
Ecological Complexity 21 (2015) 14–26

Contents lists available at ScienceDirect

Ecological Complexity

journa l homepage: www.e lsev ier .com/ locate /ecocom
Original Research Article
Understanding the interplay between density dependent birth

function and maturation time delay using a reaction-diffusion
population model

Majid Bani-Yaghoub a,*, Guangming Yao b, Masami Fujiwara c, David E. Amundsen d

a Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO, 64110-2499, USA
b Department of Mathematics, Clarkson University, Potsdam, NY, 13699-5815, USA
c Department of Wildlife and Fisheries Sciences, Texas A&M University, TAMU 2258, College Station, TX 77843-2258, USA
d School of Mathematics and Statistics, Carleton University, ON K1S-5B6, Canada
A R T I C L E I N F O

Article history:

Received 13 November 2013

Received in revised form 22 October 2014

Accepted 23 October 2014

Available online 28 November 2014

Keywords:

Delay

Extinction

Reaction-diffusion

Single species

Allee effect

A B S T R A C T

The present work employs a nonlocal delay reaction-diffusion model to study the impacts of the density

dependent birth function, maturation time delay and population dispersal on single species dynamics

(i.e., extinction, survival, extinction-survival). It is shown that the maturation time and the birth function

are two major factors determining the fate of single species. Whereas the dispersal acts as a subsidiary

factor that only affects the spatial patterns of population densities. When the birth function has a

compensating density dependence, maturation time delay cannot destabilize the population survival at

the positive equilibrium. Nevertheless, when the birth function has an over-compensating density

dependence, the population densities of single species fluctuate in the spatial domain due to the

increased maturation time delay. With the Allee effect and over-compensating density dependence, the

increases in the maturation time may cause extinction of the single species in the entire spatial domain.

The numerical simulations suggest that the solutions of the general model may temporarily remain

nearby a stationary wave pulse or a stationary wavefront of the reduced model. The former indicates the

survival of single species in a narrow region of the spatial domain. Whereas the latter represents the

survival in the entire left-half or right-half of the spatial domain.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Mathematical models in population biology and epidemiology
are becoming more sophisticated and therefore more challenging.
In the last two decades, there has been a significant progress in
mathematical modeling of spatially structured populations. Two
contemporary modeling approaches that have been the center of
attention are known as Britton’s and Smith-Thieme approaches.
Namely, the Britton’s approach Britton (1989, 1990) takes into
account the aggregation mechanism of the population through a
spatio-temporal convolution, whereas the Smith-Thieme ap-
proach Smith and Thieme (1991) incorporates age structures into
the population models. Employing either of these approaches,
various nonlocal delay diffusive models have been proposed
Gourley et al. (2004), Liang et al. (2005), Weng et al. (2008). Anal-
yses of these models are mainly focused on the existence and
behavior of traveling wave solutions Gourley et al. (2004), Liang
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and Wu (2003), So et al. (2001). Nonetheless, there is a need to
compare the possible outcomes of the new models with those of
the traditional models. Specifically, the spatio-temporal patterns
resulting from the new models may reveal population dynamics
and crucial factors that have been overlooked by the traditional
models.

In the present work we study the possible outcomes of the
general age-structured population model proposed by So et al.
(2001). The model has been developed using the Smith-Thieme
approach for one-dimensional unbounded domain. In particular,
let u(x, a, t) denote the population density of the single species at
time t � 0, age a � 0, and location x 2 (�1 ,1) . Then the authors
start with the following age-structured model proposed in Metz
and Diekmann (1986).

@u

@t
þ @u

@a
¼ DðaÞ @

2
u

@x2
� dðaÞu; (1)

where D(a) and d(a) are the diffusion and death rates, respectively.
Let t be the total time spent from birth until becoming a sexually
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mature adult. Then the total mature population at time t and
position x is given by

wðx; tÞ ¼
Z 1
t

uðx; a; tÞda: (2)

By taking the integral from both sides of (1) and assuming that
u(t, 1 , x) = 0, D(a) = Dm and d(a) = dm, we get

@wðx; tÞ
@t

¼ uðx; t; tÞ þ Dm
@2

wðx; tÞ
@x2

� dmwðx; tÞ; (3)

where parameters Dm and dm are diffusion and death rates of
mature population, respectively. Using the method of separation of
variables and Eq. (1), u(x, t, t) can be replaced with an integral term.
Then the nonlocal delay reaction-diffusion (RD) model of mature
population is given by

@wðx; tÞ
@t

¼ Dm
@2

wðx; tÞ
@x2

� dmwðx; tÞ þ e
Z 1
�1

bðwðy; t � tÞÞ f aðx

� yÞdy; (4)

where x2R and 0 < e � 1. The first term on the right hand side of
(4) reflects the spread of adults in the spatial domain and the
second term corresponds to the mortality of adults. The function
bðwÞ is known as the birth function and f aðxÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffi
4pa
p

Þe�x2=4a

is the standard heat kernel which relates to random movement of
individuals. Here a = tDI > 0, where DI is the diffusion rate of
immature population.

The integral term is a weighted spatial average that takes into
account the local increase in the mature population due to
migration of all individuals born elsewhere Gourley et al. (2004). In
particular, the current mature population wðx; tÞ at location x is
increased by the weighted birth rates bðwðy; t � tÞÞ at the previous
time t � t and all locations y2R: The term e represents the
survivorship of immature individuals from the time of birth until
they are mature. This is given by

[(Fig._1)TD$FIG]

ε

Fig. 1. A schematic representation of the density dependent birth function bðwÞ. Possibl

indicates the ratio of the mature population death rate over immature population surv
e ¼ expf�
Z t

0
dIðuÞdug; (5)

where dI(u) is the death rate of the immature population at age
u. Specifically, taking e inside the integral term in (4) and
considering ebðwÞ as a single term, we may realize that the
portion ð1� eÞbðwÞ of individuals did not survive and therefore
removed from the equation. This is similar to models that consider
the mating probability pðwÞ as a limiting factor of reproduction
and include pðwÞbðwÞ rather than bðwÞ Dennis (1989), McCarthy
(1997), Wells et al. (1998).

Considering specific birth functions, the traveling wave solutions
of model (4) have been previously studied Bani-Yaghoub and
Amundsen (2014), Liang and Wu (2003), Liang et al. (2005). More-
over, model (4) has been further extended to RD models with two-
dimensional spatial domains Liang et al. (2005), Weng et al. (2008),
where the existence of traveling wave solutions Liang et al. (2005)
has been investigated. Nevertheless the possible outcomes of model
(4) in regards to extinction, survival or extinction-survival of a
population remain poorly elaborated. The present work studies
these outcomes by considering the general birth function bðwÞ, the
maturation time t and the diffusion rate Dm and DI.

Similar to discrete models Anazawa (2009), the behavior of bðwÞ
can be classified into four categories: Indefinite Population Growth
(IPG), Compensating Density Dependence (CD), Overcompensating
Density Dependence (OCD) and Allee effect (AE), which are shown
in Fig. 1. The OCD and the CD are two self-limiting mechanisms
that arise from scramble competition and contest competition,
respectively Nicholson (1954). The former represents a single
species whose birth rate declines after it reaches a maximum
value. Whereas the latter corresponds to a population with
monotonic increase in the birth rate until it reaches some
asymptotic value. The IPG occurs when bðwÞ is increasing for all
w�0. Moreover, bðwÞmay exhibit an AE Allee (1927, 1933) which
often occurs at low population densities. The main concept of AE is
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e behaviors of bðwÞ are indicated in each panel. The slope (dm/e) of the dashed lines

ival rate. The constant equilibria of model (4) are shown with w1;w2 and w3.
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that the density dependent per capita growth rate increases until
the population reaches an optimal density, thereafter it reduces
due to the increased population density. Mathematically, this
corresponds to a birth function bðwÞ with consecutive inflection
point and maximum point.

