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1 Introduction.

The numerical solution of partial differential equations (PDEs) has been dominated by either finite difference
methods (FDM), finite element methods (FEM), and finite volume methods (FVM). These methods can be
derived from the assumptions of the local interpolation schemes. These methods require a mesh to support
the localized approximations; the construction of a mesh in three or more dimensions is a non-trivial problem.
Typically with these methods only the function is continuous across meshes, but not its partial derivatives.

In practice, only low order approximations are used because of the notorious polynomial snaking problem.
While higher order schemes are necessary for more accurate approximations of the spatial derivatives, they
are not sufficient without monotonicity constraints. Because of the low order schemes typically employed,
the spatial truncation errors can only be controlled by using progressively smaller meshes. The mesh spacing,
h, must be sufficiently fine to capture the functions partial derivative behavior and to avoid unnecessarily
large amounts of numerical artifacts contaminating the solution. Spectral methods while offering very high
order spatial schemes typically depend upon tensor product grids in higher dimensions.

2 Scattered Data Interpolation.
Let z1,...,zxy € Q C R™ be a given set of nodes. Let
9i@)=g(le—=zl) eR, j=1,..,N,
be a set of any RBF basis functions. Here ||z — z;|| is the Euclidean distance. Given interpolation data
values y1,...,yn € R at data locations z1,...,xny € 2 C R™, the RBF interpolant

F(z) = Z @;gj(x) + ant1 (1)

is obtained by solving the system of N + 1 linear equations

N

Zajgj(mi) +ant+1 = Y, 1=1, ...,N, (2)
j=1

N
E a; = 0,
j=1



for N + 1 unknown expansion coefficients ;. This formulation of interpolation problem, where is due to
R. L. Hardy, Hardy (1972,1990), the primary innovator of the RBF method. He adds a constant to the
expansion and constrains the sum of the expansion coefficients to be zero. Introducing the notation

1 gi(@1) .. gn(w1)
p=1]:|¢€ RN, G = : S e RN = { IC);T 15 ] € RINFLX(N+1),
1 gi(xzn) - gn(TN)
a=(oq,..,ani1)’, y= (W1, yn,0)" € RNF1 we can rewrite the system (2) in the matrix from as
Ho=y. (3)
Then the interpolation expansion coefficients are given by
a=H1y. (4)

One can also easily find the derivatives of the interpolant at the nodes z;, e.g.

N

Flz:) = Y ajgi®), i=1,..,N, (5)
=1
N

F”(xi) = Za]g_;l(xl)a 1= 1)"'7N' (6)
=1

There is an infinite class of radial basis functions possible. Some of the more commonly used RBF's are:

Thin — platesplines, ||z — z;||In (||z — =;|]) , (7)
Linearsplines, ||z — ;|| (8)
Cubicsplines, ||z — $j||3 , 9)
Gaussians, exp (—”xc_ing”> , (10)
7
. . Iz — 21| *
Multiquadrics(MQ),4| 1 + 2 . (11)

J

Equations (7) - (11) represent some of the commonly used global RBFs that are defined over all 2. Splines
(7) - (9) have no adjustable parameters, whereas the Gaussian and MQ do. Hardy (1990) showed that
MQ has a physical foundation; it is related to a consistent solution of the biharmonic potential problem.
Buhmann and Micchelli (1992) and Chui et al. (1996) have shown that RBF's are related to wavelets, except
for the orthonormalization property. The translational invariance property is accounted by ||z — z;||. RBFs
(7) - (9) have uniform scaling, whereas the Gaussians and MQs can have local dilations via the local shape
parameter, c?. The neural network community which relies upon Gaussian RBF's extensively optimizes the
local shape parameter to accelerate the convergence of their RBF expansions. Kansa (1990a, 1990b) and
Kansa and Hon (1999) found heuristically that even a crude recipe for the shape parameter distribution
accelerates convergence in collocation PDE problems using MQ as the RBF.

The reader is referred to Wendland (1995) for the polynomial compacted supported (CS-RBF) splines
and to Kansa and Hon (1999) for the truncated MQ splines.

