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In this paper, we generalize Vasicek’s asymptotic single-risk factor solution to
multiple factors organized with a particular hierarchical structure. We use this
model to investigate credit portfolio loss. In this hierarchical factor model, the
asset returns of a company depend on a global factor, a sector factor and an
idiosyncratic risk factor. All companies share the same global factor and all
companies within a sector share the same sector factor. Using the central limit
theorem, we derive closed-form solutions for the value-at-risk (VaR) and expected
shortfall under the assumption that the number of sectors in the portfolio is large
and the exposures scale is the reciprocal of the number of sectors. Our results for
the VaR agree with Monte Carlo simulations, provided the sector factor loadings
and variance of systematic risk are not too large.

1 INTRODUCTION

Credit portfolios are portfolios of fixed-income investment products such as bonds,
loans and credit derivatives. Fixed-income investment products provide the investor
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with a steady stream of cash inflow (eg, in the form of interest payments) during
the lifetime of the product. The trade-off is limited upward potential for portfolio
gain. Banks, insurance companies and other financial institutions regularly maintain
and manage large numbers of credit portfolios. The main risk associated with such
portfolios is a debtor defaulting on its obligation. Although such an event is rare, a
single default often means that the entire portfolio goes to loss. Therefore, investors
in credit portfolios need systematic methods to analyze the associated risk and create
financial instruments to insure against losses should they arise. The management of
credit risk is a vital area of research within quantitative finance (see, for example,
Bohn and Stein 2009; Denault 2001; De Servigny and Renault 2004; McNeil et al
2010).

It is well-known that companies do not default independently from each other
(Lucas 1995). One common way of modeling correlated company defaults is through
“factor models” (Bluhm et al 2010; Burtschell et al 2009; Schönbucher 2001). In
these models, a representation for the asset return of a company is specified in terms
of random variables. When the asset return drops below a given threshold, the com-
pany defaults. Correlation between company defaults is included by allowing the
random variables to share common factors. Factor models are studied and com-
monly employed by companies such as Moody’s KMV (Crouhy et al 2000) and
the RiskMetrics Group (Gordy 2003).

The Vasicek (1987) credit model provides a simple analytic solution for a portfolio
containing identical companies that are coupled with a single global factor. While
Vasicek’s asymptotic single-risk factor (ASRF) solution is simple to derive, it can also
be easily extended to the heterogeneous case and, importantly, forms the foundation
of the Basel accords for bank capital requirements (Basel Committee on Banking
Supervision 2004). Other authors have extended the ASRF model to account for
uncertainty over loss given default (Kupiec 2008) and multiple global risk factors
(Pykhtin 2004; Schönbucher 2001).

In this paper, we propose and validate an analytic formula for the loss distribution
of a credit portfolio, assuming a hierarchical multifactor model. In such a model, all
companies have exposure to a global risk factor; in addition, companies in a given
sector are subject to a local risk factor. Thus, it may be regarded as a simple extension
of the ASRF model to an economically intuitive multifactor case. Since our loss
formula can be written entirely in terms of elementary and special functions, it is much
quicker to evaluate than Monte Carlo simulations, which are often time consuming
and computationally expensive. Our derivation involves analyzing the sector loss and
then applying the central limit theorem to all the sectors. It is similar to saddlepoint
methods (Huang et al 2007; Jensen 1995; Lugannani and Rice 1980) in the sense that
both methods approximate sums of random variables through asymptotic formulas.
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FIGURE 1 Hierarchical factor model of company asset returns within a global economy
with N D 3 sectors and n D 3 companies per sector.

OIL ε1

Global Factor ε

Exxon Mobil
z11

Shell
z12

British
Petroleum

z13

Google
z21 Apple

z22

Intel
z23

TECH ε2
PHARMACEUTICAL ε3

Pfizer
z31

Merck
z32

GlaxoSmithKline
z33

ˆ

Every company participates in a global economy and belongs to exactly one sector. Each company’s asset return
zij is affected by a global factor O", a sector factor "i and an idiosyncratic factor �ij (not shown). See (2.1).

The layout of this paper is as follows. In Section 2, we introduce the hierarchical
factor model for a firm’s value and set up the portfolio in terms of individual com-
panies and their default probabilities. In Section 3, we derive the value-at-risk (VaR)
for a portfolio coupled with a hierarchical factor model. In Section 4, we compare
our solutions for the VaR with Monte Carlo simulations. We conclude the paper in
Section 5.

2 PORTFOLIO PRICING IN A LOCALIZED ONE-FACTOR MODEL

One critical issue that determines the value of credit portfolios is the default corre-
lation among companies (Schönbucher 2001). Although the default probability of a
company may be very small, defaults between companies are often correlated. Factor
models incorporate the correlation among asset returns explicitly by assuming they
are driven byM shared “factors” that are modeled as independent random variables.
For example, in an M D 2 factor model, these shared factors could represent the
state of a country’s economy (a recession negatively impacts all companies in that
country), or the price of a resource (a lower price would lower the expenses of all
companies that use the resource). All asset returns in an M D 2 factor model would
be influenced by the country’s economy and the price of the resource.

In this paper, we restrict our attention to hierarchical (or “localized”) factor models,
which have the advantage of being simple yet economically intuitive. In such models,
the asset return for a company depends on a “global” factor that is shared by all
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companies and exactly one ofN other “sector” factors (see Figure 1 on the preceding
page). Hence, all companies are correlated through the global factor and all companies
in the same sector are further correlated. Although in this paper our model partitions a
portfolio into different industrial sectors, our approach can also be applied to partitions
of geography and size buckets.

Specifically, using a Merton (1974) model for a firm’s value, we consider a special
case of an .NC1/-factor model where the normalized asset return of the j th company
in sector i is given by

zij D
p
�ij . Ǒij O"C ˇij "i /C

p
1 � �ij �ij ; i D 1; : : : ; N; j D 1; : : : ; n; (2.1)

and 0 < �ij < 1, 0 < ˇij ; Ǒij < 1. In this model, the asset returns are normalized so
that V.zij / D 1, ie, Ǒ2ij C ˇ

2
ij D 1. The Ǒij and ˇij are the global and sector factor

loadings; knowledge of ˇij determines Ǒij , and vice versa. Since
p
�ij . Ǒij O"Cˇij "i /

is the systematic risk, �ij is the variance of systematic risk, O" � N .0; 1/ is the
global risk factor, f"ig � N .0; 1/ are the N independent sector risk factors and
f�ij g � N .0; 1/ are the N � n independent idiosyncratic risk factors.

