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In this paper we propose two fast localized radial basis function fitting algorithms for solving

large-scale scattered data interpolation problems. For each given point in the given data set,

a local influence domain containing a small number of nearest neighboring points is estab-

lished and a global interpolation is performed within this restricted domain. A sparse matrix

is formulated based on the global interpolation in these local influence domains. The proposed

methods have achieved both low computational cost and minimal memory storage. In com-

parison with the compactly supported radial basis functions, the proposed fitting algorithms

are highly accurate. The numerical examples have provided strong evidence that the two pro-

posed algorithms are indeed highly efficient and accurate. In the two proposed algorithms,

we have successfully solved a large-scale interpolation problem with 225,000 interpolation

points in two dimensional space.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

During the past two decades, radial basis functions (RBFs) have undergone intensive research and achieved enormous success

in various areas of science and engineering such as multivariate data interpolation and approximation, surface reconstruction,

computer graphics, numerical solutions of partial differential equations, neural networks, machine learning, etc. The initial

development of RBFs was focused on multivariate data interpolation. In 1982, Franke [1] published a review paper evaluating

virtually all of the interpolation methods for scattered data sets available at that time. As a result, RBFs have attracted great

attention as an effective tool for scattered data interpolation problems. One of the attractive features of RBFs is the simplicity of

handling high dimensional scattered data.

Despite the many attractive features of RBFs, most of the commonly used RBFs are globally supported which means the

resulting matrix for data reconstruction is dense and could be highly ill-conditioned. For large-scale problems, this implies

high computational costs and possible stability issues. For instance, using the general direct solver to fit an RBF with N centers

requires O(N3) flops and O(N2) storage. These computational costs are not feasible when N is sufficiently large. In many real life

applications, the data set can easily go beyond 10,000 which is difficult for RBFs to handle in a reasonable way. In the past, the

interpolation of data associated with large-scale problems was typically achieved by decomposing the problem into sub-domains
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Table 1

Commonly used radial basis functions.

Gaussian: ϕ(r) = e−cr2
, c > 0

Inverse multiquadrics: ϕ(r) = (r2 + c2)−1/2, c > 0

Matern function: ϕ(r) = (cr)nKn(cr), c > 0,

where Kn is the spherical Bessel function, n > 0

Multiquadrics: ϕ(r) = (r2 + c2)1/2, c > 0

Normalized multiquadrics: ϕ(r) = (1 + (cr)2)1/2, c > 0

Thin-plate spline: r2ln (r)

Polyharmonic: r2nln (r)
on which local interpolation problems are solved, often with additional constraints across the domain boundaries so as to assure

continuity of the function and perhaps continuity of its derivatives as well [1–3]. One disadvantage of the domain decomposition

technique is the requirement of domain discretization which is often very tedious. For high dimensional problems, such an

approach is non-trivial. Compactly supported radial basis functions (CS-RBFs) [4] were developed in the mid-1990’s to alleviate

these difficulties. The use of CS-RBF interpolation generates a sparse interpolation matrix which is desirable for interpolating

large-scale problems. However, the convergence rate of CS-RBFs is relatively slow, and it is difficult to achieve high accuracy.

We can observe that there are a number of fast fitting algorithms and fast computational methods available for tackling the

large-scale interpolation problems. We refer readers to references [5–8].

Our purpose in this paper is to propose two localized interpolation techniques to reconstruct surfaces based on the given

interpolation points. Such localized methods are different from CS-RBFs. In our approach, global RBFs are used on each local

influence domain. A global interpolation is performed on each influence domain and then a sparse matrix is formulated to link

all of the influence domains together. The RBFs with strong convergence rates such as Gaussian, multiquadrics (MQ), normalized

MQ, inverse MQ, and Matern functions are used as the basis functions. The sub-optimal shape parameter of these RBFs can be

obtained by using the technique of the so called leave one out cross validation (LOOCV) [9,10]. For every given data point, we

need to search for neighboring evaluation points to form the influence domain so that the functions’ values at the evaluation

points can be approximated. Our proposed approaches have the features of fast computation, small memory storage, and high

accuracy for large-scale fitting problems. The highly efficient kd-tree algorithm [11] is used in the local method to search for

nearest neighbors of the evaluation points among the interpolation points.