3 RBF PDEs by Collocation (Asymmetric Method).

The procedure will be illustrated with an elliptic PDE. The spatial treatment for hyperbolic and parabolic
PDE:s is formulated similarly. Time dependent PDEs can be solved by the method of lines (MOL) technique.
In this case one substitutes the RBF expansions of spatially dependent terms which yields a system (or
systems) of coupled linear or nonlinear ordinary differential equations (ODEs).



a) Solution procedure for elliptic PDEs.
For elliptic PDEs, we assume the interior and boundary operators, L and B, respectively, are linear, for
simplicity, and that they define a well-posed elliptic boundary value problem:

Lu(z) = s(z), in2 CR", (12)
Bu(z)|5q = f(2). (13)

We first introduce a set ©p of nodes
On = {(zi) li=1,n-mC Q, (%) li=N-m+1,8C 002}

We look for the approximate solution up, to (12), (13) in the form
N J—
uh(x)=2ajgj(w)+a1v+1, z €N =0UdN, (14)
j=1

Substituting up () into (12), (13) and using collocation at the nodes in @, we obtain the collocation system

N

Luh(xi) = Za]'ng(.’I?i) + OéN+1L1 = S(.’L’i), 1= 1,...,N - M, (15)
j=1
N

Bup(z;)) = Zangj(x,-) +anp1Bl=f(z;), i=N—-M+1,..,N. (16)
j=1

Here L1 and B1 mean the action of L and B on the number 1. Introducing the notation:

[ Lgi(21) . Lgn(z1) Bgi(zn-m+1) - Bgn(zn-mi1)
Gr = : Do » Gp= | : Do ,
| Loi(zn—pm) - Lgn(zn—m) By (zn) .. Bgn(zn)
[ G, Lp
w = GJ{B Bp | e RNAUXMNHY - — (5(2), . s(an—nt), f(EN—pag1), o flzn), 0) T € RNFL,
p 0

we can rewrite the system (15), (16) in the matrix from as
Wa =b, (17)

whose solution is
a=W b (18)

Then the solution anywhere in the domain is given by (14). If L is a nonlinear operator, then the solution
to (17) will require some iterative procedures.

b) Parametrized nonlinear elliptic PDEs.

Typically, in nonlinear problems it is crucial to understand the qualitative dependence of the solutions
on the problem parameters. In Fedoseyev, Friedman, and Kansa (1999) some parametrized nonlinear 1D
and 2D elliptic PDEs were discretized by the MQ method. Then numerical continuation and bifurcation
techniques were used to study qualitative changes in solutions as a problem parameter varied. A significant
improvement of the accuracy was observed when a simple optimization strategy with 2 parameters was used.
These parameters were 1) the constant shape parameter ¢ = ¢; for all j, 2) distance h between the boundary
00 and the layer of the nodes adjacent to 9.

c¢) Solution procedure for hyperbolic and parabolic PDEs.

Assume that in some inertial frame, the time and space variables are separable, and the expansion
coefficients depend only upon time. Then the solution procedure for time dependent hyperbolic and parabolic
PDE:s is similar for the spatial discretization part. The procedure is somewhat modified.



Firstly, the expansion coefficients at time ¢ = 0 are obtained as a solution to the interpolation problem
from the initial conditions.

Secondly, the time evolution of the expansion coefficients is generated by the method of lines yielding a
coupled system of linear or nonlinear ordinary differential equations(ODEs). Examples can be found in which
explicit 4th order Runge-Kutta, Laplace Transform, or even exact ODE solution methods were employed
yielding excellent results.

In time marching schemes, it is important to control truncation errors. For example, in the case of
hyperbolic PDEs spatial and truncation errors propagate along characteristics. Temporal truncation errors
at a node, xp, can contaminate the spatial solution, and vice versa. The reduction of both spatial and
temporal truncation errors was demonstrated to be excellent using a combination of Laplace Transforms
and MQ, see Moridis and Kansa (1994). Furthermore, in most instances, it was not found necessary to add
stabilizing artificial viscosity to advective problems (i.e., upwind differencing methods common with FDM,
FEM, or FVM).

4 Hermite-Birkhoff collocation PDE Method (Symmetric Method)

Wu (1996) viewed the solution of the PDE problem as a special case of the Hermite-Birkhoff interpolation
problem. Although extra steps are required, the PDE collocation matrix that is generated from the Hermite-
Birkhoff method is positive definite, hence the problem always solvable. The Hermite-Birkhoff formulation
of the PDE problem is called the symmetric approach. Franke and Schaback (1998) and Fasshauer (1998)
used Wendland (1995) compactly supported radial basis functions (CS-RBF).

Wendland’s CS-RBF's permit one to adjust the band width of the collocation matrix. Franke and Schaback
observed that if the matrix band width were made more narrow, convergence could be only accelerated
by using more nodes. But as the CS-RBFs became more global, hence larger matrix band widths, the
convergence accelerated.