Although there are N C 1 factors altogether, each company only depends on two
of them. Any two companies are always correlated at the global level, and possibly
also at the sector level. Specifically, we have

Corr.zij ; zkl/ D

(p
�ij�kl Ǒij Ǒkl if i ¤ k;
p
�ij�il. Ǒij Ǒil C ˇijˇil/ if i D k:

(2.2)

In other words, the asset returns of any two companies are always correlated through
their global factor loadings. If the companies also happen to be in the same sector,
they are further correlated through their sector factors.

We point out that the hierarchical factor model for the company’s asset return,
(2.1), is a special case of a multifactor model in which all companies are influenced
(to varying degrees) by multiple systematic risk factors. This general case has been
studied by Pykhtin (2004); his approach is to optimally approximate the multifactor
model by carefully choosing the factor loadings in the single-factor model. In our
approach, we assume a simpler structure for the company’s asset return from the very
beginning. In return, we obtain an analytic solution that is simple to evaluate and
exact in the limit as N !1.

We assume that a company defaults if its asset return zij drops below a threshold
value �ij . In principle, all companies within the global economy could have different
thresholds, and details on how to determine them can be found in Crosbie and Bohn
(2002). Over a fixed time horizon, we may write the loss on the portfolio as

R� D

NX
iD1

nX
jD1

wijRij .zij /; (2.3)
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where the exposures wij > 0 satisfy
PN
iD1

Pn
jD1wij D 1. More dynamic evolution

models that explicitly account for the Brownian nature of a firm’s value are studied
in Huh and Kolkiewicz (2008), Hurd (2009) and Li (2000). We model the portfolio
loss as a mixture of Bernoulli random variables (Joe 1997) by assuming a constant
percentage loss given default (LGD):

Rij .zij / D

(
0 if zij > �ij ;

c if zij 6 �ij ;
(2.4)

where 0 < c 6 1. As a consequence, 0 6 R� 6 c. Because the idiosyncratic factor
is unit-normally distributed, the conditional probability of default for company j in
sector i is

Pr.zij < �ij j O"; "i / D pij ."i ; O"/ D ˚

�
�ij �

p
�ij . Ǒij O"C ˇij "i /p
1 � �ij

�
; (2.5)

where ˚.z/ D Œ1C erf.z=
p
2/=2�. Throughout this paper, we use �.z/ D ˚ 0.z/ D

expŒ�z2=2�=
p
2� . As a simple corollary to (2.5), sinceZ 1

�1

˚.aC b"/�."/ d" D ˚

�
a

p
1C b2

�

for constants a and b, the (unconditional) default probability of the j th company in
sector i is

PDij D Pr.zij < �ij /

D

Z 1
�1

Z 1
�1

˚

�
�ij �

p
�ij . Ǒij O"C ˇij "i /p
1 � �ij

�
�.O"/�."i / d O" d O"i ;

D ˚.�ij /: (2.6)

Hence, the default probability is uniquely determined by specifying the threshold
value �ij .

Implementation of the factor model now requires knowledge of the numerical
values of ˇij , Ǒij , �ij and �ij . The exposures wij can be chosen by the user of the
model or taken from the call reports of banks, which can be found on the website of
the Federal Deposit Insurance Corporation (FDIC). The �ij are related to the default
probability through (2.6), and the default probabilities can be inferred from the credit
rating of a firm (Crouhy et al 2000). The correlation terms Ǒij , Ǒij and �ij are more
difficult to obtain, but correlation matrixes can usually be found empirically through
historical data (see Andersen et al (2003) for more details).
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3 LOSS DISTRIBUTION FOR THE PORTFOLIO

The main result in this section is a derivation for the VaR for R� in (2.3). In our
analysis, we assume that the number of sectors is large: N � 1, and the positive
exposures wij D O.N�1/ as N ! 1. Although the N � 1 assumption may be
somewhat unrealistic, the value of N does depend on how the loans are grouped
together. If historical data and economic intuition can allow a different grouping with
a larger N , this would lead to a more accurate model, according to the analysis in
this paper. The number of companies per sector n is typically very large (perhaps
n & 1000), but this is not a requirement for our approximations to hold.

We first provide some preliminary results for the moments of R� before proving
the main theorem.

Lemma 3.1 Let

R� D

NX
iD1

nX
jD1

wijRij .zij /;

whereRij .�/ satisfies (2.4). Furthermore, let Yi D
Pn
jD1wijRij .zij /, i D 1; : : : ; N ,

be the sector losses, so that R� D
PN
iD1 Yi , and let the exposures wij D O.N�1/

as N !1. Define the conditional moments

�i .O"; "i / D EŒYi j O"; "i �; (3.1)

	2i .O"; "i / D V ŒYi j O"; "i �; (3.2)

mi .O"/ D EŒYi j O"�; (3.3)

s2i .O"/ D V ŒYi j O"�; (3.4)

m.O"/ D EŒR� j O"�; (3.5)

s2.O"/ D V ŒR� j O"�: (3.6)

Then, as N !1, the conditional means satisfy

�i .O"; "i / D c

nX
jD1

wij˚

�
˚�1.PDij / �

p
�ij .O" Ǒij C "iˇij /p

1 � �ij

�
D O.N�1/; (3.7)

mi .O"/ D c

nX
jD1

wij˚

�
˚�1.PDij / �

p
�ij O" Ǒijq

1 � �ij C ˇ
2
ij�ij

�
D O.N�1/; (3.8)

m.O"/ D c

NX
iD1

nX
jD1

wij˚

�
˚�1.PDij / �

p
�ij O" Ǒijq

1 � �ij C ˇ
2
ij�ij

�
D O.1/; (3.9)
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while the conditional variances scale as