2. Radial basis functions interpolation

RBFs have been applied to solve many problems in science and engineering. Among these problems, scattered data interpo-

lation is one of the earliest topics for applications of RBFs. Let � � Rn, and xi � �. We are given (xi, f(xi)) � (xi, fi) as known

coordinate pairs. Let {sj}N
j=1

⊂ � denote the evaluation or test points at which we seek to interpolate f by f̂ , such that f̂ (sj) ≈ f (sj),

j = 1, . . . , N, with f̂ (sk) = f (sk) whenever sk = xk.

The interpolation of the multivariate function f can be constructed by linear combinations of univariate interpolation functions

with Euclidean norm ‖ · ‖. Popular invariant functions include the radial basis functions whose value at any point x � Rn depends

only on the distance from the fixed point c and can be written as

φ(x) = φ(‖x − c‖),
where c is the center of the radial basis function φ. Some commonly used RBFs are listed in Table 1.

The interpolants f̂ to function f can be obtained by

f̂ (x) =
N∑

j=1

αjφ(‖x − xj‖), (1)

in which all of the interpolation points xi, i = 1, 2, . . . , N are chosen as the centers of the basis functions, and αi, i = 1, 2, . . . , N

are unknown real coefficients, which can be obtained by interpolation:

f (xi) =
N∑

j=1

αjφ(‖xi − xj‖), i = 1, 2, . . . , N. (2)

The resulting system of linear equations can be written in a matrix/vector format

Aα = f,

where α = [α1, α2, ���, αN]T, f = [f1, f2, ���, fN]T, and

A =

⎡
⎢⎣

φ(‖x1 − x1‖) · · · φ(‖x1 − xn‖)
... . . .

...
φ(‖xn − x1‖) · · · φ(‖xn − xn‖)

⎤
⎥⎦ , (3)
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where T is used to denote the transpose of a vector or matrix. The invertibility of the linear system (3) is difficult to determine.

If the RBF φ is positive definite, the solvability of the system of linear equations (3) is guaranteed. For example, Gaussian and

Matern/Soboleve RBFs are positive definite, and inverse multiquadrics and CS-RBFs [4,12,13] are strictly positive definite [14]

and thus maintain the invertibility of matrix (3).

MQ is conditionally positive definite [15]. The interpolation matrix generated by thin plate splines can be singular, even with

non-trivial sets of distinct centers [16,17]. Polyharmonic splines, a general case of thin plate splines, are conditionally positive

definite. A polynomial of a certain maximal degree must to be added to (1) to insure invertibility. Let P be a polynomial function

space of order q, and let p1, p2, . . . , pq be a basis of P; then the interpolation function in (1) can be augmented in the following

manner

f̂ (x) =
N∑

j=1

αjφ(‖x − xj‖)+
q∑

l=1

βlpl(x). (4)

Since there are q additional degrees of freedom in (4), the standard polynomial insolvency constraint [18],

pl(x) = 0,∀l = 1, 2, . . . , q and p ∈ Pq−1 =⇒ p = 0, (5)

must be applied. Thus the collocation technique gives the following linear system:

N∑
j=1

αjφ(‖xi − xj‖)+
q∑

l=1

βlpl(xi) = f (xi), i = 1, 2, . . . , N, (6)

N∑
j=1

αjpl(xj) = 0, l = 1, 2, . . . , q. (7)

The system (6)–(7) is a square linear system with N + q unknown coefficients, whose solution can be obtained using standard

methods providing the coefficients uniquely determine the interpolation function (4).