5 Optimization of Node Location and MQ) shape parameters.

Regardless of the spatial approximation scheme used, the more interesting PDE problems require an intel-
ligent placement of the nodes, {z;}, to avoid the under-sampling of important physical phenomena. For
example, Hon (1998), using MQ to solve Burgers viscid equations, found that as the Reynolds number in-
creased, an adaptive choice of a subset of nodes was required to resolve the steepening front while using as
few nodes as possible. Kansa (1990 b) and Kansa and Hon (1999) optimized the MQ shape-parameter distri-
bution, {c?}, and observed a twofold effect: 1) the condition number of the W matrix decreased by several
orders of magnitude, and 2) the errors in the PDE solution decreased by a couple orders in magnitude.

6 Collocation-free global optimization formulation.

Galperin and Zheng (1993) and Galperin, Pan, and Zheng (1993) argue that all collocation methods are
intrinsically ill-conditioned. They proposed to solve PDEs using global optimization methods, and noted
many advantages of the MQ-RBFs. The set of initial conditions, boundary conditions on 052, and PDE in (2
are cast into functionals. In turn, a global functional is formed using a weighted sum of these functionals over
the initial conditions, boundary conditions, and interior problem. A vector, ¢ = {xi,c?,aj} in the space,
@, of feasible parameters is varied, until discrepancies are < 7, the prescribed precision. It is noteworthy
to mention that Galperin and Zheng found the global optimized solution to a heat conduction PDE to a
precision of 0.0012 with just one optimized MQ basis function.

The global optimization approach circumvents any ill-conditioning problems arising from either the
asymmetric or symmetric collocation PDE problem. Ill-posed and badly formulated problems can pos-
sess n-equivalent solutions that represent physical reality despite the mathematical nonexistence of an exact
solution.

Galperin, Kansa, Makroglou, and Nelson (1999) applied global optimization to the numerical solutions of
weakly singular Volterra integral equations. They used a method of successive approximations, appending one



MQ basis function at a time (j = 1,2, ...,m), while optimizing each {:cj, c?, aj}, (a 3-parameter optimization
procedure). They observed that four to seven MQ basis functions were required for convergence with the
error < 5 x 1077, depending upon the problem.

7 Convergence Properties of the M(Q interpolation scheme.

Madych and Nelson (1990) proved that the MQ interpolant and its partial derivatives have exponential
convergence. This rate of convergence has been observed numerically by a number of authors. Furthermore,
Buhmann and Micchelli (1992) and Chui et al. (1996) showed that RBFs are prewavelets (wavelets are
ortho-normalized).

MQs are especially attractive because they have exponential convergence and depend upon the shape
parameter distribution that can be globally optimized as an n-equivalent problem, see Galperin and Zheng.
Optimization of shape parameters is commonly accepted in neural network problems in which Gaussian
RBFs rely upon optimization of the variance of the basis functions.

8 Lagrangian and Moving Node applications with RBF's.

Lagrangian and other moving node schemes used for computational fluid dynamics problems are quite com-
plicated to implement in two and three dimensions, especially if the underlying mesh undergoes considerable
distortion and breaking of connectivity. The natural tendency (due to entropy) of such systems is towards a
scattered data arrangement. Richard Franke’s paper (1982) concluded that of all the interpolation methods
for scattered data problems, Hardy’s MQ-RBF splines (1972) performed best based upon several criteria.
While there are several RBF splines available, in general, M(Q) seems to have outperformed others.

One of the perennial problems of numerical mathematics is the problem of simulating problems whose
solutions are continuous in certain regions and discontinuous in other regions. It is proposed here that
discontinuities be tracked, not captured. MQ is a continuously differential RBF. Shocks and contact surfaces
are discontinuities of lower dimensionality, and except in the limit, continuous functions do not represent
discontinuities well.

If a continuous wave begins to steepen to such an extent that its width in the normal direction of
propagation tends towards zero, then replace that wave by a discontinuity of lower dimensionality. Front
tracking, wave steepening, and front collisions have been fairly simple to implement in 1D with mesh-based
methods, but require complex bookkeeping, transformations, etc. if mesh-based methods are used. A huge
set of complications is eliminated if a mesh is abandoned.