Without considering the diffusion and the maturation time
delay (i.e., Dm = 0, DI = 0 and t = 0), model (4) is rewritten
dwðtÞ
dt

¼ ewðtÞgðwðtÞÞ; (6)

where gðwðtÞÞ ¼ ðbðwðtÞÞ=wðtÞÞ � ðdm=eÞ is the density dependent
per capita net growth rate and (dm/e) is the ratio of the mature
population death rate over immature population survival rate.
Similar to Boukal and Berec (2002), the possible outcomes of the
spatially homogeneous model (6) are classified as follows.
i. E
xtinction (E): The population goes extinct regardless of its
initial size wð0Þ ¼ w0; when gðwÞ<0 for all w>0.
ii. E
xtinction-Survival (ES): Extinction or survival of the popula-
tion depends on w0. This is when gðwÞ>0 in the interval
between two positive equilibria and it is negative outside this
interval.
iii. S
urvival (S): The population establishes at a positive equilibri-
um w j, when g(0) > 0 and gðwÞ<0 for all w>w j.

Dispersal of mature and immature populations are considered in
model (4) by the diffusion coefficients Dm and DI, respectively.
Whereas the reproduction and maturation are taken into account by
birth function bðwÞ and the delay term t . Using model (4) the main
objective of the present study is to develop a conceptual framework
that expands outcomes (i)–(iii) according to the changes in dispersal,
reproduction and maturation. In particular, how would the behavior
of the birth function bðwÞ, the maturation time delay t and the
diffusion rates Dm and DI affect the fate of the single species? The
present study examines the local and global dynamics of the model
(4) and employs various numerical simulations to unpack the
interrelationships between bðwÞ; t;Dm and DI . It will be shown that
there is an interplay between maturation and reproduction that can
determine the fate of the single species. Although population
dispersal plays a role in the quality of the spatio-temporal patterns, it
can neither change a model outcome to another, nor neutralize the
impacts of maturation and reproduction. The interplay between
the maturation and reproduction will be investigated according to
the outcomes of model (4). Particularly, for species with an OCD birth
function, theobserved fluctuationsof thespatialpopulationdensities
can be as a result of the prolonged maturation time. This is not
possible for species with a CD birth function. When the Allee effect
and OCD are both taken into account, the prolonged maturation time
can also be responsible for extinction of a single species. With a
general birth function bðwÞ, it will be shown that the fate of a single
species population can be determined at the beginning of the
colonization by the ratio eb0(0)/dm, maturation time delay t and the
initial population density in the spatial domain. Moreover, presence
of a single species only in certain regions of the spatial domain can be
explained by the stationary wave solutions of model (4).

Concerning the diffusion of the immature population, we may
note that DI = a/t . Hence, the immature population is immobile
when a = 0 and the general model (4) is reduced to

@wðx; tÞ
@t

¼ Dm
@2

w

@x2
� dmwðx; tÞ þ ebðwðx; t � tÞÞ; (7)

which has been extensively studied Memory (1989), So and Yang
(1998), So et al. (2000). A non-constant stationary wave solution
wðx; tÞ ¼ fðxÞ of the reduced model (7) must satisfy

Dmf00ðxÞ � dmfðxÞ þ ebðfðxÞÞ ¼ 0: (8)
Let f1, f2 and f3 be three consecutive equilibria of (8). A
solution of (8) that satisfies the boundary conditions f(�1) = f1 is
called a stationary pulse solution of the reduced model (7). Similarly,
a stationary front solution of (7) satisfies the equation (8) and the
boundary conditions f(�1) = f1 and f(+1) = f3 . The stationary
front and pulse solutions of (7) are respectively characterized by the
homoclinic and heteroclinic orbits Guckenheimer and Holmes (1983),
Jordan and Smith (1999) of Eq. (8) in their corresponding phase-
planes. It will be numerically shown that these orbits can influence
the solutions of the general model (4).

The rest of this paper is organized as follows. In Section 2 we
study the impacts of dispersal, reproduction and maturation on the
solutions of the reduced and the general model. In Section 3 the
specific birth functions are introduced and the possible outcomes
of model (4) are studied. In Section 4 the numerical simulations of
the general and the reduced models are presented. In Section 5 a
discussion of the main results is provided.

2. Impacts of dispersal, reproduction and maturation

The main objective of this section is to investigate the impacts
of dispersal Dm and DI, reproduction bðwÞ and maturation time
delay t on dynamics of single species population. Depending on the
behavior of the birth function bðwÞ, it is shown that the solution
wðx; tÞ of model (4) become oscillatory due to increased maturation
time t ; both Dm and DI can qualitatively change the spatio-
temporal patterns of model (4); and Dm affects the stationary
spatial patterns of the reduced model (7).

2.1. Stationary solutions influenced by dispersal

The energy function method Jordan and Smith (1999) can be
applied to investigate the impacts of dispersal on the stationary
solutions of the reduced model (7). Since the immature population
is considered immobile (i.e., DI = 0), we are only concerned with the
impacts of Dm . Eq. (8) is written

df
dx
¼ ’

d’
dx
¼ 1

Dm
ðdmf� ebðfÞÞ:

8><
>: (9)

It can be verified that system (9) is a Hamiltonian system with
the Hamiltonian function

Hðf;’Þ ¼ ’2

2
þ VðfÞ; (10)

where

VðfÞ ¼ � 1

Dm

Z
ðdmf� ebðfÞÞdf (11)

is the potential energy function. Using (10) the solution curves of
the system (9) must satisfy

’ðfÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs� VðfÞÞ

q
; (12)

where s is an arbitrary constant. Suppose that the solution (12)
consists of a homoclinic or a heteroclinic orbit G(f), and the
solution of model (4) or model (7) remains a neighborhood of G(f)
for a long period of time. Then the survival or extinction of the
single species is determined by the stationary pulse or front
solution f(x) corresponding to G(f) . In Section 3 we will use
specific birth functions to derive the exact homoclinic and
heteroclinic orbits corresponding to the spatially dependent ES
outcome. Moreover, Eq. (8) may admit periodic solutions, which
represent a spatially dependent S outcome. If the solution of the
reduced model (7) is attracted by a stationary periodic solution,
then the population density varies periodically in the spatial
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domain without going extinct. The following theorem provides
orbital and sinusoidal approximations of such periodic solutions.

Theorem 1. Let fj be a positive equilibrium of (8), then the orbits of

(9) near (fj, 0) are approximated by

2Hðf j;0Þ þ ’2 þ gðf� f jÞ
2 ¼ k; (13)

where k 2 (�1 , 1) is any constant and g = (eb0(fj) � dm)/
Dm. Furthermore if g > 0, then orbits near (fj, 0) are closed and

the periodic solutions are given by

fðxÞ ¼ c

g
sinð ffiffiffiffigp xÞ þ f j; (14)

where c is a positive constant.

The proof is given in Appendix B. Note that the existence of closed
orbits and the periodic stationary solution f(x) is possible when
g > 0 or equivalently dm/e < b0(fj) for fj > 0 . To satisfy this
condition we need to have b0(f) > dm/e for some f > 0 . Otherwise,
the following theorem indicates that the periodic solution f(x)
does not exist.

Theorem 2. Let b0(f) < dm/e for all f 2 [0, 1), then the system (9)
has no closed orbit in ½0;1Þ � R and therefore the Eq. (8) has no

periodic solution.

The proof is based on Dulac’s criterion (see Appendix B). The

Eq. (8) and system (9) are independent of DI and t. Therefore,
dispersal of immature population and maturation time delay have
no impact of the stationary spatial patters of the reduced model
(7). Theorem 1 and Eq. (14) indicate that the stationary solution
f(x) is influenced by the dispersal of mature population.
Specifically, the amplitude and the frequency of f(x) are
proportional to Dm and 1=

ffiffiffiffiffiffiffi
Dm

p
; respectively.

Although f(x) is the stationary solution of the reduced model
(7), in Section 4 it will be numerically shown that the solutions of
general model (4) can be initially attracted by the stationary pulse
or front solutions of the reduced model (7). This is part of the bigger
picture, where several dynamics of the reduced model are passed
to the general model. In particular the next subsection addresses
the stability of the equilibria, where the stability results are valid
for both reduced and general models.