RBFs typically provide very high rates of convergence. The error in approximating or interpolating a set of data representing

the sampling of a smooth function goes to zero very rapidly. Thus, fewer discrete points are needed to accurately represent

or reconstruct the underlying functions. This makes RBFs highly efficient computational tools. Furthermore, RBFs are easy to

implement numerically. However, constructing the system of linear equations by including all of the collocation points within

the domain is generally unstable because the resulting dense matrices become increasingly ill-conditioned and the matrices are

sensitive to the choice of free parameters during the RBF formulation. This makes it difficult, if not impossible, to use global RBF

interpolation to solve large-scale problems.

In contrast, localized formulations can reduce the ill-conditioning of the coefficient matrix. Iterative methods can be used

to improve efficiency when determining coefficients. Since only the nearby collocation points are needed in the formulation

when using local methods, the ill-conditioning associated with large, dense matrix systems can be alleviated. Another important

advantage of local RBF approaches is that the MQ or IMQ shape parameter affects the numerical results only slightly. In general,

the MQ is regarded as one of the best RBFs in terms of accuracy, assuming a suitable shape parameter can be found. For global

RBF approaches, choosing a suitable shape parameter is still a challenging issue. A further advantage of local approaches is that

the computational efficiency does not compromise the accuracy of the methods. Instead of solving a dense system as required

by global approaches, local approaches result in a sparse matrix that can be solved efficiently.

3. Implicit local radial basis function interpolation

Let {xi}N
i=1

be a given large set of scattered data points (sampling points), and {zj}Nt
j=1

be a set of evaluation points. Suppose

the function values {f (xi)}N
i=1

at the interpolation points are given; we try to use these known values to obtain the approximate

values of {f (zj)}Nt
j=1

.

3.1. Algorithm 1

For each xi, we first create a local influence domain, �i = {z
[i]
j

}ns
j=1

, which includes the nearest ns evaluation points to xi. In

this approach, each influence domain contains only evaluation points (see Fig. 1).
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Fig. 1. Local influence domain containing only evaluations points.
Let φ be a radial basis function. Choose all evaluation points in the local domain �i as the centers of the basis functions. From

(1), using RBF interpolation on �i, we have the following linear system⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f̂ (z[i]
1 )

f̂ (z[i]
2 )

...

f̂ (z[i]
ns
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(‖z
[i]
1 − z

[i]
1 ‖) . . . φ(‖z

[i]
1 − z

[i]
ns
‖)

φ(‖z
[i]
2 − z

[i]
1 ‖) . . . φ(‖z

[i]
2 − z

[i]
ns
‖)

...
...

...

φ(‖z
[i]
n − z

[i]
1 ‖) . . . φ(‖z

[i]
n − z

[i]
ns
‖)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α[i]
1

α[i]
2

...

α[i]
ns

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

The above linear system of equations can be written in the matrix form

f̂ns
= �nsns

α[i] (9)

where f̂ns = [f̂ (z[i]
1 ), f̂ (z[i]

2 ), . . . , f̂ (z[i]
ns

)]T , α[i] = [α[i]
1 , α[i]

2 , . . . , α[i]
ns

]T , and

�nsns
= [φ

(‖z
[i]
j

− z
[i]

k ‖)
]1≤j,k≤ns

.

It can be proved that �nsns is non-singular for positive definite RBFs if all evaluation points inside �i are distinct. Thus,

α[i] = �−1
nsns

f̂ns
. (10)

Therefore, for i = 1, 2, . . . , N,

f (xi) =
ns∑

j=1

α[i]
j

φ
(‖xi − z

[i]
j ‖)

= [φ
(‖xi − z

[i]
1 ‖)

, . . . , φ
(‖xi − z

[i]
ns
‖)

]α[i]

= [φ
(‖xi − z

[i]
1 ‖)

, . . . , φ
(‖xi − z

[i]
ns
‖)

]�−1
nsns

f̂ns

= �ns
(xi)̂fns

, (11)

where

�ns
= [φ

(‖xi − z
[i]
1 ‖)