	2i ."i ; O"/ D O.N
�2/; (3.10)

s2i .O"/ D O.N
�2/; (3.11)

s2.O"/ D O.N�1/: (3.12)

Proof Conditioned on O" and "i , the Rij .zij / are independent (scaled) Bernoulli
random variables, so (3.7) follows from

�i .O"; "i / D

nX
jD1

wijEŒRij .zij /� D c

nX
jD1

wijpij

D c

nX
jD1

wij˚

�
˚�1.PDij / �

p
�ij .O" Ǒij C "iˇij /p

1 � �ij

�
D O.N�1/;

using (2.5) and (2.6). Equation (3.8) follows from

mi .O"/ D

Z 1
�1

�i .O"; "i /�."i / d"i ;

and (3.9) follows from m.O"/ D
PN
iD1mi .O"/. Now we prove (3.10)–(3.12). Condi-

tioned on O" and "i , the Rij .zij / are again independent (scaled) Bernoulli random
variables. With the shorthand

pij .O"; "i / D ˚

�
�ij �

p
�ij . Ǒij O"C ˇij "i /p
1 � �ij

�
;

Equation (3.10) follows from

	2i .O"; "i / D c
2

nX
jD1

w2ijpij .O"; "i /Œ1 � pij .O"; "i /� D O.N
�2/;

while (3.11) follows from

s2i .O"/ D EŒY
2
i j O"� �EŒYi j O"�

2

D

Z 1
�1

EŒY 2i j O"; "i ��."i / d"i �

�Z 1
�1

EŒYi j O"; "i ��."i / d"i

�2

D c2
nX
kD1

nX
jD1

wijwik

Z 1
�1

pij .O"; "i /pik.O"; "i /�."i / d"i

�

�
c

nX
jD1

wij

Z 1
�1

pij .O"; "i /�."i / d"i

�2
D O.N�2/;

and, therefore, (3.12) immediately follows, since s2.O"/ D
PN
iD1 s

2
i .O"/. �
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Theorem 3.2 Let the normalized asset return of the j th company in sector i follow
a hierarchical multifactor model so that the correlated random variables zij satisfy

zij D
p
�ij . Ǒij O"C ˇij "i /C

p
1 � �ij �ij ; i D 1; : : : ; N; j D 1; : : : ; n; (3.13)

where 0 < �ij < 1, 0 < ˇij , Ǒij < 1, ˇ2ij C
Ǒ2
ij D 1 and "i ; O" � N .0; 1/. Consider

a portfolio

R� D

NX
iD1

nX
jD1

wijRij .zij /; (3.14)

with exposures wij such that
PN
iD1

Pn
jD1wij D 1 and wij D O.N�1/ asN !1,

whereRij .zij / follows (2.4): ie, for some�1 < �ij <1, the company with an asset
return that follows (3.13) defaults when zij < �ij , incurring a loss c. Then the VaR
(VaRq) of the portfolio R� at risk level 0 6 q 6 1 satisfies the asymptotic relation

VaRq � c
NX
iD1

nX
jD1

wij˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q/q
1 � �ij C ˇ

2
ij�ij

�
(3.15)

as N !1, where
VaRq D inffx W q 6 FR� .x/g; (3.16)

and FR� .�/ is the cumulative density function of R� .

Proof We write the loss of the portfolio as

R� D

NX
iD1

Yi ; Yi D

nX
jD1

wijRij .zij /; (3.17)

so that Yi is the total loss of all companies in sector i , and R� is the loss summed
over all sectors. Conditioned on the global risk O", Yi , i D 1; : : : ; N , are independent
random variables and, from the central limit theorem, their sum follows a normal
distribution when N � 1:

R� �

NX
iD1

Yi � NŒm.O"/; s
2.O"/�;

where m.�/ is given by (3.9) and s2 obeys the scaling (3.12) (its explicit form is not
required to derive (3.15)). The density for the loss of the entire portfolio is given by
the law of total probability:

fR� .L/ �
p
N

Z 1
�1

�.O"/p
2� Os2.O"/

exp

�
�NŒL �m.O"/�2

2Os2.O"/

�
d O" (3.18)

as N !1, where we have set s2 D Os2=N in light of (3.12).
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We now apply Laplace’s method to the integral in (3.18). Laplace’s method pro-
vides a way to approximate integrals that contain a large parameter by analyzing the
stationary point of the integrand. An overview of the method is given in Appendix A.
In particular, we refer to (A.2), which approximates integrals of the formZ b

a

g.t/ expŒ�k .t/� dt

for functions g and , with a; b 2 R and k � 1. Taking .O"/ D .L�m.O"//2=2s2.O"/
and g.O"/ D �.O"/=

p
2�s2.O"/, the stationary point O"� satisfies O"� D m�1.L/ and

 00.O"�/ D Œm0.O"�/=Os.O"�/�2, so that

fR� .L/ �
�.O"�/

jm0.O"�/j
; N !1: (3.19)

The cumulative density is

FR� .L/ �

Z L

0

�ŒO"�.L0/�

�m0ŒO"�.L0/�
dL0 D ˚Œ�m�1.L/�: (3.20)

From (3.16), VaRq is just the inverse of the cumulative density function; ie, for a
given confidence level 0 6 q 6 1, the VaRq is found by setting FR� .L/ D q and
solving for L:

L D mŒ�˚�1.q/�) VaRq � c
NX
iD1

nX
jD1

wij˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q/q
1 � �ij C ˇ

2
ij�ij

�
(3.21)

as N !1. �

Equation (3.21) is the main contribution of this paper. What are the errors associated
with this asymptotic approximation? There are actually two contributions. One is
associated with approximating the density of R� , conditioned on O", with a Gaussian
through the central limit theorem. The other is associated with applying Laplace’s
method to the integral in (3.18): see the higher-order term in (A.2). The first error
appears as an extra term under the integral in (3.18): for large but finite N , fR� j O"
would actually take the form of a Gaussian plus a small correction (Berry 1941;
Esseen 1942). The second gives rise to an additiveO.N�1/ term in (3.19)–(3.21). By
comparing our results for VaR with Monte Carlo simulations in Figure 2 on page 55,
we find that the dominant error term is, in fact, O.N�1/:

VaRq D c
NX
iD1

nX
jD1

wij˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q/q
1 � �ij C ˇ

2
ij�ij

�
CO.N�1/ (3.22)
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as N ! 1. Therefore, either the two contributions are of the same order or the
error incurred by using Laplace’s method is dominant. Equation (3.22) is confirmed
numerically by comparing the double sum with Monte Carlo simulations of the VaR,
VaR.num/

q . The error was measured using the infinity norm over 0 6 q 6 0:99:

error D max
06q60:99

ˇ̌̌
ˇc NX
iD1

nX
jD1

wij˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q/q
1 � �ij C ˇ

2
ij�ij

�
� VaR.num/

q

ˇ̌̌
ˇ:

(3.23)
The portfolios compared in Figure 2 are completely homogeneous (and, therefore,
somewhat artificial), but their purpose is to provide a benchmark result to deduce the
scaling of the error. Note there is no scaling with n: the errors in part (b) of Figure 2
on the facing page arise from N being finite.

Once the approximation to the VaR has been obtained, related quantities such as
the expected shortfall (ES) and ES contribution are easily approximated as

ESq D
1

1 � q

Z 1

q

VaRq0 dq0

�

NX
iD1

nX
jD1

cwij

1 � q

Z 1

q

˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q0/q
1 � �ij C ˇ

2
ij�ij

�
dq0; (3.24)

ESq;ij D wij
@ESq
@wij

�
cwij

1 � q

Z 1

q

˚

�
˚�1.PDij /C

p
�ij Ǒij˚

�1.q0/q
1 � �ij C ˇ

2
ij�ij

�
dq0 (3.25)

as N !1.
Now consider the case where the parameters ˇij , �ij and �ij are only sector depen-

dent: ˇij D ˇi , �ij D �i and �ij D �i for the sector index i . Then all companies
within a sector are statistically identical and we can consider a distribution of expo-
sures that only depends on the sector. By defining Owi D

Pn
jD1wij , (3.22) reduces

to

VaRq D c
NX
iD1

Owi˚

�
˚�1.PDi /C

p
�i Ǒi˚

�1.q/q
1 � �i Ǒ

2
i

�
CO.N�1/; (3.26)

where
PN
iD1 Owi D 1 and PDi D ˚.�i / (cf. (2.6)). It is easy to show that when n D 1

(recall that n does not have to be large for our approximations to be valid), (3.26) is
identical to the VaR forN firms coupled with a single factor, with rescaled systematic
and idiosyncratic risks. In fact, (2.1) implies that the asset return of each firm is given
by

zi1 D
p
ri O"C

p
1 � ri
i ; ri D �i1 Ǒ

2
i1; i D 1; : : : ; N; (3.27)
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FIGURE 2 Error of analytic approximation (3.21), as defined by (3.23), scales as
O.N�1/ when compared with Monte Carlo simulation and is independent of the number
of companies per sector n.
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Solid line has slope �1 in (a) and 0 in (b). Parameters used were c D 2, wij D 1=.Nn/, ˇij D 0.8, �ij D �1.3
and �ij D 0.7. Monte Carlo VaRs are found from 20 000 realizations.

with
p
1 � ri
i �

p
�i1ˇi1"1 C

p
1 � �i1�i1 and 
i � N.0; 1/. Application of

Vasicek’s formula to (3.27) then yields (3.26). The general case with n identical
companies in each sector also collapses to the single-factor case because the first firm
is representative of all firms in that sector, and its asset return is described by (3.27).
When the sectors are homogeneous, the hierarchical multifactor model can, in fact,
be treated as a single-factor model.

4 RESULTS AND DISCUSSION

To validate our analytic approximation (3.21), we construct a proxy portfolio using
exposure data taken from the call report of a large bank (JP Morgan 2014) with
N D 17 “sectors” (see Table 1 on the next page). In this example, the sectors cor-
respond to different types of institution that borrow from the bank. For each of the
sectors, we estimate sector default probabilities PDi and variances of systematic risk
N�i . In this example, we also assume that the factor loadings are constant for every
company. The PDi are estimated by assuming that large government institutions and
corporations are less likely to default than small companies and consumers. More
accurate values could come from the credit rating of these entities (Crouhy et al
2000).
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TABLE 1 Proxy credit portfolio motivated by exposures taken from a JP Morgan call report.

i Loan sector Exposure (US$) Nwi (%) PDi N�i

1 Construction, land development 3 815 0.60 10�2 0.23
2 Farmland 211 0.03 10�2 0.22
3 1–4 residential properties 203 246 32.17 10�2 0.25
4 5+ residential properties 45 090 7.14 10�2 0.21
5 Nonfarm, nonresidential 27 153 4.30 10�2 0.27

6 Commercial US banks 3 157 0.50 10�3 0.15
7 Banks in foreign countries 18 933 3.00 10�3 0.13

8 Agricultural loans 788 0.12 10�2 0.12

9 US commercial/industrial 90 879 14.39 10�2 0.18
10 Non-US commericial/industrial 33 624 5.32 10�2 0.28

11 Credit cards 26 189 4.15 0.05 0.15
12 Other revolving credit plans 2 584 0.41 0.05 0.17
13 Automobile loans 41 517 6.57 0.05 0.21
14 Other consumer loans 19 837 3.14 0.05 0.16

15 Foreign governments 1 031 0.16 10�4 0.12

16 US states and subdivisions 12 680 2.01 10�4 0.17

17 Nondepository/other institutions 101 000 15.99 10�2 0.15

Total 631 734 100.00

The three largest obligors are highlighted in bold face. Exposure dollar amounts are in millions.