2.2. Delay-induced bifurcation

The linear stability analysis is applied to investigate the impacts
of maturation time delay on the local dynamics of the general
model (4). Let the solution wðx; tÞ of model (4) in a neighborhood of
the equilibrium w j be in the form of wðx; tÞ ¼ w j þ w̃ðx; tÞ. Then
substituting this form into (4), using the Taylor expansion of bðwÞ
about w j, dropping nonlinear terms, and noting that ebðw jÞ �
dmw j ¼ 0; the model linearized about w j is given by

@w̃ðx; tÞ
@t

¼ Dm
@2

w̃ðx; tÞ
@x2

� dmw̃ðx; tÞ þ eb0ðw jÞ
Z 1
�1

w̃ðy; t

� tÞ f aðx� yÞdy: (15)

By letting w̃ðt; xÞ ¼ eltþikx; the last integral is calculated and the
linearized model (15) is rewritten

@w̃ðx; tÞ
@t

¼ Dm
@2

w̃ðx; tÞ
@x2

� dmw̃ðx; tÞ þ eb0ðw jÞe�ak2

w̃ðx; t � tÞ: (16)

Moreover, the corresponding characteristic equation is given by

lþ Dmk2 � eb0ðw jÞe�ðak2þtlÞ þ dm ¼ 0; (17)

where k2R is the wave number.
Assuming the initial history function wðx; tÞ ¼ gðxÞ for� t �
t � 0; the general solution of the linearized model (16) is given by

wðx; tÞ ¼
Z 1
�1

AðkÞelðk;tÞtþikxdk; (18)

where the A(k) is determined by a Fourier transform of g(x) . Here,
we are concerned with the asymptotic solutions of Eq. (16) and
there is no need to determine A(k) . If all eigenvalues have negative
real parts, then w j is a locally asymptotically stable equilibrium of
the models (4) and (7).

The notation l(k, t) indicates that l is a function of both k and t .
However, using the characteristic Eq. (17) it can be shown that for
Re(l) < 0 and k = 0, the magnitude of Re(l) will increase as the
wave number k changes from zero. Hence the diffusion of the
mature population can only increase the rate of convergence to w j,
but it will not result in loss of stability. The next Theorem classifies
the local stability of w j according to the behavior of the birth
function bðwÞ:

Theorem 3. Let w j be a constant equilibrium of the model (4).
(i) if
 jb0ðw jÞj< dm=e; then w j is locally asymptotically stable,

(ii) if
 b0ðw jÞ � dm=e>0; then w j is unstable,
(iii) if
 b0ðw jÞ þ dm=e<0; then w j loses its stability when t exceeds t̂,

where
t̂ ¼ ðp� arccosð�dm=eb0ðw jÞÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2b02ðw jÞ � d2

m

q
(19)

is a Hopf bifurcation point.

The proof is given in Appendix A. Part (i) of Theorem 3 shows
that the stability is delay independent if the slope of the birth
function at w j has a magnitude less than the ratio dm/e. This occurs
for a positive equilibrium when a CD birth function is considered.
Part (ii) is possible when an OCD birth function with AE is
considered. Hence, a threshold value is defined for the ES outcome
as follows. If 0;w2 and w3 are three consecutive equilibria, where
w2 is the only unstable equilibrium. Then w2 will be a threshold
value and S is the outcome of the general model with an initial
history function wðx; tÞ>w2 for t 2 [� t, 0] and x2R: The outcome
is E when the last inequality is reversed. Part (iii) is an extension to
the Theorem 2.5.1 of Györi and Ladas (1991) and the stability result
provided in Faria et al. (2006). Eq. (19) defines a different threshold
based on the maturation time delay t . In Section 4 we will
numerically show that the spatio-temporal patterns near w j will
undergo several fluctuations when an OCD birth function is
considered and the value of t exceeds t̂: Furthermore, the survival
region in the spatial domain may shrink due to increased values of
t and an OCD birth function with AE.

Theorem 4. If b0(0) < dm/e then the trivial solution of model (4) is

locally asymptotically stable. Moreover, if in addition Dm, DI = 0 and

0< bðwðtÞÞ � b0ð0ÞwðtÞ for all t > � t, then all positive solutions of (4)
have asymptotic behavior limt!1wðtÞ ¼ 0:

Hence, regardless of any initial population density, a single
species population will locally go extinct when b0(0) < dm/e . The
second part of Theorem 4 implies the global extinction however in
the absence of diffusion (see Appendix B for the proof).

3. Possible outcomes of the general model

Using specific birth functions, we will investigate the possible
outcomes of the general model (4). In addition to the classical
outcomes, it will be shown that model (4) can provide space, time
and delay dependent forms E, S and ES. Therefore, the complex



Table 1
List of the density dependent birth functions. The behavior of these birth functions are classified into four categories: overcompensating density dependence (OCD),

compensating density dependence (CD), Allee Effect (AE) and indefinite population growth (IPG). See Fig. 1 for the schematic graph of these functions.

Birth function Behavior (Fig. 1) Case study Refs.

b1ðwÞ ¼ pwe�awq
OCD (c*) Blowfly density oscillations Gurney et al. (1980), Nicholson (1957)

b2ðwÞ ¼ pw=ð1þ awqÞ if q<1, IPG (a) –

if q = 1, CD (b) Exploited fish populations Beverton and Holt (1957)

if q>1, OCD (c*) Traveling wavefronts Liang and Wu (2003), Liang et al. (2005)

b3ðwÞ ¼
pwð1�wq=kq

c Þ
0 if w> kc

�
OCD (c) Whaling/fisheries management Liang and Wu (2003), May (1980)

b4ðwÞ ¼ pw2e�aw OCD, AE (d*) Nonlinear population dynamics Asmussen (1979), So et al. (2001)

b5ðwÞ ¼ pw2=ð1þ awÞ IPG (a) – Eskola and Parvinen (2007)

b6ðwÞ ¼ pw2=ð1þ awÞ2 CD, AE (d) Models with Allee effect Eskola and Parvinen (2007)

Notes. 1 Parameters p, q, kc and a and are all positive constants. 2 The notation * indicates the curves in Fig. 1 with right tail; 3 Birth functions b5ðwÞ and b6ðwÞ are special cases of the

birth function used in the model proposed by Eskola and Parvinen (2007).
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dynamics of single species can be investigated with respect to the
changes in dispersal, reproduction and maturation.

3.1. Spatio-temporal patterns and wave solutions

Table 1 represents the specific birth functions employed in this
study. See also the corresponding schematic graphs shown in
Fig. 1. As described below, these birth functions have been
frequently used in various studies of single species. The birth
function b1ðwÞ was initially proposed by Nicholson Nicholson
(1954, 1957) to study the oscillatory fluctuations in population
density of sheep blowfly Lucilia cuprina. Later Gurney, Blythe and
Nisbet Gurney et al. (1980) used b1ðwÞ and extended the basic
model (6) by including a discrete delay term. They showed a
‘‘humped’’ relationship between future adult recruitment and
current adult population of blowflies. Moreover, b1ðwÞ has been
used in the reduced model (7) to investigate the asymptotic
solutions Memory (1989), the numerical Hopf bifurcation So et al.
(2000), solutions of the Dirichlet problem So and Yang (1998) and
the traveling wave solutions Li et al. (2007), So and Zou (2001).

The birth function b2ðwÞ with q = 1 was first proposed by
Beverton & Holt Beverton and Holt (1957) to study the dynamics of
exploited fish populations. It can be shown that the birth function
b3ðwÞ is basically the same as the birth function proposed by May
May (1980) which was used in studies of fisheries and whaling
management. The work of Liang and Wu Liang and Wu (2003)
considers the birth functions, b1ðwÞ � b3ðwÞ to examine the
traveling wave solutions and numerical approximations of model
(4) with an extra advection term. The birth function b4ðwÞwas first
introduced by Asmussen Asmussen (1979) to study density
dependent selection associated with Allee effect. Later Aviles
Aviles (1999) used b4ðwÞ to study the relation of nonlinearity and
Table 2
The nontrivial equilibria of the models (4) and (7). The existence conditions for the station

the stability of constant equilibria. Those shown inside parentheses relate to the syste

Function Positive equilibria Existence con

b1ðwÞ w2 ¼ ðlnðe p=dmÞ=aÞ1=q ep/dm>1

b2ðwÞ w2 ¼ ððe p� dmÞ=admÞ1=q ep/dm>1

b3ðwÞ w2 ¼ kcð1� dm=e pÞ1=q ep/dm>1

b4ðwÞ w2 ¼ �W0ð�adm=e pÞ=a ep/dm> ae

w3 ¼ �W�1ð�adm=e pÞ=a (cond1 or cond

b5ðwÞ w2 ¼ dm=ðe p� admÞ ep/dm> a (con

b6ðwÞ w2;w3 ¼ ðe p� 2adm� ep/dm>4a (coffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e pðe p� 4admÞ

p
Þ=2a2dm

Notes: W0(x) and W�1(x) represent the real-valued principal and the lower branches of Lamb

AS: locally asymptotically stable and U: unstable. By Theorem 3 stability of w j can be delay de

existence of the stationary pulse, cond1: ep/dm> ae, cond3: ep/dm> a and cond4: ep/dm>4a
cooperation to evolution of sociality. The birth functions b5ðwÞ and
b6ðwÞ are special cases of the birth function used in the model
proposed by Eskola and Parvinen Eskola and Parvinen (2007).