, . . . , φ
(‖xi − z

[i]
ns
‖)

]�
−1
nsns

. (12)

We can easily extend f̂ns to a global vector f̂Nt = [f̂ (z1), . . . , f̂ (zNt )]
T by adding zeros into �ns ; i.e.,

f (xi) = �Nt
(xi)̂fNt

, 1 ≤ i ≤ N. (13)

This is an N × Nt sparse system with Nt unknown approximate function values at Nt evaluation points, f̂ (zj), j = 1, 2, . . . , Nt . If

N < Nt, (13) is an under-determined system which gives inaccurate interpolation. If Nt � N, then the system is an over-determined

or a squared system which can be solved by the least squares method.

Once the approximate function values at Nt evaluation points are obtained, we can proceed to approximate the derivatives f

at the original interpolation points. From (14), we have, for i = 1, 2, . . . , N,
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Fig. 2. Interpolation and evaluations points in the local influence domain.
fx(xi) =
ns∑

j=1

α[i]
j

φx

(‖xi − z
[i]
j ‖)

= [φx

(‖xi − z
[i]
1 ‖)

, . . . , φx

(‖xi − z
[i]
ns
‖)

]α[i]

= [φx

(‖xi − z
[i]
1 ‖)

, . . . , φx

(‖xi − z
[i]
ns
‖)

]�−1
nsns

f̂ns

= �ns
(xi)̂fns

(14)

where

�ns
=

[
φx(‖xi − z

[i]
1 ‖), . . . , φx(‖xi − z

[i]
ns
‖)

]
�−1

nsns
. (15)

Similar to (13), we have

fx(xi) = �Nt
(xi)̂fNt

, 1 ≤ i ≤ N. (16)

Since f̂Nt is known from solving (13), {fx(xi)}N
i=1

can be approximated from (16). {fy(xi)}N
i=1

can be obtained in a similar way.

The limitation of such an approach is that the number of evaluation points has to be sufficiently close to the number of

interpolation points since each interpolation point needs the evaluation points as support in the influence domain.

3.2. Algorithm 2

In this subsection, we propose to modify Algorithm 1 from the last subsection by employing all of the interpolation and

evaluation points in each influence domain (see Fig. 2). In this way, even if only a small number of evaluation points is available,

we can still conduct the approximation on these evaluation points. However, we have to overcome the difficulty that the resultant

matrix is under-determined.

Let {xi}n1
i=1

and {z
[i]
j

}n2
j=1

be the interpolation and evaluation points inside the influence domain. Let {y
[i]
k

}ns
k=1

= {xi}n1
i=1

∪ {z
[i]
j

}n2
j=1

where ns = n1 + n2. Replacing z
[i]
j

by y
[i]
j

from (8) to (12), a similar interpolation procedure can be obtained. As a result, similar

to (13), we have

f (xi) = �Nt+N(xi)

[
f̂Nt

fN

]
, 1 ≤ i ≤ N, (17)

where fN = [f (x1), . . ., f (xN)]T . Notice that (17) is an N × (Nt + N) system of equations which is an under-determined system.

Alternatively, we reformulate (17) in the following way so that the system is solvable[
�N×Nt

�N×N

ON×Nt
IN×N

] [
f̂Nt

fN

]
=

[
fN

fN

]
(18)

where

[�N×Nt
�N×N] = �Nt+N.

To illustrate, the profile of the sparse matrix in (18) for N = 100 and Nt = 80 is shown in Fig. 3 in which the interpolation points

are uniformly distributed grid points and the evaluation points are quasi-random points. The novelty of this approach is the

inclusion of the identity matrix IN × N and the original data values fN into the formulation of (18). The approximate function



96 G. Yao et al. / Applied Mathematics and Computation 265 (2015) 91–102

0 50 100 150

0

20

40

60

80

100

120

140

160

180

200

nz = 1600

Fig. 3. Profile of the sparse matrix in (18) for N = 100 and Nt = 80 .
values f̂Nt at the evaluation points can be obtained by solving (18) using the least squares method. The partial derivative fx can

be evaluated in a similar way as (16).

