2 ⋯ amþ1

n ÞT by
(36), and get umþ1 at time t ¼ ðmþ1Þτ by (33).

(e) Let m¼mþ1 and repeat (b), (c) and (d) until m¼M�1.

From the procedure described above, we can obtain the
approximate temperature in Ω and on ∂Ω2 at every time node
t ¼ ðmþ1Þτ, m¼ 0;1;…;M�1.

5. Numerical examples

To validate the efficacy of the proposed method, we consider
three examples in this section. The computations were performed
using MATLAB on an Intel Core i5 in Windows 7 Home Basic 64 bit.
The relative error and the root-mean-square-error (RMSE) will be

used in this section to demonstrate the accuracy of the approxi-
mated solutions:

ErðuÞ ¼ Ju� û J
JuJ

;

and

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

j ¼ 1
ûðxjÞ�uðxjÞ
� �2s

where u¼ ðu1 u2 ⋯ uNÞT and û ¼ ðû1 û2 ⋯ ûNÞT denote the
numerical solution and the analytical solution respectively at these
points, and N is the number of test points.

With the increase of the smoothness of CS-RBF and the degree d of
the polynomial in (5), the accuracy of solution can be slightly improved
and the CPU time will be slightly longer [20]. However, as we know,
high-degree polynomial interpolation may arise the numerical oscilla-
tion problem. In this paper, we choose basis function with moderate
smoothness and degree. CS-RBF ð1�r=αÞ6þ ð35ðr=αÞ2þ18r= αþ3Þ is
used in these examples, and the degree of polynomial d¼5 in first two
examples, d¼4 in Example 3. The effectiveness and efficiency of the
method are also greatly depended on the scaling factor α. Generally,
the larger the value of α, the more accurate the interpolation, whereas
the lower the efficiency because of the higher density of the matrix. On
the other hand, we should note that numerical solution can sometimes
be unstable after a certain limit of α [35]. Therefore, in this paper, the
values of α we choose are neither too small nor too large. Moreover,
the more the interpolation points, the smaller the value of α.

For time independent problems, we consider the problem in a
squareΩ¼ ½0;1� � ½0;1� given in Fig. 1 with an unknown boundary
condition on ∂Ω2.

To verify the effectiveness of the method proposed in this
paper, we compare our method with the conventional direct
method [16,17]. For fairness of comparison, we also choose the
same type of CS-RBF as the basis function in the following direct
method. The process of the conventional direct method is briefly
described as follows.

To solve the inverse problem (1)–(4) using the conventional
direct method, we approximate u by ~u in the form of

uðxÞC ~uðxÞ ¼ ∑
nk

j ¼ 1
cjφα rj

� �
; xAΩ [ ∂Ω; ð38Þ

where nk¼ niþnb1þnq, rj ¼ Jx�xj J , φα rj
� �

is a CS-RBF with

scaling factor α. xj
� �nk

j ¼ 1 ¼ xj
� �ni

j ¼ 1 [ xj
� �niþnb1

j ¼ niþ1 [ xj
� �nk

j ¼ niþnb1þ1,

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

x

y

∂Ω1 ∂Ω2

Fig. 1. The square domain with boundary ∂Ω2. The dots in the domain are for over-
specified conditions.
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where xj
� �ni

j ¼ 1DΩ, xj
� �niþnb1

j ¼ niþ1D∂Ω1, and xj
� �nk

j ¼ niþnb1þ1 ¼

xn

j

n onq

j ¼ 1
DΩ.

Note that the coefficient cj
� �nk

j ¼ 1 can be obtained by satisfying

the following conditions:

∑
nk

j ¼ 1
cjΔφα Jxi�xj J

� �¼ f ðxiÞ; 1r irni; ð39Þ

∑
nk

j ¼ 1
cjφα Jxi�xj J

� �¼ gðxiÞ; niþ1r irniþnb1; ð40Þ

∑
nk

j ¼ 1
cjφα Jxn

i �xj J
� �¼ qðxn

i Þ; 1r irnq: ð41Þ

For our simplicity, (39)–(41) can be written in the following matrix
form:

Φkc¼ fk; ð42Þ

where

Φk ¼
Δφα Jxi�xj J

� �
1r irni;1r jrnk

φα Jxi�xj J
� �

niþ1r irniþnb1;1r jrnk

φα Jxn

i �xj J
� �

1r irnp;1r jrnk

0
BBB@

1
CCCA;

c¼ c1 c2 ⋯ cnkð ÞT ;

fk ¼ f ðx1Þ ⋯ f ðxniÞ gðxniþ1Þ ⋯ gðxniþnb1Þ qðxn

1Þ ⋯ qðxn

nqÞ
� 	T

:

The system (42) can be solved by applying the Tikhonov regular-
ization technique and L-curve method. Consequently, the value of
u at any point on ∂Ω2 and in Ω can be approximated by (38). We
can see that the above direct method involves only one simple
step, which is identical to the RBF meshless collocation method for
solving the well-posed problems.