The non-constant stationary solutions of the reduced model (7)
include the homoclinic and heteroclinic orbits of the system
(9). Specifically, a homoclinic orbit of system (9) represents a
stationary pulse solution of the reduced model (7), whereas a
heteroclinic orbit represents a stationary front. The following two
theorems establish the conditions for existence of the homoclinic
and heteroclinic orbits of the system (9).

Theorem 5. The system (9) admits a homoclinic orbit if either of the

conditions (i)–(iii) is satisfied.
(i) a
ary p

m (9)

dition

2)

d3)

nd4)

ert W

pend

(The
e < ep/dm and b(f) = b4(f) .

(ii) a
 < ep/dm and b(f) = b5(f) .
(iii) 4
a < ep/dm and b(f) = b6(f) .
Theorem 6. Let ep/dm = era/r, where r � 1.451 is the root of �2ek/
k + k2/2 + k + 2 +2/k . Then system (9) with birth function b4(f) has a

heteroclinic orbit. Moreover, there exists no heteroclinic orbit when

b6(f) is considered.

See Appendix B for the proofs of Theorems 5 and 6.
The general model (4) has the same constant equilibria as the

reduced model (7), and the system (9). The expressions for these
equilibria are indicated in the second column of Table 2. The third
column of Table 2 provides the conditions for existence of the
constant equilibria. Moreover, the conditions inside the parenthe-
ses are for existence of the stationary pulses and the stationary
front of the reduced model (7) characterized by the homoclinic and
ulse and front are indicated in the parentheses. The last three columns indicate

s w1 w2 w3

U AS –

U AS –

U AS –

AS (S) U (C) AS (S)

AS (S) U (C) –

AS (S) U (C) AS (S)

(x) function, for x2 (� e�1, 0). For models (4) and (7) the equilibria are classified as

ent. The equilibria of system (9) are classified as (S): saddle and (C): center. For the

orem 5). For the existence of the stationary front, cond2: e p
dm
� 2:94a (Theorem 6).
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the heteroclinic orbits of the system (9). The last three columns of
Table 2 represent the stability of the positive constant equilibria.
The stability results are the same for the reduced and the general
model, but different when system (9) is considered. As indicated
inside the parentheses, the equilibria of system (9) are classified as
saddle or center. For the reduced and general model the stability of
the equilibria can be delay dependent if b0ðw jÞ þ dm=e<0 (see
Theorem 3). This is possible when ep/dm is large and b1ðwÞ � b4ðwÞ
are considered. In Section 4 it will be shown that the bifurcating the
solutions of model (4) result in the spatio-temporal patterns of
single species densities.

3.2. Classical versus new outcomes

The specific outcomes of the general model (4) and the required
conditions are summarized in Table 3. In addition to the classical
outcomes E, S and ES, the general model (4) is capable of generating
delay and space dependent S and ES. The space and delay
dependent survival is denoted by S(x, t), which is only possible
when a birth function without AE is considered. Specifically, when
bðwÞ ¼ biðwÞ; i ¼ 1;2;3 and the conditions stated in the fourth
column are satisfied, survival of the single species in the spatial
domain is delay dependent. If the maturation time delay t is greater
than the threshold t̂ defined in Eq. (19), then stability of w2 is lost
and eventually oscillatory solutions wðx; tÞ will bifurcate from
w2. The space and delay dependent extinction-survival outcome is
denoted by ES(x, t), which is only possible when an OCD birth
function with AE is considered. Namely, with b4ðwÞ and ep/dm > 3/
a, the location of the single species and the magnitude of the
maturation time delay determine the extinction or survival of the
population. When the delay t is substantially increased the
population goes extinct in the entire spatial domain (see ES(x,
t)! E in Table 3). Delay has no effect if a CD birth function with AE,
such as b6ðwÞ is considered. With an IPG birth function such as
b5ðwÞ, the equilibrium w2 is unstable and it is not bounded by any
other equilibrium. Then for single species with initial population
densities greater than w2 in the spatial domain, the general model
(4) results in unbounded population densities, which is not
realistic. The spatio-temporal extinction-survival outcomes are
denoted by ES1(x, t) and ES2(x, t). These outcomes are respectively
possible when the solutions of model (4) remain in a neighborhood
of a stationary pulse and a stationary front of model (7) for a long
period of time. The numerical simulations confirm the last two
outcomes when an OCD birth function with AE is considered.
Table 3
Possible outcomes of the general model (4) and the required conditions. Classical outcom

the new outcomes are only possible for the general model (4).

Function Classical outcomes

S E
b1ðwÞ ep/dm2 (1, e2/q) ep/dm<1

b2ðwÞ ep/dm2 (1, q/(q�2)) ep/dm<1

b3ðwÞ ep/dm2 (1, (q + 2)/q) ep/dm<1

ES E
b4ðwÞ ep/dm2 (ae, 3/a) ep/dm<ae

b5ðwÞ ep/dm> a ep/dm<a

b6ðwÞ ep/dm>4a ep/dm<4a

b4ðwÞ
b6ðwÞ

b4ðwÞ

Notes. The outcomes are classified into S, E, ES: space and delay independent Survival, Extinc

t): space and delay dependent Extinction-Survival; ES1(x, t): space and time dependent Extinc

space and time dependent Extinction-Survival with survival in the entire left or right half o

population density is less than w2 . Otherwise, the population density reaches infinity, whi
4. Numerical simulations

Using a finite difference method and Matlab 2014a, the
general model (4) and the reduced model (7) were explored for
different sets of parameter values, initial conditions and the
specific birth functions. We also used Matlab ODE 45 and the
toolbox ‘‘pplane8’’ to numerically verify the existence of periodic
stationary solutions, stationary pulses and fronts of the reduced
model (7).

4.1. Formation of stationary pulse and front

Fig. 2(a) and (c) represent the phase-planes of the system (9)
when birth function b4ðwÞ was considered (see Theorem 5 part (i)
and Theorem 6). The corresponding stationary pulse and front
solutions of the reduced model (7) are shown with the dashed lines
in panels (b) and (d), respectively. Moreover, the periodic solutions
(shown with solid lines) relate to the closed orbits in the phase-
planes. The periodic solutions represent periodic forms of survival
in the spatial domain, whereas the stationary pulse in panel (b) and
the stationary front in panel (d) represent spatially dependent ES
outcomes. Note that we did not impose any phase condition Doedel
and Friedman (1989), Friedman and Doedel (1991) and therefore
the stationary solutions may occur anywhere in the spatial domain.
Specifically, for any constant c, both f(x) and f(x + c) are the
solutions of the Eq. (8) satisfying the boundary conditions
f(�1) =0 . Imposing a phase condition can be unrealistic because
it requires a template function that is practically unknown. Similarly,
thedashed line in panel (d) represents a stationaryfrontthatmay occur
anywhere in the spatial domain. The specific parameter values used to
generate Fig. 2 aree = 0.1, Dm = 3, p = 0.1, a = 0.4, dm = 0.0075 for panels
(a) and (b), and dm = 0.0085 for panels (c) and (d).