Note that (18) can be further simplified to the following form:

�N×Nt
f̂Nt

= fN − �N×NfN. (19)

4. Numerical results

To demonstrate the effectiveness of our proposed algorithm, we first perform the test on six benchmark functions [1]. We

also compare our results with compactly supported radial basis functions (CS-RBFs). In this section, we choose the algorithm of

leave-one-out cross validation (LOOCV) [9,10] for selecting a sub-optimal value of the shape parameter. The following MATLAB

code of LOOCV is given in [9]. We refer readers to reference [9] for further details.

1 function ceps = costEps(c,rbf,DM,rhs)

2 A = rbf(DM,c);

3 invA = pinv(A);

4 errorvector = (invA*rhs)./diag(invA);

5 ceps = norm(errorvector);

Note that ‘rhs’ in the code is the right hand side of the matrix system Ax = b. Here we choose ‘rhs’ as the test function f(x, y).

‘rbf’ for the Gaussian function is defined as follows:

rbf = @ (c, r) exp(-c*r.^2);

DM is the distance matrix of matrix A in the influence domain; i.e.,

DM =

⎛
⎜⎜⎜⎜⎜⎝

0 ‖x
[i]
1 − x

[i]
2 ‖ · · · ‖x

[i]
1 − x

[i]
n ‖

‖x
[i]
2 − x

[i]
1 ‖ 0 · · · ‖x

[i]
2 − x

[i]
n ‖

· · · · · · · · · · · ·
‖x

[i]
n − x

[i]‖ ‖x
[i]
n − x

[i]‖ · · · 0

⎞
⎟⎟⎟⎟⎟⎠
1 2
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Table 2

Absolute maximum errors and sub-optimal shape parameters using Algorithm 1 and ns = 30 for various

N and Nt .

(N, Nt) (502, 2000) (1002, 9000) (1502, 20, 000) (2002, 35, 000)

c εmax c εmax c εmax c εmax

F1 4.994 2.12E−04 4.944 2.35E−05 1.922 2.47E−05 4.994 3.97E−06

F2 4.994 1.87E−04 2.414 2.51E−05 1.909 1.65E−05 4.993 5.05E−06

F3 4.831 3.58E−05 3.909 1.06E−06 3.037 8.66E−07 1.909 4.55E−07

F4 1.248 3.61E−06 3.201 3.20E−07 1.830 1.10E−07 0.967 1.03E−07

F5 0.376 4.07E−05 3.578 4.59E−06 4.569 1.13E−06 1.018 1.40E−06

F6 0.375 1.26E−05 2.160 2.46E−06 0.526 1.07E−06 0.959 4.15E−07
Using MATLAB, the calling sequence for the cost function costEps is given by

c = fminbnd(@(c) costEps(c,rbf,DM,rhs),minc,maxc);

where ‘minc’ and ‘maxc’ define the interval to search for the sub-optimal shape parameter c. For the numerical tests in this section,

we choose minc = 0 and maxc = 5. Since the search of the sub-optimal shape parameter using LOOCV could be time consuming,

it is not cost effective to search the sub-optimal shape parameter for each influence domain. In our test, we find it is sufficient to

search the shape parameter for one of the influence domains and then use it for the rest of the computation. Such a strategy may

not be the best, but we find it quite satisfactory as shown in the numerical results in this section.

In the numerical implementation, we select a set of RBF centers {(xi, yi)}N
i=1

and another set of evaluation (or test) points

{(ξi, ηi)}Nt
i=1

with the constraint that Nt < N. Furthermore, we select the evenly distributed RBF centers and apply Halton quasi-

random points for the selection of evaluation points. For convenience of locating evaluation points in the influence domain, we

merge these two sets of points together by placing the evaluation points on top of the center points. Let ns denote the number

of points in each influence domain. To efficiently search evaluation points inside each influence domain, we employ the kd-tree

algorithm [11].