From the sector parameters N�i , PDi and Nwi , we generate firm-level parameters by

�ij D N�i C ı�ij ; (4.1)

�ij D ˚
�1.PDi /C ı�ij ; (4.2)

ˇij D constant; (4.3)

wij D Nwi=n; (4.4)

for i D 1; : : : ; N , j D 1; : : : ; n, with ı�ij � N.0; 10�4/ and ı�ij � N.0; 10�4/.
Therefore, each of the seventeen loans in Table 1 is subdivided equally into n D 1000
subloans, with corresponding exposure Nwi=n.At the sector level, this portfolio is quite
typical in the sense that the distribution of exposures is “lumpy”, with the portfolio
being dominated by a few large loans – in this case, to residential real estate (32%),
US commercial and industrial companies (14%) and nondepository/other institutions
(16%).

Journal of Credit Risk 10(4)



Analysis of credit portfolio risk using hierarchical multifactor models 57

Because the firm-level parameters are small perturbations of the sector-level param-
eters in (4.1)–(4.4), the correlation between two companies in sector i is approxi-
mately given by N�i , and the correlation between companies in sector i and j (i ¤ j )
is approximately

p
N�i N�j Ǒi Ǒj . The loading factors Ǒi essentially control cross-sector

correlations. For the parameters in Table 1 on the facing page, when Ǒi D 0:95, firms
in different sectors are correlated at between 11% and 25%; when Ǒi D 0:87, they
are correlated at between 9% and 21%; and when Ǒi D 0:6, they are correlated at
between 4% and 10%.

We now compare the VaRs predicted by (3.21) with portfolio losses generated
by drawing random variables defined by (2.1). Our Monte Carlo simulations use
n D 1000 companies per sector and 1000 trials to simulate the value of the portfolio
at some risk level q. In Figure 3 on the next page, we see that the agreement is
good, provided the ˇij are not too large. As ˇij increases from 0.3 via 0.5 to 0.8, our
analytic approximation (3.21) becomes worse, particularly for smaller values of q.
The error bars for the Monte Carlo simulated VaR represent 99% confidence intervals.
We see that for ˇij � 0:3 and 0:5, the analytic solution is within the intervals for
q D 0:2; 0:4; 0:6 and 0:8. For large factor loading ˇij � 0:8, there is a significant
departure from the Monte Carlo simulations, especially when q . 0:6.

The portfolio in Table 1 on the facing page is fairly homogeneous in terms of
the systematic risk variance �i . Many portfolios of interest are more inhomogeneous
in that they contain a few companies or sectors with defaults that are very strongly
correlated, while the defaults of most companies are only weakly correlated. In Table 2
on page 59, we sharply increase the value of N�i for large institutions in the portfolio.
Again, we test the analytic VaR of (3.21) against Monte Carlo simulations when
ˇij D 0:3; 0:5 and 0:8: see Figure 4 on page 61 (note the ˇij in Table 2 on page 59
are not used for these results; they are used in the next set of simulations described
below). As in the first portfolio, the agreement is good when ˇij D 0:3 or 0:5. In this
portfolio, the firm–firm correlations have a wide range, spanning between 14% and
97% when ˇij D 0:3, between 12% and 97% when ˇij D 0:5 and between 6% and
97% when ˇij D 0:8. The strongest correlations are, of course, between companies
in the same sector, and obligors belonging to US states and subdivisions are the most
strongly correlated in this portfolio. These institutions are responsible for the upper
bound of approximately 97% in the correlation matrix since �16 D 0:97 in Table 2
on page 59.

In part (a) of Figure 5 on page 62, we plot the VaR for the portfolio in
Table 2 on page 59, relax the constant ˇij assumption and instead generate them at
the firm level through

ˇij D Ňi C ıˇij ; (4.5)
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FIGURE 3 Comparison of VaRs generated through Monte Carlo simulation (dashed gray)
and analytic approximation (solid black) as determined by (3.21).
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Error bars for the Monte Carlo simulations are 99% confidence intervals derived from 50 000 bootstrap samples.
Parameters are taken from Table 1 on page 56 with intrasector correlations given by N�i . Cross-sector correlations are
11–25% for (a), 9–21% for (b) and 4–10% for (c). The bottom panels show the distribution of (d) sector exposures,
(e) systematic risk variances and (f) default probabilities.

where Ňi are taken from Table 2 on the facing page and ıˇij � N .0; 10�4/.We choose
the loading factors Ňi to be closer to zero for loans with larger exposures. Hence, the
three largest loans are assigned Ňi D 0:05, loans with exposures between about 2%
and 7% are assigned Ňi D 0:1 and the remaining loans are assigned values from 0.8
to 0.9. The rationale is that we wish to mimic a portfolio containing a few large loans
with defaults that may be highly correlated with respect to global risk. Therefore, we
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TABLE 2 A more strongly correlated proxy credit portfolio motivated by exposures taken
from a JP Morgan call report.

i Loan sector Exposure (US$) Nwi (%) PDi N�i Ň
i

1 Construction,
land development 3 815 0.60 10�2 0.33 0.8

2 Farmland 211 0.03 10�2 0.32 0.9
3 1–4 residential

properties 203 246 32.17 10�2 0.35 0.05
4 5+ residential

properties 45 090 7.14 10�2 0.31 0.1
5 Nonfarm,

nonresidential 27 153 4.30 10�2 0.37 0.1

6 Commercial US banks 3 157 0.50 10�3 0.95 0.9
7 Banks in

foreign countries 18 933 3.00 10�3 0.93 0.1

8 Agricultural loans 788 0.12 10�2 0.52 0.7

9 US commercial/
industrial 90 879 14.39 10�2 0.48 0.05

10 Non-US commercial/
industrial 33 624 5.32 10�2 5 � 10�2 0.1

11 Credit cards 26 189 4.15 5 � 10�2 0.15 0.1
12 Other revolving

credit plans 2 584 0.41 5 � 10�2 0.17 0.8
13 Automobile loans 41 517 6.57 0.05 0.21 0.1
14 Other consumer loans 19 837 3.14 0.05 0.16 0.1

15 Foreign governments 1 031 0.16 10�4 0.92 0.8
16 US states and

subdivisions 12 680 2.01 10�4 0.97 0.1

17 Nondepository/
other institutions 101 000 15.99 10�2 0.85 0.05

Total 631 734 100.00

The three largest obligors are highlighted in bold face. Exposure dollar amounts are in millions.