The numerical simulations suggest that the solution of the
general model (4) can be initially attracted by the stationary pulse
or front solutions of the reduced model (7). However, the actual
convergence to the stationary pulse or front doesn’t seem to occur.
As shown in panel (a) of Fig. 3, the solution of the general model (4)
first approaches to the stationary pulse of model (7), then it slowly
moves away and converges to the spatially homogenous equilib-
rium w3 ¼ 4:45 (see Table 2, row 4). Panel (b) of Fig. 2 represents
the approach to the stationary pulse (see the animation file
mmc4.gif available in the supplementary data). Also, the final
convergence to w3 is shown in the animation mmc7.gif. This
behavior may resemble that of solutions around a saddle for a
es are the same as those of spatially homogeneous single species model (6). Whereas

New outcomes

S! S(x, t)
ep/dm> e2/q

ep/dm>q/(q�2)

ep/dm> (q + 2)/q

ES!ES(x, t) ES(x, t)!E
ep/dm>3/a ep/dm>3/a, t large

ES1(x, t) ES1(x, t)!S or E
ep/dm> ae ep/dm>ae, t large

ep/dm>4a ep/dm>4a, t large

ES2(x, t)
ep/dm�2.94a

tion, Extinction-Survival, respectively; S(x, t): space and delay dependent survival; ES(x,
tion- Survival with survival only in a narrow region of the spatial domain; and ES2(x, t):

f the spatial domain. With the birth function b5ðwÞ extinction occurs only when initial

ch is not biologically realistic.
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Fig. 2. The phase-plane and the stationary solutions of the reduced model (7). (a) The homoclinic orbit and the equilibrium solutions of Eq. (8); (b) the stationary pulse (shown

with dashed line) corresponding to the homoclinic orbit. The inner panel represents a periodic solution of Eq. (8); (c) the heteroclinic orbit and the equilibrium solutions of

Eq. (8); (d) the stationary front (shown with dashed line) corresponding to the heteroclinic orbit. We considered b4ðwÞ and the parameter values e = 0.1, Dm = 3, p = 0.1, a = 0.4,

dm = 0.0075 for panels (a and b) and dm = 0.0085 for panels (c and d).
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system of ordinary differential equations. Particularly, the solution
wðx; tÞ of the initial value problem first approaches to the stationary
pulse and then it moves away and follows the stable manifold of w3:

Note that the initial history function is a determining factor in
the convergence of wðx; tÞ to the trivial equilibrium or w3. Here
we considered wðx; tÞ ¼ w2 � y0 þ 0:2expð�0:001ðx� x0Þ2Þ, with
t 2 ½�t;0�;w2 ¼ 1:22; y0 ¼ 0:04 and x0 = 222, where w2 is the
unstable equilibrium of the general model. The value of x0

corresponds to the peak of the stationary wave in panel (b). Hence,
instead of the phase condition Doedel and Friedman (1989),
Friedman and Doedel (1991), the initial population densities in
the spatial domain can be employed to determine the peak and the
actual location of the stationary solution in the spatial domain. By
changing the value of x0, the solution wðx; tÞ is initially attracted by
the same stationary pulse that is shifted to the left or right.
Furthermore, increasing the value of y0 will result in convergence to
the trivial equilibrium. This corresponds to ES1(x, t)! E in
Table 3. Whereas decreasing the value of y0 results in convergence
to w3 ¼ 4:45; which represents ES1(x, t)! S in Table 3. This
highlights the dependance of the model outcomes to the initial
history function. Panels (c) and (d) of Fig. 3 illustrate that the solution
wðx; tÞ of the general model (4) remain in a neighborhood of the
stationary front f(x) of the reduced model (7) for a long period of
time. This corresponds to ES2(x, t) in Table 3. The initial history
function is wðx; tÞ ¼ w2 � y0 þ 0:2=ð1þ expð�0:043ðx� x0ÞÞÞ for
t 2 ½�t;0�; y0 ¼ 0:1;w2 ¼ 1:63 and x0 = 210 . Again, changing x0

value will shift the stationary front and changing the y0 value will
result in convergence to the equilibrium w1 ¼ 0 or w3 ¼ 3:63:
Animation mmc3.gif in the supplementary data shows that the
solution of model (4) is attracted by the stationary front. For Fig. 3 we
considered t = 1 and DI = 1. All other parameter values are the same
as those used for generating Fig. 2.

4.2. Delay-induced spatial patterns

Fig. 4 represents the destabilizing effects of delay t for bðwÞ ¼
b1ðwÞ; dm ¼ :05; e ¼ 0:2; p ¼ 5; a ¼ 1; q ¼ 1 and the initial history
function wðt; xÞ ¼ 1þ cosðx=10Þ; for t 2 [� t, 0] . Namely, in the
absence of diffusion (i.e., Dm, DI = 0), panel (a) shows that the
oscillatory and periodic solutions bifurcate from the positive
equilibrium w2 due to increases in t (see the animation mmc5.gif).
When the diffusion of mature and immature populations are
included (i.e., when DI, Dm > 0), the spatial patterns are substan-
tially changed as t is increased. As shown in panels (b)–(d) of Fig. 4,
the changes in the spatial patterns can be traced back to the
bifurcating solutions presented in panel (a). Hence the survival of a
single species population (that is established at a positive stable
equilibrium) changes to a survival with fluctuating values of the
population density in the spatial domain (see S! S(x, t) in
Table 3). The transitions of spatial patterns from (b) to (d) are
shown in movie clip mmc1.gif. Considering part (iii) of Theorem 3,
similar results were obtained using different parameter values,
initial history functions and birth functions b1ðwÞ � b3ðwÞ. Hence,
delay dependence of the positive equilibrium can play a crucial
role in the spatial patterns of the general and reduced models.

As mentioned before, the reduced model (7) represents
dynamics of a single species whose immature population is
immobile (i.e., DI = 0). To numerically observe the impacts of
immature population dispersal, we may compare the solutions
wrðx; tÞ and wgðx; tÞ corresponding to the reduced model (7) and
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Fig. 3. The solutions of the general model (4) can approach to the stationary solutions of the reduced model (7). (a) The solution wðx; tÞ initially approaches to the stationary

pulse solution f(x). Thereafter it converges to the constant equilibrium w3. See the movie clip mmc7.gif available in the supplementary data. (b) Initial approach to the

stationary pulse. See the movie clip mmc4.gif. (c and d) The solution wðx; tÞ approaches to the stationary front solution f(x). See the movie clip mmc3.gif.; Here, t = 1, DI = 1

and the other parameter values are the same as those used to generate Fig. 2. The initial history functions related to panels (a) and (c) are wðx; tÞ ¼
w2 � 0:04þ 0:2expð�0:001ðx� 222Þ2Þ and wðx; tÞ ¼ w2 � 0:1þ 0:2=ð1þ expð�0:043ðx� 210ÞÞÞ, with t 2 [� t, 0], respectively.
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the general model (4), respectively. Let R(x, t) be the relative
difference between the spatial patterns generated by wrðx; tÞ and
wgðx; tÞ defined by

Rðx; tÞ ¼ jwgðx; tÞ �wrðx; tÞj
wgðx; tÞ

: (20)
Then R(x, t) measures the influence of immature population
dispersal on the spatio-temporal patterns. Namely, panels (e) and
(f) of Fig. 4 represent the relative differences between the spatial
patterns generated with the reduced and the general models. It can
be seen that the magnitude of R(x, t) drops as t increases.
Nevertheless the relative differences further spread in the spatial
domain, when t is increased.

Although the spatio-temporal patterns are greatly influenced
by the choice of the initial history function, we numerically
observed that the impact of the initial function on the spatial
patterns vanishes over the time. Whereas the oscillations due to
large values of delay (e.g., t = 50) persist. This may suggest an
approximate solution of the form wðx; tÞ ¼ cðxÞutðtÞ;where ut(t) is
the solution of the model (4) with DI = 0, Dm = 0 and c(x) is a
continuous function that converges to a positive constant as
t!1 .