All the numerical results were obtained on a Dell Latitude E6410 8 GB RAM under Windows 7 using MATLAB.

Example 1. In this example, we consider Franke’s six benchmark test functions [1] on the unit square. These test functions are

given as follows

1. Surface F1:

F1(x, y) = 3

4
exp

(−1

4
((9x − 2)2 + (9y − 2)2)

)
+ 3

4
exp

(−1

49
(9x + 1)2 − 1

10
(9y + 1)2

)

+1

2
exp

(−1

4
(9x − 7)2 − 1

4
(9y − 3)2

)
− 1

5
exp(−(9x − 4)2 − (9y − 7)2). (20)

2. Surface F2:

F2(x, y) = 1

9
(tanh(9y − 9x)+ 1). (21)

3. Surface F3:

F3(x, y) = 1.25 + cos(5.4y)

6[1 + (3x − 1)2]
. (22)

4. Surface F4:

F4(x, y) = 1

3
exp

[
−81

16

((
x − 1

2

)2

+
(

y − 1

2

)2
)]

. (23)

5. Surface F5:

F5(x, y) = 1

3
exp

[
−81

4

((
x − 1

2

)2

+
(

y − 1

2

)2
)]

. (24)

6. Surface F6:

F6(x, y) = 1

9

[
64 − 81

((
x − 1

2

)2

+
(

y − 1

2

)2
)]

− 1

2
. (25)

The profiles of F1 – F6 are shown in Figs. 4–6. In the first part of this example, we employ Algorithm 1 to carry out the

computation. In Table 2, we show the maximum errors and sub-optimal shape parameters for various N and Nt using ns = 30.

Note that the initial selection of ns points in the influence domain contains both RBF centers and evaluation points. After we



98 G. Yao et al. / Applied Mathematics and Computation 265 (2015) 91–102

0
0.2

0.4
0.6

0.8
1

0

0.5

1

−0.2

0

0.2

0.4

0.6

0.8

1

X
Y

Z

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

XY

Z

Fig. 4. Test functions F1 and F2.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

XY

Z

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

XY

Z

Fig. 5. Test functions F3 and F4.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

XY

Z

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
2

2.5

3

3.5

4

4.5

5

5.5

6

XY

Z

Fig. 6. Test functions F5 and F6.



G. Yao et al. / Applied Mathematics and Computation 265 (2015) 91–102 99

1 2 3 4 5
10

−5

10
−4

10
−3

shape parameter c
ε m

ax
Fig. 7. Maximum error versus shape parameter for F1.
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Fig. 8. The effect of the number of evaluation points using N = 22, 500, ns = 30 for F1.

Table 3

The maximum errors εmax for various ns .

(N, Nt) = (502, 2000) (N, Nt) = (1502, 18, 000)

ns n εmax ns n εmax

20 7 5.27E−04 20 7 5.27E−05

30 11 2.12E−04 30 11 6.80E−06

40 15 4.98E−05 40 13 2.20E−06

50 20 1.56E−05 50 19 3.70E−06

60 24 2.11E−05 60 23 5.02E−06
remove RBF centers, only evaluation points remain inside the influence domain (see Fig. 1). Hence, the number of evaluation

points in each influence domain could be different.

The test functions F1 and F2 are more challenging for approximation. In the following tests, we will focus on the test of

the F1 function. With the increasing number of RBF centers and evaluation points, we can achieve high accuracy. In Fig. 7, the

maximum errors are obtained using N = 1002, Nt = 9000, and ns = 30 for various shape parameters. For efficiency, the same

shape parameter is being used for every influence domain. We observe that the results are fairly stable with respect to the shape

parameter and consistent with the results obtained in Table 2 where the sub-optimal shape parameter is c = 4.944.