choose the loading factors so that the corresponding firms are more tightly coupled
with O". Now, with ˇij stochastically generated through (4.5), the agreement with the
Monte Carlo simulated VaR is excellent for a large range of q values. The reason
for this could be that, even though there are six sectors (construction, farmland,
commercial US banks, agriculture, revolving credit plans and foreign governments)
that have large Ňi , the average factor loading across all companies in the portfolio is
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TABLE 3 Portfolio containing N D 8 sectors, based on grouping together loans from
Table 2 on the preceding page.

i Loan sector Nwi (%) PDi N�i Ň
i

1 Real estate 44.25 10�2 0.33 0.39
2 Depository institutions and banks 3.5 10�3 0.94 0.5
3 Agricultural loans 0.12 10�2 0.52 0.7
4 Commercial/industrial loans 19.71 10�2 0.49 0.075
5 Consumer loans 14.27 5 � 10�2 0.32 0.45
6 Foreign governments 0.16 10�4 0.92 0.8
7 US states and subdivisions 2.00 10�4 0.97 0.1
8 Nondepository/other institutions 15.99 10�2 0.85 0.05

Total 100.00

small. We have seen from Figure 3 on page 58 and Figure 4 on the facing page that
our analytic solution performs better when firm factor loadings ˇij are small.

So far, our results have concentrated on a portfolio with N D 17 sectors. As
discussed before, the value of N depends on how loans are classified. Is the approxi-
mation (3.21) still accurate whenN is reduced? In Table 3, we reduceN by grouping
together loans that are economically similar. For example, we group commercial US
bank loans and loans to foreign banks into a single “depository institutions and banks”
sector. This results in a new portfolio with N D 8 sectors, with some of the new sec-
tors encompassing several of the old sectors in theN D 17 portfolio. The new sector
exposures Nwi are sums of the exposures in the old portfolio and the new PDi , N�i and Ňi
are averages of the parameters in the old portfolio. In part (b) of Figure 5 on page 62,
we see that, although the analytic approximation (3.21) becomes worse for smaller
values of q, it still lies within the 99% confidence intervals for q & 0:4. In particular,
even though N D 8 is not “large”, the agreement between the analytic solution and
simulation results is still excellent for values of q close to 1.

We now compare the ES for Monte Carlo simulated portfolios and the analytic
approximation (3.24). The analytic approximation is computed using a compound
trapezoid rule with 2501, 5001 and 10 001 abscissae for q D 0:95; 0:90 and 0:80,
respectively. The Monte Carlo ES, ESq , is computed by finding the mean loss
conditioned on the loss being larger than VaRq:

ESq D EŒR� j R� > VaRq�: (4.6)

From Table 4 on page 63, we see that our analytic approximation generally does a
reasonable job of predicting the ES for portfolios with small ˇij . For portfolios 1,
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FIGURE 4 Comparison of VaRs generated through Monte Carlo simulation (dashed gray)
and analytic approximation (solid black) as determined by (3.21).
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Error bars for the Monte Carlo simulations are 99% confidence intervals derived from 50 000 bootstrap samples.
Parameters are taken from Table 2 on page 59 with intrasector correlations given by N�i . Cross-sector correlations are
14–87% for (a), 12–72% for (b) and 8–49% for (c). The bottom panels show the distribution of (d) sector exposures,
(e) systematic risk variances and (f) default probabilities.

2 and 4, the relative error in ES is between 5% and 10%. When ˇij D 0:8, the ES
disagree by up to 25%.

Finally, we try to formulate some guidelines for when our analytic approximation
(3.21) is valid; see Table 5 on page 64. This table provides a range of factor loadings
ˇij and risk variances �ij , within which the agreement between the analytic solution
(3.21) and Monte Carlo simulated VaR is good. Specifically, a check mark in Table 5
on page 64 indicates that the analytic solution lies within the 99% confidence intervals
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FIGURE 5 VaR for portfolios containing (a)N D 17 and (b)N D 8 sectors, corresponding
to Table 2 on page 59 and Table 3 on page 60.
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Solid black curve indicates analytic solution (3.21), dashed gray curve indicates Monte Carlo simulated values and
error bars are 95% confidence intervals generated using 50 000 bootstrap samples.

of the Monte Carlo solution at q D 0:1; 0:3; 0:5 and 0:7. The parameter values were
generated using (4.1)–(4.4), with N�i D N�0C0:05Zi , whereZi � N .0; 1/. We set ˇij
to be constant across all companies and sectors and the sector default probabilities
PDi D 0:0102 for all i . The sector exposures Nwi in (4.4) are randomly generated, and
there are n D 1000 companies per sector. We find that, for portfolios with seventeen
sectors or more, our analytic approximation agrees with the Monte Carlo simulations,
provided the asset returns are no larger than about 0.3 and the loading factors ˇij are
no larger than about 0.7.

5 CONCLUSIONS

In this paper, we computed the VaRs and ESs for a bond portfolio under a hierarchi-
cal multifactor model for the asset returns. Our main results are (3.21) and (3.24),
which are analytic approximations to the portfolio’s VaR and ES, given a risk level
0 6 q 6 1. Our approximation to the VaR is written entirely in terms of easy-to-
compute special and elementary functions and represents an economically intuitive
extension of Vasicek’s ASRF result to multiple sectors. It is much quicker to com-
pute than predicting the VaRq through many trials of a Monte Carlo simulation. Our
formulas for the VaRq give good approximations to the loss as predicted by Monte
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TABLE 4 Comparison of ES at level q (average loss in the worst 100.1 � q/% of cases).