A Lagrangian FDM scheme tries to minimize the remapping back onto a well-behaved Eulerian mesh
because the interpolation scheme is very diffusive. While the interpolation is performed in such a manner to
be strictly mass conservative, conservation of momentum and total energy are typically sacrificed. Recent
experiments with MQ-RBFs have shown many of the shortcomings with traditional methods can be avoided.

The method of characteristics (MOC) cannot be rigorously constructed beyond one dimension. However,
by simultaneously rotating the fluid velocity components and the coordinate system into the normal flow
direction, the resulting PDEs are locally one-dimensional. Hence, the MOC can be used to find the advanced
time solution.

Remapping is enforced whenever two or more nodes begin to coalesce or leave regions devoid of nodes.
Remapping is performed by a modification of the basic interpolation method. The MQ basis functions are
integrated in closed form. Because the same spatial basis function is used for all variables, the total mass,
momentum component and total energy integrals over the domain, 2, are calculated merely by changing
the expansion coefficients. The remapping step is constrained to be strictly conservative in all dependent
variables by a least squares procedure that combines interpolation with the conservation constraint.

9 Invertible MQ PDE collocation coefficient matrices.

Micchelli (1986) proved that the interpolation problem related to RBFs such a thin-plate-splines and MQ is
solvable for distinct nodes. To date, there is no theory that specifies the conditions under which the asym-



metric MQ collocation is solvable. However, from experience, the following conditions should be observed.

1. Nodes should be distinct.
2. Nodes from Q should not coincide with those of the boundary, 9€2.
3. The problem should be well-posed.

4. Certain unusual combinations of nodes and shape parameters may produce W matrices in which two
or more rows may be nearly linearly dependent or even singular, see Schaback and Hon (1999). To
avoid such a situation, it is recommended that the matrix be regularized by perturbing the shape
parameter distribution, and avoiding very large values of shape parameters that would result in such
a situation. Note that in the global optimization formulation, such combinations of nodes and MQ
shape-parameters would not be permitted.

5. A variable shape parameter distribution gives more distinct rows of the coefficient matrix that consid-
erably lowers its condition number. A good recipe is: ¢; = ki + kz2p (x;), where p (z;) is an estimate
of the radius of curvature of the PDE solution, and k; and k» are adjustable parameters that control

the magnitude of the shape parameters.

6. Both MQ-RBFs and FEM can yield very ill-conditioned systems of linear equations. It is common
practice to pre-condition the matrices as well as use domain decomposition or matrix partitioning
methods that not only render parallelization readily but deal with smaller rank matrices that are better
conditioned. Wong et al. (1999) found that a multi-zone decomposition of the complex geometry of
Tolu Harbour in Hong Kong yielded very reliable results. Kansa and Hon (1999) found that domain
decomposition greatly reduced the condition number of the asymmetric PDE collocation matrix and,
consequently, the root mean squared errors were reduced by a couple of orders of magnitude.

7. The truncated MQ RBF developed by Kansa and Hon (1999) would be recommended for large scale
problems. The hybrid combination of truncated-MQ + pre-conditioning+ domain decomposition+
alternating Schwartz method + iterative refinement and/or iterative methods give the techniques that
are useful in solving large scale problems. The advantage of using exponentially convergent meshless
basis functions is that orders of magnitude fewer discretization nodes are required. Since the FEM
community has developed a considerable amount of methods and software, the RBF community should
incorporate some of the appropriate methodology and software tools for the RBF collocation method.

10 Recommendations for Future Development.

Galperin and Zheng (1993) have pointed out that collocation methods are inherently ill-conditioned. Ill-posed
and badly formulated problems can possess 7-equivalent solutions that represent physical reality despite
the mathematical nonexistence of an exact solution. In the previous references cited of Kansa and Hon,
they performed an outer loop optimization of the shape-parameters and nodes using the MQ asymmetric
collocation method. Only Galperin et al. have used global optimization on a few limited problems, with
extra-ordinary results.

Although it is clear that the numerical solutions of PDE, ODE, integral, and integro-differential equations
would greatly benefit from the global optimization, Galerkin-like formulation, the major implementation
impediment is the lack of robust multi-parameter global optimization software. Unfortunately, gradient
based methods are ill-conditioned, and converge rapidly only under certain restricted conditions. In addition,
gradient methods pose the risk of being trapped in a local minimum, rather than in the global minimum.
Ferrari and Galperin (1993) have published a software package of a fast one-dimensional adaptive cubic
algorithm. It is hopeful that fast multi-dimensional global optimization software packages would be developed
soon.
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