We also explored the impact of mature population dispersal on
the spatio-temporal patterns. By increasing the value of Dm, we
noticed that the influence of the initial condition on the spatial
patterns disappears in a shorter period of time. However,
regardless of Dm values, the oscillation due to the delay-induced
bifurcating solutions persists.
4.3. Formation of traveling wavefront

Fig. 5(a) represents a numerical verification of Theorem 4 when
the birth function b3ðwÞ is used. Under the conditions of
Theorem 4, the extinction of single species is independent of t
and the initial population density. The specific parameter values
are dm = 0.33, t = 10, e = 0.1, p = 4, q = 1 and kc = 5 (and Dm = 0.5,
DI = 0.1 for the inner panel). Fig. 5 (b)-(d) illustrates the ES(x,
t)! E scenario in Table 3, where the survival region in the spatial
domain is eventually vanished as t increases. Here we considered
bðwÞ ¼ b4ðwÞ;wð0; xÞ ¼ w2 þ 0:1cosðx=10Þ; p ¼ 4; a ¼ 1; e ¼
0:1; dm ¼ 0:05;Dm ¼ 0:5 and DI = 1/t . By part (iii) of Theorem 3,
when eb0ðw3Þ þ dm <0, the stability of the equilibrium w3 is lost
when t is increased. Using the above values we get that w1 ¼ 0 is
stable and delay independent, w2 ¼ 0:14 is unstable and w3 ¼
3:2617 is stable but delay dependent. By increasing t the triangular
region of survival (see panel (c) of Fig. 5) shrinks and ultimately
disappears. This is due to the loss of the stability of w3 and the
change of the bistable to the monostable case. Therefore, the single
species goes extinct when t is increased. The movie clip mmc2.gif
representing the transition from (b) to (d) is provided in the
supplementary data. Despite the case bðwÞ ¼ b1ðwÞ, here the initial
history function and the maturation time delay may determine the
fate of the single species population. It can be numerically shown
that the single species will survive if wðt; xÞ>w2 for all
x2R; t2 ½�t;0� and t small, whereas it goes extinct when the last
inequality is reversed. This coincides with the classical ES outcome
(see the second column of Table 3). Moreover, Fig. 5 (c) represents
the formation of the traveling wavefronts in the spatial domain.
Previous studies have established the existence of the traveling
wave solutions for the bistable case (see Gourley et al. (2004) and



[(Fig._4)TD$FIG]

Fig. 4. Impacts of the maturation time delay on stability of w2 and the spatial patterns of the single species. We considered bðwÞ ¼ b1ðwÞ; dm ¼ :05; e ¼ 0:2; p ¼ 5; a ¼ 1; q ¼ 1

and wðt; xÞ ¼ 1þ cosðx=10Þ; for t 2 [� t, 0] (a) In the absence of diffusion (i.e., when Dm, DI = 0), the oscillatory and periodic solutions bifurcate from the equilibrium w2 when t
is increased. See the movie clip mmc5.gif available in the supplementary data; (b–d) Inclusion of the diffusion (i.e., when Dm = 0.5, DI = 1/t) generates spatio-temporal

patterns that are sensitive to the value of t. Animation mmc1.gif shows the transition from (b) to (d); (e) the relative difference between the spatial patterns generated by the

reduced model (7) and the general model (4) for t = 20; (f) as t increases, the differences spread more in the spatial domain.
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the references therein). However the formation of the traveling
wavefronts has been less examined. The file mmc6.gif is the
animation of panel (c), which illustrates the formation of the
traveling wavefronts of model (4) in the spatial domain. Note that a
monotonic traveling wavefront of the general model may become
oscillatory when the diffusion ratio DI/Dm is greater than a critical
value dc and the slope of the birth function at the nontrivial
equilibrium is negative (see proposition 2 and Section 4 of Bani-
Yaghoub and Amundsen (2014)).

5. Discussion

The present work was an attempt to investigate the inter-
relationships between dispersal DI, Dm, reproduction bðwÞ, and
maturation t according to the outcomes of the general model
(4). We showed that the single species dynamics are greatly
influenced by the interplay between maturation and reproduction
as opposed to dispersal. Theorem 3 shows that the impact of the
maturation time delay t on the population dynamics is highly
dependent on the slope of the birth function bðwÞ at the positive
equilibrium w j: Particularly, with a CD birth function, the classical
S outcome and the spatial patterns remain delay independent.
However, as shown in Fig. 4(b)–(d), an OCD birth function may
result in space and delay dependent S. With the AE and OCD,
Fig. 5(b)–(d) shows that the increases in the delay may change the
ES outcome defined by the traveling wavefronts in panel (c) to E
outcome in panel (d).

The destabilizing impacts of delay have been previously shown
for spatially homogeneous models Gopalsamy (1992), Gurney et al.
(1980), Kuang (1993). The stability conditions of Theorem 3 are
similar to those of the Theorem 2, page 70 of Kuang (1993) and
Section 2.3 of Gopalsamy (1992). Here we showed that the impacts
of maturation time delay and the birth function remain present for
models that include delay, diffusion and nonlocality. The numeri-
cal simulations indicate that different values of the mature
diffusion rate Dm result in qualitatively different spatial patterns.
However, the changes in Dm can neither overcome the oscillations
caused by the maturation time delay t nor alter the E, S or ES
outcome. Hence the impact of Dm on the spatial patterns is less
dominant, as opposed to the impacts of t and bðwÞ.

Depending on the initial population densities of the single
species in the spatial domain, the spatially dependent ES outcome
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Fig. 5. Population extinction may occur due to the restriction on the birth function (see Theorem 4) or due to delay increases (see part (iii) of Theorem 3). (a) The population goes

extinct irrespective of the initial population density and the values of t (see Theorem 4). Here we considered bðwÞ ¼ b3ðwÞ; kc ¼ 5; q ¼ 1; p ¼ 2; e ¼ 0:1; dm ¼ 0:33; t ¼ 10 and

(Dm = 0.5, DI = 0.1 for the inner panel). (b)-(d) Simulation of the case ES(x, t)! E for b4ðwÞ in Table 3. We considered bðwÞ ¼ b4ðwÞ; p ¼ 4; a ¼ 1; e ¼ 0:1; dm ¼ 0:05;Dm ¼ 0:5

and DI = 1/t . The initial history function is wðt; xÞ ¼ w2 þ 0:1cosðx=10Þ;where t 2 [� t, 0] . The value ofthas been indicated in each panel. The movie clip mmc2.gif representing

the transition from (b) to (d) is available in the supplementary data. Also mmc6.gif animates the formation of traveling wavefronts as shown in panel (c).
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may gradually change to the classical E (Fig. 5 (c),(d)) or S outcome.
Particularly, as shown in Fig. 3 (a), first the survival occurs only in a
narrow region of the spatial domain and thereafter, the survival in
the narrow region will extend to the survival in the entire spatial
domain. By Theorem 6 a CD birth function with AE may give rise to
a stationary wavefront, which represents a different quality of
spatially dependent ES . Namely, the survival occurs in the entire
left-half or right-half of the spatial domain. This is shown in panels
(c) and (d) of Fig. 3, where the spatially inhomogeneous initial
population densities above and below the unstable equilibrium w2

lead to formation of the stationary wavefront.
Theorems 5 and 6 are limited to specific birth functions.

However, they establish conditions for existence of stationary
pulse and front solutions of the reduced model (7). The existence
and formation of the stationary solutions may explain certain
ecological mechanisms as follows. Formation of a stationary pulse
in the spatial domain may correspond to the directional movement
of individuals that are initially scattered in the spatial domain and
they gradually form a breeding area (Yadav (2006), chapter 6).

Table 3 is a collection of the possible model outcomes when the
specific birth functions are used. These birth functions cover a wide
range of ecological concepts indicating the widespread applicabil-
ity of the model analysis provided in this study. Note that the ratio
ep/dm is originated from the ratio eb0(0)/dm, where b0(0) may
represent the rate of colonization at low population densities.
Hence, the fate of a single species population can be determined at
the beginning of the colonization by the ratio eb0(0)/dm and the
initial population densities in the spatial domain. For instance, as
shown in the fourth column of Table 3, space and delay dependent
survival is predicted if this ratio exceeds certain threshold values.