Example 1. We first consider the stationary inverse heat conduc-
tion problem. In this example, the analytical solution for problems
(1)–(4) is known as

uðx; yÞ ¼ exþey; ðx; yÞAΩ [ ∂Ω:

All the discrete value of f ðx; yÞ, gðx; yÞ and qðx; yÞ can be computed
from the above solution. The Dirichlet boundary condition on
∂Ω2 ¼ fðx; yÞ : x¼ 1;0ryr1g is to be determined. The interpola-
tion points are uniformly distributed inside the square and on the
boundary. As shown in Fig. 1, ∂Ω1 ¼ ∂Ω \Ω2. Furthermore, there
are nq¼6 sensors evenly installed on the line x¼0.3.

Since the points on ∂Ω2 have the same abscissa values, (5) can
be reduced to

ĥðxÞ ¼ b0þb1yþb2y2þ⋯þbdy
d; ð43Þ

where d¼5 in this example.
In practice, measurement error should be taken into account.

We use noisy data ~qðxn

i Þ ¼ qðxn

i ÞþσnrandðiÞ in this example, where
qðxn

i Þ is the exact data, magnitude σ indicates the error level and
rand(i) is a random number in ½�1;1�. Here, we set σ ¼ 0:1.

The relative errors and RMSE of our approximation u on ∂Ω2

with different numbers of interpolation points and radii α using
the traditional method and the proposed method are shown in
Table 2, in which CT denotes the CPU time and nz is the number of
non-zero elements of the coefficient matrix. In this example, the
optimal regularization parameters β obtained by the L-curve
method are also provided.

The errors stem not only from the scheme itself, but also from
the noise added to qðxn

i Þ and the L-curve method used in the paper.
Using the conventional direct method based on CS-RBF, numerical
results have large errors. This is fundamentally due to the ill-
posedness of the inverse problem and the instability of the
conventional direct method. However, under the same conditions,
referring to the same points, the radial basis function and para-
meters, the relative error and RMSE on ∂Ω2 by using the method
we proposed are superior to the conventional method. Taking into
account the randomness of disturbance added to qðxn

i Þ, the errors
using our proposed method are basically improved with the
increase of the number of interpolation nodes and scaling factor α.

In Table 2, we also show that the computational efficiency of
our proposed method is significantly superior to that of the
conventional direct method. The MATLAB codes of Tikhonov
regularization and L-curve method we used are developed by
Hansen [36], and these codes are based on singular value decom-
position (SVD). In these experiments, we found that, for both the
conventional method and the proposed method, the process of
singular value decomposition accounted for the vast majority
of the running time of the whole process. Therefore, the efficiency
of each algorithm is greatly affected by the size and the number of
non-zero elements of the coefficient matrix used for decomposi-
tion. The size of the coefficient matrix A1 of (20) in the proposed
method is nq� ðdþ1Þðdþ2Þ=2. Note that, in this example, the size
of A1 is nq� ðdþ1Þ, which is 6�6, since we use (43) instead of (5).
Therefore, no matter how many nodes we select, the number of
non-zero elements of A1 is always 36. Whereas the size of the
coefficient matrixΦk of the system (42) in the conventional direct
method is nk�nk which are 1646�1646, 4046�4046 and
10 106�10 106 corresponding to n¼1681, 4141, and 10 201
respectively. The size and the number of non-zero elements of
Φk are much larger than that of A1, and thus the proposed method

Table 2
Relative error and RMSE of u on ∂Ω2.

n α Conventional direct method Proposed method

Er RMSE CT (s) nz β Er RMSE CT (s) nz β

1681 0.2 0.81 3.63 34.87 270 128 0.0819 0.057 0.25 1.78 36 0.0205
0.3 0.73 3.25 35.40 554 492 0.0370 0.049 0.22 2.75 36 0.0277
0.4 0.65 2.91 39.90 907 104 0.0192 0.048 0.21 3.98 36 0.0385

4141 0.2 0.82 3.69 552.83 1 680 006 0.0096 0.039 0.18 6.17 36 0.0059
0.3 0.57 2.53 607.56 3 452 316 0.0048 0.058 0.26 9.12 36 0.0359
0.4 0.65 2.91 639.86 5 572 438 0.0023 0.061 0.27 16.04 36 0.0117

10 201 0.1 Out of memory 0.082 0.36 12.99 36 0.0388
0.15 Out of memory 0.059 0.26 20.22 36 0.0334
0.2 Out of memory 0.046 0.20 37.62 36 0.0219
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can dramatically improve the computational efficiency and the
condition number of the coefficient matrix.