It is important to study the relation between the number of RBF centers and the evaluation points. From Fig. 8, we observe

that the larger the number of evaluation points, the better the accuracy. In general, to obtain good accuracy, Nt should be close

but not too close to N.

Another issue is how to choose the number ns for each influence domain. Let n denote the number of evaluation points in

each influence domain. In Table 3, we observe that for smaller (N, Nt), we can choose larger ns and vice versa for larger (N, Nt). In

general, it is sufficient to choose ns = 30 or 40.

Next, we compare our proposed algorithm with Wendland’s CS-BRBs [4] where the basis function φ(r) = (1 − r)4+(4r + 1) is

being used. We use the MATLAB CS-RBFs code in [19] to produce the result in Table 4. For CS-RBFs, the accuracy will be affected

by the size of local support and the number of RBF centers. Thus the number of evaluation points has no impact on the final

results. However, our proposed method depends both on the number of RBF centers and evaluation points. We try to make the

comparison as fair as possible by considering the number of nonzero elements (nz) in the formulated sparse matrix. In contrast

to the CS-RBFs, as we can see in Table 4, Algorithm 1 has a clear advantage both in accuracy and efficiency.
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Table 4

Comparison of the proposed method and CS-RBF for the F1 function.

N Nt ILRBF CS-RBF

εmax nz CPU εmax nz CPU

16,641 15,500 7.85E−05 244,858 11.94 3.91E−02 473,337 34.37

Table 5

Globally defined radial basis functions.

Gaussian: ϕ(r) = e−cr2
for c > 0

Inverse multiquadrics: ϕ(r) = (r2 + c2)−1/2, c > 0

Matern function: ϕ(r) = (cr)nKn(cr), where Kn is the spherical Bessel function, n > 0

Multiquadrics: ϕ(r) = (r2 + c2)1/2

Normalized multiquadrics: ϕ(r) = (1 + (cr)2)1/2
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Fig. 9. Maximum error versus shape parameter for various RBFs.

Table 6

The maximum error and CPU time using N =
122, 500, Nt = 117, 500.

ns Shape parameter εmax CPU

30 4.826 6.02E−06 132.8

Table 7

The absolute maximum errors and sub-optimal shape parameters using Algorithm 2 and ns = 30 for

various N and Nt .

(N, Nt) (502, 1800) (1002, 8000) (1502, 18, 000) (2002, 32, 000)

c εmax c εmax c εmax c εmax

F1 3.690 3.37E−06 3.654 8.59E−06 3.365 2.96E−07 3.024 4.19E−07

F2 4.994 4.23E−05 4.270 1.06E−05 3.357 6.92E−07 4.402 1.60E−07

F3 2.978 6.49E−07 3.656 2.05E−07 3.363 1.36E−08 3.024 6.27E−08

F4 2.978 7.03E−07 3.655 1.56E−06 3.361 3.13E−08 2.820 7.80E−08

F5 2.709 5.34E−07 3.657 1.48E−06 3.370 4.44E−08 2.917 4.93E−08

F6 2.705 4.63E−06 3.214 5.87E−06 3.471 4.21E−07 3.024 1.92E−06
We would like to indicate that choosing the RBF functions is vital in our proposed localized method. The proposed method

works only for those basis functions with a high convergence rate as shown in Table 5. Polyharmonic splines (r2nln r) and

polynomial RBFs (r2n + 1) fail to produce acceptable results. In Fig. 9, we show the maximum errors with respect to the shape

parameters for various RBFs. Note that normalized MQ outperforms MQ. Overall, Gaussian, normalized MQ, and Matern RBFs

have similar accuracy and stability.

To demonstrate that our proposed method is capable to handle large-scale problems, we test Algorithm 1 using N = 122, 500

and Nt = 117, 500. The results of the maximum error and CPU time are shown in Table 6. The CPU time is reasonable for handling

such a large number of interpolation points.