In conclusion, the present study lays the foundations for a
deeper understanding of single species dynamics through analysis
of a nonlocal delay RD model. The new and classical model
outcomes may enable the researchers to trace back the main
causes of the spatio-temporal density fluctuations according to the
changes in dispersal, maturation and reproduction.
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Appendix A. Details on local stability analysis

Proof of Theorem 3,

Part (i)

When t = 0 the characteristic Eq. (17) is reduced to

l ¼ eb0ðw jÞe�ak2 � dm � Dmk2. Since jb0ðw jÞj< dm=e; l < 0 for all

k2R and a � 0 . Hence w j is asymptotically stable. Let t > 0. Assume

that the characteristic Eq. (17) has a root l = u + iv where u � 0 for

some t > 0. Substituting l = u + iv into (17) and equating the real part

and the imaginary part to zero we get that

Dmk2 þ uþ dm � eb0ðw jÞe�ðak2þutÞcosðtvÞ ¼ 0; (A.1)

vþ eb0ðw jÞe�ðak2þutÞsinðtvÞ ¼ 0: (A.2)

Moving the terms with sine and cosine to the right-hand side,

squaring them and adding them together, we obtain

ðDmk2 þ uþ dmÞ
2
þ v2 ¼ e2b0

2ðw jÞe�2ðak2þutÞ: (A.3)
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Since t, a, u � 0 we get that

ðDmk2 þ uþ dmÞ
2
þ v2 � e2b0

2ðw jÞ: (A.4)

Expanding the first term in (A.4) we have

2Dmk2dm þ 2Dmk2uþ D2
mk4 þ u2 þ 2udm þ v2

� e2b0
2ðw jÞ � d2

m: (A.5)

Since u � 0, the left-hand side of (A.5) is positive whereas the

right-hand side of (A.5) is negative due to ejb0ðw jÞj< dm. This is a

contradiction.&
Part (ii)

When t = 0, using the characteristic Eq. (17) we get that w j is

unstable for some k. When t > 0, define

h jðlÞ ¼ lþ dm þ Dmk2 � eb0ðw jÞe�ðak2þtlÞ; (A.6)

where hj(l) = 0 represents the characteristic Eq. (17). Since
eb0iðw jÞ � dm >0, we have hj(0) < 0 for some k. Moreover hj(l) is
a continuous function of l and lim hj(l) =1 as l!1. By the
intermediate value theorem hj has a real positive root and
therefore w j is unstable.

Part (iii)

Similar to Faria et al. (2006) we show that there is a pair of pure

imaginary eigenvalues corresponding to w j when t ¼ t̂. Let l = iv,

v2R and k = 0 . From (17) we get that

iv ¼ �dm þ eb0ðw jÞðcosðvtÞ � isinðvtÞÞ; (A.7)

where eb0ðw jÞ is the derivative of bðwÞ evaluated at w j. Separating

(A.7) into imaginary and real parts we have

dm ¼ eb0ðw jÞcosðvtÞ;
v ¼ eb0ðw jÞsinðvtÞ:

�
(A.8)

Squaring these two equations and adding them together result in,

v2 ¼ eb02ðw jÞ � d2
m: (A.9)

By choosing v > 0, we get that

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eb02ðw jÞ � d2

m

q
: (A.10)

Substituting (A.10) into the first equation of (A.8) and solving for t,

the specified form of t̂ is obtained. Clearly, if eb0ðw jÞ þ dm <0, then for

t ¼ t̂, the characteristic Eq. (17) has a pure imaginary root l = iv and

therefore w j cannot be asymptotically stable.

Our next step is to show that w j loses its stability when t exceeds

t̂. Considering l as a function of t, we are only required to show that

the real part of derivation of l at iw is positive (i.e., as t is increased

from t̂, l = iw falls into the right half of the complex plane). Taking the

derivative of the characteristic Eq. (17) and given that e is a function of

t we have

l0 þ eb0ðw jÞe�tlðlþ tl0 � dIðtÞÞ ¼ 0; (A.11)

where l0 denotes the derivative of l with respect to t. From Eq. (17)
we have eb0ðw jÞe�tl ¼ lþ dm, then (A.11) is rewritten

l0 ¼ ðlþ dmÞðdIðtÞ � lÞ
ð1þ tðlþ dmÞÞ

: (A.12)

By evaluating l0 at iw we have

l0ðiwÞ ¼ ðiwþ dmÞðdIðtÞ � iwÞ
ð1þ tðiwþ dmÞÞ

: (A.13)
Multiplying the numerator and denominator of (A.13) by

1þ tdm � itw, the real part of l0(iw) is given by

Rel0ðiwÞ ¼ ðdIðtÞðtðd2
m þw2Þ þ dmÞ þw2Þ

ðð1þ tdmÞ2 þ ðtwÞ2Þ
: (A.14)

Since Rel0(iw) > 0, it implies that there is an eigenvalue with

positive real part as t increases from t̂. This completes the proof.&

Appendix B. Details on global analysis

Proof of Theorem 1.

Using the Morse Lemma Verhulst (1996) page 19, the phase-plane

Eq. (13) is obtained. Considering that w = (df/dx) and g > 0, by letting

k = 2H(fj, 0) + (c2/g), it can be seen that the approximate solution (14)

satisfies equation (13).&
Proof of Theorem 2.

Let r(f, w) be a real valued function with continuous first order

partial derivatives. Define the function G : R2!R2,

Gðf;’Þ ¼ @
@f

r
df
dx

� �
þ @

@’
r

d’
dx

� �
: (B.1)

Denote rf and rw as partial derivatives of r with respect to f and

w, then using the right-hand sides of both equations in (9), G(f, w) is

written as,

Gðf;’Þ ¼ rf’þ r
d’
df
þ 1

Dm
r’ dmf� ebðfÞðxÞð Þ

þ 1

Dm
r dm

df
d’
� edbðfðxÞÞ

d’

� �
: (B.2)

Let X ¼ d’
df and apply the chain rule for the last term in (B.2), we get

that,

Gðf;’Þ ¼ rf’þ Xðrþ r’’Þ þ
r

DmX
ðdm � eb0ðfðxÞÞÞ: (B.3)

Let r(f, w) = w(dmf � eb(f)) . Using (9) we can see that

X ¼ dmf� ebðfÞ
Dm’

¼ r
Dm’2

:

Hence expression (B.3) takes the form

Gðf;’Þ ¼ 2’2ðdm � eb0ðfÞÞ þ 2
r2

Dm’2
þ ’2ðdm � eb0ðfÞÞ>0: (B.4)

Using Dulac’s criterion Verhulst (1996), the proof is complete.&
Proof of Theorem 4

By Theorem 3 part (i), the trivial solution w ¼ 0 of (4) is locally

asymptotically stable when b0(0) < dm/e.

When Dm = 0, DI = 0 (and therefore a = 0) Eq. (4) is reduced to

dwðtÞ
dt
¼ �dmwðtÞ þ ebðwðt � tÞÞ: (B.5)

From 0< bðwðtÞÞ � b0ð0ÞwðtÞ for all t > � t, we get that

w0ðtÞ � �dmwðtÞ þ eb0ð0Þwðt � tÞ. Since the delay term has a positive

coefficient, by a comparison argument Smith (1995) it is enough to

show that solutions of

w0ðtÞ ¼ �dmwðtÞ þ eb0ð0Þwðt � tÞ (B.6)

approach zero. Since we have b0(0) < dm/e, in equation (B.6) the
term delay has a smaller coefficient than the term without the
delay. Hence, by Section 2 of Theorem 2.1 on page 70 of Kuang
(1993), all solutions wðtÞ of (B.6) converge to zero. This completes
the proof.&
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Proof of Theorem 5

Part (i)

Let b(f) = b4(f) . The equilibrium f2 exists under the condition
e p
dm

> ae. the phase path corresponding to the Eq. (9) is given by
’ðfÞ ¼ �
ffiffiffi
2
p
ðs4 � V4ðfÞÞ

1
2; (B.7)

where

V4ðfÞ ¼
1

Dm
�dm

Z
fdfþ e p

Z
f2e�afdf

� �
;

¼ �1

Dm

dm

2
f2 þ e p

a
f2 þ 2

a
fþ 2

a2

� �
e�af

� �
: (B.8)

Let s4 = � (2ep/a3Dm) then w(f1) = 0, where f1 = 0. Note that f1

and f3 are saddles, while f2 is a center. Hence ’ðfÞj j has minimum

values at f1 and f3 and has a maximum value at f2. It can be shown

that s4 � V4(f) increases for 0 < f < f2 and it decreases for

f2 < f < f3 . Since V4(f3) = 0, there must be a point f* 2 (f2, f3),

such that s4 � V4(f*) = 0 . Hence, by the continuity and the symmetry

of (B.7), the homoclinic orbit is defined by the Eq. (B.7) for f 2 [0, f*] .