Example 2. In the second example, we consider the same type of
problem as shown in Example 1. f ðx; yÞ, gðx; yÞ and qðx; yÞ in
problems (1)–(4) are given based on the exact solution

uðx; yÞ ¼ x2þ2yþe�y sin ðxÞ; ðx; yÞAΩ [ ∂Ω:

In this example, six sensors are evenly placed along the line
x¼0.4 in the square domain. Other parameters in Example 1 and
Example 2 are the same. Numerical results are given in Table 3.

To further test the proposed method, we add noise to both gðxiÞ
and qðxn

i Þ. This implies ~gðxiÞ ¼ gðxiÞþσnrandðiÞ and ~qðxn

i Þ ¼ qðxn

i Þþ

σnrandðiÞ. Here, let σ ¼ 0:1. From Table 3, we can see that the
numerical results are still reasonable and stable.

Example 3. For the time dependent example, we consider an
irregular domain as shown in Fig. 2.

The exact solution of (22)–(26) is given by

u x; y; tð Þ ¼ x2þy2þe� t sin xð Þþe� t cos yð Þþ4t; x; yð ÞAΩ
[ ∂Ω; 0rtr1: ð44Þ

Assume d¼4 in (5), and τ¼ 0:1. We choose ni¼5674 uniformly
distributed interpolation points inside the domain and
nb1¼ nb2¼ 150. For α¼ 0:35, the sparsity of matrix Φt is 12.4%.

In this case, the discrete noisy data ~gmþ1
t ðxiÞ ¼ gmþ1

t ðxiÞþ
σnrandðiÞ and ~qmþ1

t ðxn

i Þ ¼ qmþ1
t ðxn

i ÞþσnrandðiÞ are used, where
σ ¼ 0:1. The relative error and RMSE of u at various t using the
proposed method are listed in Table 4.

We can further observe the effectiveness and stability of this
method for solving the IHCP from Table 4. Fig. 3 shows the
approximate and exact temperature on ∂Ω2 at t¼1.

6. Conclusion

We present a local meshless algorithm based on CS-RBFs. This
algorithm is used to solve a certain kind of inverse problems for
Poisson-type equations and an IHCP with certain sensors in the
domain. The numerical results show that the proposed method
can effectively solve the inverse problem with a large number of
interpolation points. In solving the IHCP, we can see that this
method can be easily extended to solving problems with irregular
domains. Since this local method allows us to employ a lager
amount of interpolation points if conditions permit, it is desirable

Table 3
Relative error and RMSE of u on ∂Ω2.

n α Conventional direct method Proposed method

Er RMSE CT (s) nz β Er RMSE CT (s) nz β

1681 0.2 0.83 2.12 34.52 270 116 0.0417 0.077 0.198 1.93 36 0.0460
0.3 0.75 1.94 37.92 554 492 0.0405 0.030 0.076 3.52 36 0.0667
0.4 0.69 1.79 41.03 907 618 0.0435 0.044 0.112 4.08 36 0.0403

4141 0.2 0.83 2.14 551.38 1 679 994 0.0036 0.035 0.089 6.94 36 0.0497
0.3 0.72 1.85 563.02 3 452 316 0.0035 0.022 0.057 10.21 36 0.0452
0.4 0.69 1.79 567.82 5 573 720 0.0061 0.038 0.097 12.11 36 0.0602

10 201 0.1 Out of memory 0.043 0.111 13.53 36 0.0527
0.15 Out of memory 0.039 0.100 25.43 36 0.0600
0.2 Out of memory 0.033 0.085 37.15 36 0.0700

Fig. 2. Peanut domain boundaries. The nodes inside the domain are for over-
specified conditions. ∂Ω2 is represented by a dotted line.

Table 4
Relative error and RMSE of u.

t Er on ∂Ω2 RMSE on ∂Ω2 Er in Ω RMSE in Ω

0.1 3:15E�02 7:68E�02 1:24E�02 2:72E�02
0.2 2:22E�02 6:03E�02 7:7E�03 1:89E�02
0.3 2:87E�02 8:66E�02 9:5E�03 2:63E�02
0.4 1:61E�02 5:38E�02 5:2E�03 1:61E�02
0.5 1:78E�02 6:50E�02 7:1E�03 2:41E�02
0.6 1:73E�02 6:91E�02 6:5E�03 2:43E�02
0.7 1:52E�02 6:58E�02 5:5E�03 2:23E�02
0.8 1:97E�02 9:22E�02 6:5E�03 2:88E�02
0.9 1:41E�02 7:11E�02 4:9E�03 2:32E�02
1 2:06E�02 1:10E�01 7:5E�03 3:87E�02

Fig. 3. Numerical (dots) and exact (curve) temperatures on ∂Ω2 at t¼1.
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to apply the proposed method to more challenging 3D inverse
problems. The implementation of the proposed method to 3D
inverse problems is currently under investigation.
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