In the last part of this example, we employ Algorithm 2 to perform the approximation. Here we switch from the Gaussian

basis function to normalized MQ (
√

1 + (rc)2). Note that the accuracy obtained in Table 7 is better than Table 2. However, even if
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Fig. 10. The absolute maximum error verses Nt using N = 225, 000 and Ns = 30 for the F1 function.

−2
−1

0
1

2

−2

0

2
−1

−0.5

0

0.5

1

XY

Z

Fig. 11. The profile of test function F7.

Table 8

The absolute maximum error of function F7 and its derivative with respect to x

using ns = 50.

(N, Nt) ‖f − f̂‖∞ ‖fx − f̂x‖∞ RMSE(fx) Shape parameter

(502, 2000) 8.28E−05 9.05E−03 4.26E−04 1.24

(1002, 9000) 1.55E−06 3.16E−04 1.15E−05 1.84

(1502, 20, 000) 8.05E−07 1.29E−04 3.60E−06 2.40

(2002, 35, 000) 2.40E−07 2.02E−04 3.37E−06 1.53
we use ns = 30 for both algorithms, Algorithm 1 uses less than half of the neighboring points in the influence domains. Algorithm

1 is actually more efficient than Algorithm 2. But when the number of evaluation points is small, Algorithm 2 is more effective.

Fig. 10 shows the performance of Algorithm 2 for F1 function using N = 225,000 and ns = 30 with respect to the number of

evaluation points Nt. The accuracy remains relatively accurate and stable for Nt < 19, 000. This is a sharp contrast to Fig. 8 in

terms of the number of evaluation points.

Example 2. In this example, we test Algorithm 1 for the approximation of the following function and its derivatives in the

domain [−2, 2]2:

Surface F7:

f (x, y) = sin(3x)cos(3y).

The profile of surface F7 is shown in Fig. 11. Note that the domain of this function is four times as large as surface F1 – F6

in the last example. We employ Algorithm 1 and Gaussian as the basis function in this example. We would like to indicate that

the approximation of derivatives is more challenging than the approximation of functions. In Table 8, we show the absolute

maximum errors of function F7 and the absolute maximum errors and root mean square errors (RMSE) of its derivative with

respect to x for various N and Nt using ns = 50. The error of the derivative with respect to y is similar to x, and we thus omit

showing it. As we have noticed in Table 8, the approximation of fx is two to three orders less accurate than its counterpart f. The

difficulty of approximating the derivatives using localized approaches is more pronounced than the global RBF approach.
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5. Conclusions

In this paper, we proposed two algorithms using the concept of localization for the reconstruction of functions and their

derivatives from a given set of scattered data using RBFs. Coupling very selective RBFs with the idea of creating an influence

domain for each interpolation point, we are able to approximate the given function globally in the influence domain using a

small number of neighboring points and then extend all of these local-global approximations to a global approximation through

the formulation of a sparse matrix. As a result, the two proposed algorithms are highly efficient, stable, and capable of handling

a large amount of scattered data. In this paper, with the limitation of using MATLAB, we have been able to use up to 225,000

interpolation points. Using other platforms such as Fortran or C++, we should be able to handle millions of data interpolation

points. The proposed algorithms provide new approaches for solving large-scale interpolation problems.

The two proposed algorithms are suitable for handling different types of data. Algorithm 1 is more efficient than Algorithm 2.

However, when the number of evaluation points is far less than the given interpolation data, Algorithm 2 is more effective.

The difficulties of global RBF interpolation, such as ill-conditioning of the resultant matrix and the determination of the shape

parameters of RBFs, have been largely alleviated using the localized approximation schemes. In comparison with the CS-RBFs,

which are localized RBF schemes, our proposed algorithms are far more efficient and accurate.

One limitation of the proposed schemes is that the number of evaluation points has to be less than the known interpolation

points. Similar to other RBF interpolation schemes, the proposed approaches can be easily extended to higher dimensional

problems. The implementation of the proposed algorithms to problems beyond 2D is currently under investigation.
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