Portfolio 1: ˇij D 0.3

q D 0.95 q D 0.90 q D 0.80

ESq (analytic) 0.1172 0.0795 0.0519
ESq (MC) 0.1237 0.0848 0.0545

Portfolio 2: ˇij D 0.5

q D 0.95 q D 0.90 q D 0.80

ESq (analytic) 0.1019 0.0720 0.0487
ESq (MC) 0.1123 0.0800 0.0527

Portfolio 3: ˇij D 0.8

q D 0.95 q D 0.90 q D 0.80

ESq (analytic) 0.0631 0.0497 0.0377
ESq (MC) 0.0841 0.0611 0.0433

Portfolio 4: random ˇij

q D 0.95 q D 0.90 q D 0.80

ESq (analytic) 0.1241 0.0825 0.0531
ESq (MC) 0.1396 0.0934 0.0591

Portfolios 1, 2 and 3 have ˇij � 0.3;0.5;0.8, respectively, and other firm parameters are generated through (4.1),
(4.2) and (4.4). Portfolio 4 has ˇij generated through (4.5). All values are correct to four decimal places.

Carlo simulations when the sector factor loadings and systematic risk variances are
not too close to 1. When the sector factor loadings are increased, we find that our
approximations deviate from Monte Carlo simulated VaRq for small values of risk
level q.

Our approximations are able to account for asset-return correlations among com-
panies at a global and sector level. We derived the formulas by using the central limit
theorem and Laplace’s method to approximate the loss distribution conditioned on
the global risk when the number of sectors N is large, and then integrating over the
global risk. The final analytic approximations have a similar mathematical structure
to the ASRF but explicitly feature local and global factor loadings.

Although we have given some guidelines, in terms of model parameters, for when
the analytic solution (3.21) may be accurate, quantifying and understanding its accu-
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TABLE 5 Comparison of analytic solution with Monte Carlo simulated VaR for N D 13
(top panel), N D 17 (middle panel) and N D 23 (bottom panel) sector portfolios.

ˇij‚ …„ ƒ
0.1 0.2 0.3 0.4 0.5 0.6 0.7

N�0 D 0.1 X X X X
N�0 D 0.2 X X X X
N�0 D 0.3 X X X
N�0 D 0.4 X
N�0 D 0.5

ˇij‚ …„ ƒ
0.1 0.2 0.3 0.4 0.5 0.6 0.7

N�0 D 0.1 X X X X X X X
N�0 D 0.2 X X X X X X
N�0 D 0.3 X X X X X
N�0 D 0.4 X
N�0 D 0.5

ˇij‚ …„ ƒ
0.1 0.2 0.3 0.4 0.5 0.6 0.7

N�0 D 0.1 X X X X X X
N�0 D 0.2 X X X X X X
N�0 D 0.3 X X X X X
N�0 D 0.4

A check mark indicates that the analytic solution falls within the 99% confidence intervals for the simulated VaR at
q D 0.1;0.3;0.5;0.7.

racy in terms of the correlation among firms is still an open question (the correla-
tion matrix is easily found from (2.1)). Certainly, our result is exact in the limit as
N !1, but for finite values of N we do not know which correlation matrixes give
good agreement between (3.21) and simulation results, and which do not. We have
found instances where the agreement is good and there is a wide range of correlation
among firms, and instances where the agreement is poor and there is a narrow range
of correlation among firms.

In summary, our work builds on current research in developing analytic and numer-
ical tools to study credit portfolios. We hope that it will motivate further studies to
build analytic approximations that could be accurate even for a very small number of
sectors (say N D 3 or 4) and extreme parameter values.
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APPENDIX A. LAPLACE’S METHOD FOR EVALUATING INTEGRALS

In our calculation, we employ Laplace’s method to approximate integrals. Here, we
briefly review this method, which is a technique for asymptotically evaluating integrals
of the form

I.k/ D

Z b

a

g.t/ expŒ�k .t/� dt; (A.1)

when k � 1. The method relies on the important fact that when k is large, most of the
mass of the integrand will be located around a stationary point t�, where expŒ�k .t/�
is maximal or, equivalently, where  .t/ is minimal:  0.t�/ D 0,  00.t�/ > 0. When
t� 2 .a; b/, we make the approximations g.t/ � g.t�/C g0.t�/.t � t�/C � � � and
 .t/ �  .t�/C 1

2
 00.t�/.t � t�/2 C � � � to find that

I.k/ � e�k .t
�/

s
2�

k 00.t�/

�
g.t�/CO

�
1

k

��
; k !1: (A.2)

The first term on the right-hand side of (A.2) is Laplace’s approximation to I.k/. The
second term in the series can be used to give an error estimate of the first term. A full
account of Laplace’s method and smoothness conditions required for g and  can be
found in many texts, such as Ablowitz and Fokas (1997), Olver (1997) and Erdelyi
(1956). An explicit form for the O.k�1/ term in (A.2) can be found in Bender and
Orszag (2010).

APPENDIX B. MATLAB CODES FOR VALUE-AT-RISK EVALUATION

The Matlab code GenerateMatrices.m generates the model parameters wij ,
ˇij , �ij and �ij for the hierarchical multifactor portfolios in this paper. The code
MCsimulatedVaR.m is used to simulate the VaRs using Monte Carlo simu-
lation after calling GenerateMatrices.m at the command prompt. Finally,
AnalyticVaR.m is used to compute the analytic solution as given by (3.21).
The codes can also be found on Pak-Wing Fok’s website, http://udel.edu/˜pakwing/
MATLAB_codes/JCRcodes.txt.

function [w,beta,theta,rho,wvec,betavec,thetavec,rhovec] = GenerateMatrices(n)
% generate "reasonable" model parameters w_{ij}, \beta_{ij}, theta_{ij}, \rho_{ij}
% for a large bank like JP Morgan for N=17 sectors and
% specified n (# companies per sector). The w_{ij} are based on call report
% data

% N Loan type/sector
% 1 construction and land development
% 2 farmland
% 3 1-4 residential properties
% 4 5+ residential properties
% 5 nonfarm, non-residential
% 6 commercial US banks
% 7 banks in foreign countries
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% 8 agricultural loans
% 9 US commercial/industrial loans
% 10 non-US commercial/industrial loans
% 11 Credit Cards
% 12 Other revolving credit plans
% 13 automobile loans
% 14 other consumer loans
% 15 foreign governments
% 16 US states and subdivisions
% 17 non-depository financial institutions & other

wvec = [
0.006038934108343
0.000334001336005
0.321727182643328
0.071374977443038
0.042981697993143
0.004997356482317
0.029969892391418
0.001247360439679
0.143856433245638
0.053224933278880
0.041455739282673
0.004090329157525
0.065719115957033
0.031400874418664
0.001632016006737
0.020071739054729
0.159877416760852];

rhovec = [
0.3300
0.3200
0.3500
0.3100
0.3700
0.9500
0.9300
0.5200
0.4800
0.5000
0.1500
0.1700
0.2100
0.1600
0.9200
0.9700
0.8500];