Part (ii)

Let b(f) = b5(f) . The equilibrium f2 exists under the condition
e p
dm

> a. Similar to the previous proof,
’ðfÞ ¼ �
ffiffiffi
2
p
ðs5 � V5ðfÞÞ

1
2; (B.9)

where s5 is a constant and V5 is obtained as follows,

V5ðfÞ ¼
1

Dm
�dm

Z
fdfþ e p

Z
f2

1þ af
df

 !

¼ 1

Dm

�dm

2
f2 þ e p

2a3
ðafÞðaf� 2Þ þ 2ln 1þ afj jÞ

� �
: (B.10)

Let s5 = 0, then (f1, w(f1)) = (0, 0). Since f1 and f2 are the only

extrema of w(f) and w(f) is symmetric with respect to the f axis, the

same argument is applied here and there exists a homoclinic orbit

connecting f1 to itself.

The proof of part (iii) is similar to that of part (i) and is omitted.&
Proof of Theorem 6

When b4(f) is considered by choosing s4 ¼ � 2e p
a3Dm

we have

w(f1)) = 0 (see proof of Theorem 5 part (i)). We only need to show that

w(f3) = 0 . Let
e p

dm
¼ aek

k
; (B.11)

for k > 1; then

f3 ¼
k

a
: (B.12)

Substituting (B.11) and (B.12) into 1
2 ð’ðf3ÞÞ

2 we get that,
s4 � V4ðf3Þ ¼
dm

Dm

� � 2e p

a3dm
þ k2

2a2
þ e p

adm

k2 þ 2kþ 2

a2

 !
e�k

 !
;

¼ dm

Dma2
�2ek

k
þ k2

2
þ kþ 2þ 2

k

 !
; (B.13)

which has the root r � 1.451. Thus, for f3 ¼ r
a we have

s4 � V4(f3) = 0, which gives rise to w(f3) = 0. It implies that f1 is
connected to f3, when e p

dm
¼ er

r a:

When b6 is considered we have,

’ðfÞ ¼ �
ffiffiffi
2
p
ðs6 � V6ðfÞÞ

1
2;
where V6(f) is obtained as follows,

V6ðfÞ ¼
1

Dm
�dm

Z
fdfþ e p

Z
f2df

ð1þ afÞ2

 !
;

¼ 1

Dm

� �dmf2 þ e p

a3
1þ af� 1

1þ af
� 2ln 1þ afj j

� �� �
:

(B.14)

Let s6 = 0, then (f1, w(f1)) = (0, 0). Then we are required to have

w(f3) = 0.

Noting that f3 >
1
a, there exists k > 1 such that f3 ¼ k

a. Then we

have e p
dm
¼ að1þkÞ2

k . Similar to the procedure above we get that,

s6 � V6ðf3Þ ¼ �
dm

Dm

� � k2

a2
þ e p

dma3
1þ k� 1

1þ k
� 2lnð1þ kÞ

� � !

¼ �dm

kDma2
3k2 þ 2k� 2ð1þ kÞ2lnð1þ kÞ
� �

;

(B.15)

which is positive for all k > 1. Hence, there is no path connecting f1

to f3.&

Appendix C. Supplementary Data

Supplementary data associated with this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.ecocom.2014.10.007.
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Györi, I., Ladas, G.E., 1991. Oscillation Theory of Delay Differential Equations: With
Applications. Oxford University Press, Clarendon ISBN 978-0198535829.

Gopalsamy, K., 1992. Stability and Oscillations in Delay Differential Equations of
Population Dynamics. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Gourley, S.A., So, J.W.H., Wu, J.H., 2004. Nonlocality of reaction-diffusion equations
induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124
(4) 5119–5153.

http://dx.doi.org/10.1016/j.ecocom.2014.10.007
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0025
http://dx.doi.org/10.1007/s40314-014-0118-y
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0090


M. Bani-Yaghoub et al. / Ecological Complexity 21 (2015) 14–2626
Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Springer-Verlag, New York.

Gurney, W.S.C., Blythe, S.P., Nisbet, R.M., 1980. Nicholson’s blowflies revisited.
Nature 287, 17–21.

Jordan, D.W., Smith, P., 1999. Nonlinear Ordinary Differential Equations: An Intro-
duction to Dynamical Systems. Oxford University Press, Oxford.

Kuang, Y., 1993. Delay Differential Equations with Applications in Population
Dynamics. Academic Press, Inc., San Diego.

Li, W.-T., Ruan, S., Wang, Z.-C., 2007. On the diffusive Nicholson’s blowflies equation
with nonlocal delay. J. Nonlinear Sci. 17, 505–525.

Liang, D., Wu, J., 2003. Travelling waves and numerical approximations in a reaction
advection diffusion equation with nonlocal delayed effects. J. Nonlinear Sci. 13,
289–310.

Liang, D., Wu, J., Zhang, F., 2005. Modelling population growth with delayed
nonlocal reaction in 2-dimensions. Math. Biosci. Eng. 2 (1) 111–132.

May, R.M., 1980. Mathematical models in whaling and fisheries management. In:
Oster, G.F. (Ed.), Some Mathematical Questions in Biology. American Mathe-
matical Society, Providence, RI, pp. 1–64.

McCarthy, M.A., 1997. The Allee effect, finding mates and theoretical models. Ecol.
Model. 103, 99–102.

Memory, M.C., 1989. Bifurcation and asymptotic behaviour of solutions of a
delay-differential equation with diffusion, SIAM. J. Math. Anal. 20, 533–
546.

Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured Popu-
lations. Springer-Verlag, New York.
Nicholson, A.J., 1954. An outline of the dynamics of animal populations. Aust. J. Zool.
2, 9–65.

Nicholson, A.J., 1957. The self adjustment of populations to change. Cold Spring
Harb. Symp. Quant. Biol. 22, 153–173.

Smith, H.L., 1995. Monotone Dynamical Systems: An Introduction to the Theory of
Competitive and Cooperative Systems. American Mathematical Society ISBN-
10: 082180393X.

Smith, H., Thieme, H., 1991. Strongly order preserving semiflows generated by
functional differential equations. J. Differ. Equ. 93, 332–363.

So, J.W.-H., Yang, Y., 1998. Dirichlet problem for the diffusive Nicholson’s blowflies
equation. J. Differ. Equ. 150, 317–348.

So, J.W.-H., Wu, J., Yang, Y., 2000. Numerical Hopf bifurcation analysis on the
diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 111, 53–69.

So, J.W.-H., Wu, J., Zou, X., 2001. A reaction-diffusion model for a single species with
age-structure. I Traveling wavefronts on unbounded domains. Proc. R. Soc.
Lond. A 457, 1841–1853.

So, J.W.-H., Zou, X., 2001. Travelling waves for the diffusive Nicholson’s blowflies
equation. Appl. Math. Comput. 122, 385–392.

Verhulst, F., 1996. Nonlinear Differential Equations and Dynamical Systems, Sec-
ond. Springer-Verlag, Berlin.

Wells, H., Strauss, E.G., Rutter, M.A., Wells, P.H., 1998. Mate location, population
growth and species extinction. Biol. Conserv. 86, 317–324.

Weng, P., Liang, D., Wu, J., 2008. Asymptotic patterns of a structured population
diffusing in a two-dimensional strip. Nonlinear Anal. 69, 3931–3951.

Yadav, R.T., 2006. Environmental Biotechnology. Discovery Publishing House, Delhi.

http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0125
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0125
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0130
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0130
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0130
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0135
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0135
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0140
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0140
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0140
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0145
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0145
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0150
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0150
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0155
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0155
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0160
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0160
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0160
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0165
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0165
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0170
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0170
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0175
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0175
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0180
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0180
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0180
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0185
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0185
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0190
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0190
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0195
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0195
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0200
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0200
http://refhub.elsevier.com/S1476-945X(14)00107-X/sbref0205

	Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model
	1 Introduction
	2 Impacts of dispersal, reproduction and maturation
	2.1 Stationary solutions influenced by dispersal
	2.2 Delay-induced bifurcation

	3 Possible outcomes of the general model
	3.1 Spatio-temporal patterns and wave solutions
	3.2 Classical versus new outcomes

	4 Numerical simulations
	4.1 Formation of stationary pulse and front
	4.2 Delay-induced spatial patterns
	4.3 Formation of traveling wavefront

	5 Discussion
	Acknowledgments
	Appendix A Details on local stability analysis
	Appendix B Details on global analysis
	Appendix C Supplementary Data
	References