% rhovec = [
% 0.23
% 0.22
% 0.25
% 0.21
% 0.27
% 0.15
% 0.13
% 0.12
% 0.18
% 0.28
% 0.15
% 0.17
% 0.21
% 0.16
% 0.12
% 0.17
% 0.15
% ];
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thetavec = [
-2.326347874040841
-2.326347874040841
-2.326347874040841
-2.326347874040841
-2.326347874040841
-3.090232306167814
-3.090232306167814
-2.326347874040841
-2.326347874040841
-2.326347874040841
-1.644853626951473
-1.644853626951473
-1.644853626951473
-1.644853626951473
-3.719016485455709
-3.719016485455709
-2.326347874040841];

betavec = [
0.8000
0.9000
0.0500
0.1000
0.1000
0.9000
0.1000
0.7000
0.0500
0.1000
0.1000
0.8000
0.1000
0.1000
0.8000
0.1000
0.0500];

N=length(wvec);
w = zeros(N,n);
rho = zeros(N,n);
theta = zeros(N,n);
for i=1:N

w(i,:) = wvec(i)/n;
rho(i,:) = rhovec(i) + 0.01*randn(1,n);
theta(i,:) = thetavec(i) + 0.01*randn(1,n);
beta(i,:) = betavec(i) + 0.01*rand(1,n);

end

function [VaR,VaR_upper,VaR_lower,R_pi] = MCsimulatedVaR(rho,beta,theta,w,...
c,q,num_trials,confidence,qs)
%
% This function produces a Monte Carlo simulated VaR_q plot for the
% hierarchical multi-factor credit
% portfolio problem and generates error bars at values of q specified
% in the qs vector
%
% rho: matrix of asset return variances
% beta: matrix of factor loadings
% theta: matrix of threshold default values s.t. prob default =
% Phi(theta_{ij})
% w: matrix of exposures
% c: loss given default (LGD). It’s a scalar e.g. c=1.
% q: vector of risk-values at which to evaluate VaR. Must be between
% 0 and 1 e.g. q = linspace(0,1,50)
%
% num_trials: number of portfolios to generate e.g. num_trials = 5000
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% confidence: confidence values to create error bars. It’s a
% number between 0 (no confidence) and 1 (complete confidence).
% VaR: Values-at-Risk corresponding to q
% [VaR_upper,VaR_lower]: The upper and lower error bars for VaR,
% calculated using the bootstrap method
% qs: Values of q at which to calculate error bars e.g.
% qs = [0.2 0.4 0.6 0.8]
% R_pi: Portfolio loss for each of the num_trials trials

NNN = 50000; % number of bootstrap samples
beta_hat = sqrt(1-beta.ˆ2);

% parameter values
[N,n] = size(rho); % N: number of sectors, n: number of companies per sector
R_pi = zeros(1,num_trials);
for i=1:num_trials

R_pi(i) = one_draw(rho,beta,beta_hat,theta,w,c,N,n);
end

P = zeros(NNN,length(qs));
for i=1:NNN

if mod(i,2000) == 0
sprintf(’Generating bootstrap samples: %d/%d’,i,NNN)

end
% generate num_trials random integers from [1:num_trials]
k = randi(num_trials,1,num_trials);
bootstrap_sample = R_pi(k);
P(i,:) = quantile(bootstrap_sample,qs);

end
alpha = (1-confidence)/2; % e.g. alpha = 0.05 for confidence_percentage = 0.9
VaR_lower = quantile(P,alpha);
VaR_upper = quantile(P,1-alpha);
VaR = quantile(R_pi,q); VaR(end) = 1;
semilogy(q,VaR,’r--’,’LineWidth’,2);
hold on;

for i=1:length(qs)
val(i) = (VaR_lower(i) + VaR_upper(i))/2;
errorbar(qs(i),val(i),val(i)-VaR_lower(i),VaR_upper(i)-val(i),’r-’,’LineWidth’,2);

end

axis([0 1 1e-3 1e-1]);
h=gca;
set(h,’FontSize’,14,’FontName’,’Times’);
end

function R_pi = one_draw(rho,beta,beta_hat,theta,w,c,N,n)
% different rows of rho, beta etc. correspond to different sectors,
% following the convention in the paper
epsilon_hat = randn(1,1);
epsilon = kron(randn(N,1),ones(1,n));
Z1 = sqrt(rho) .* beta_hat*epsilon_hat;
Z2 = sqrt(rho) .* beta .* epsilon;
Z3 = sqrt(1-rho) .* randn(N,n);
Z = Z1+Z2+Z3;
LOSSES = c*(Z <= theta);
R_pi = sum(sum( w.*LOSSES ));

end

function VaR = AnalyticVaR(rho,beta,theta,w,c,q)
% provides analytic solution for N sectors and n companies per sector
% rho = A(:,1); beta = A(:,2); theta = A(:,3); w = A(:,4);
beta_hat = sqrt(1-beta.ˆ2);
[N,n] = size(rho);
for i=1:length(q)

arg = ( theta + sqrt(rho).*beta_hat.*invPhi(q(i)) )./ (sqrt(1-rho+beta.ˆ2.*rho));
VaR(i) = c*sum(sum(w.* Phi(arg)));

end
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semilogy(q,VaR,’b-’,’LineWidth’,2); hold on;
xlabel(’q’,’FontSize’,14,’FontName’,’Times’,’FontAngle’,’italic’);
ylabel(’VaR_q’,’FontSize’,14,’FontName’,’Times’);
end

function out = Phi(x)
out = 1/2*(1+erf(x/sqrt(2)));
end

function out = invPhi(x)
out = sqrt(2)*erfinv(2*x-1);
end
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