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Abstract Autonomous robots are often deployed in applications to continuallymon-
itor changing environments such as supermarket floors or inventory monitoring,
patient monitoring, and autonomous driving. With the increasing use of deep learn-
ing techniques in robotics, a large number of robot manufacturing companies have
started adopting deep learning techniques to improve the monitoring performance of
autonomous robots. TheRobotOperating System (ROS) is awidely usedmiddleware
platform for building autonomous robot applications. However, the deployment of
deep learning models to autonomous robots using ROS remains an unexplored area
of research. Most recent research has focused on using deep learning techniques to
solve specific problems (e.g., shopping assistant robots, autopilot systems, automatic
annotation of 3Dmaps for safe flight). However, integrating the data collection hard-
ware (e.g., sensors) and deep learning models within ROS is difficult and expensive
in terms of computational power, time, and energy (battery). To address these chal-
lenges, we have developed EasyDLROS, a novel framework for robust deployment
of pre-trained deep learning models on robots. Our framework is open-source, inde-
pendent of the underlying deep learning framework, and easy to deploy. To test the
performance of EasyDLROS, we deployed seven pre-trained deep learning models
for hazard detection on supermarkets floors in a simulated environment and evalu-
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ated their performances. Experimental results show that our framework successfully
deploys the deep learning models on ROS environment.

1 Introduction

The use of autonomous robots to perform tasks that until recently were performed
solely by humans (e.g., rescuing victims from hazardous environments, inventory
management, identification of hazards, etc.) has seen immense interest in recent years
[24]. An important reason for the surge of research in this domain is the deployment
of highly accurate deep learning models that can significantly enhance robot intelli-
gence enabling them to perform human-like activities. In the retail industry, efforts
are increasingly been made to reduce human involvement in hazard detection and
inventory maintenance. Robots produce large amounts of data to observe the sur-
rounding environment and most robotics technology involves using cloud servers
for data processing [22]. The use of cloud servers involves transferring raw data to
the cloud, which increases communication costs and response time, and also makes
any private data vulnerable to compromise. It is therefore desirable for the data to be
processed as close to the source as possible.

Edge computing techniques address this problemby processing data in close prox-
imity to the data source [17]. With the improvement in edge computing technology,
many edge devices now possess enough computational and storage capabilities to
perform deep learning at the network edge. For example, the Coral Dev Board can
perform 4 Trillion Operations Per Second (TOPS) operating at only 2 W. Therefore,
edge computing can rapidly become a pervasive technology for deploying deep learn-
ingmodels at the network edge. Low-power devices such as the Coral Dev Board and
the NVIDIA Jetson are among popular edge devices used for designing autonomous
robots capable of performing real-time deep learning tasks. Devices such as NVIDIA
Jetson, the BeagleBone AI, and the Coral Dev Board have been developed with the
aim of providing intelligence to the robotic fields using edge technology.

Deep Learning (DL) has revolutionized the way image, audio, and sensor data
are analyzed. Efforts to deploy DL techniques on cyber-physical agents for making
real-time decisions have increased significantly [31]. However, deep learning tech-
niques are computationally expensive due to their complex deep neural architectures
involving millions of parameters. It has been observed in the literature that shal-
low neural architectures are also available; however, deep neural architecture-based
learning models have achieved better accuracy, have automatic data engineering
features, and can learn to solve complex problems, such as image and voice recogni-
tion, using much larger datasets [16]. Although they are successful in solving many
problem accurately, deploying deep learning models on devices with limited mem-
ory and computational capabilities (such as IoT devices, autonomous robots, etc.)
remains challenging. Different model compression techniques like model pruning
and quantizing can help to deploy DL models on resource-constrained devices. In
this chapter, we show how to deploy DL models on different resource-constrained
devices in the ROS environment. Such resource-constrained devices are increasingly

https://coral.ai/products/accelerator/
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being used as the main on-board computational device on autonomous robots. In the
experiments, a supermarket floor hazards dataset was used to train and test different
deep learning models and to show successful deployment of deep learning mod-
els on resource-constrained settings within the ROS environment using our novel
open-source EasyDLROS1 framework.

In this chapter, we first provide an overviewof how to deploy deep learningmodels
on resource-constrained edge devices and then introduce our novel framework for
deploying those models on autonomous robots within the ROS environment. We
evaluate our approach using a real-world use-case of identifying hazards on floors
using a ROS-integrated autonomous robot.

Research contribution
A lot of autonomous robots increasingly use the Robot Operating System (ROS),
but there is no established framework for streamlining the deployment of DL within
the ROS environment. ROS is middleware that has emerged as a universal vehicle
for robotics application development [33]. It provides a publish/subscribe model
for interprocess communication and multiple libraries and packages for application
development, making it useful for a wide variety of practitioners. However, there
remain three major issues in deploying deep learning models on robots using ROS:

• the high energy consumption by the deep learning model
• significant computational burden on computing devices

Amajor barrier to deploying deep learningmodels on edge devices or autonomous
robots is the lack of efficient algorithmic systems that are robust enough to work with
the limited computational resources and low battery life. This chapter describes a
new deep learning architecture for training a deep learning model and deploying
intelligence to the network edge within the ROS environment, allowing resource-
constrained devices to aid faster decision-making. Six other existing deep learning
models that can be deployed on constrained devices are also discussed in this chapter.
Finally, we describe the EasyDLROS, a framework for deployingDLmodels on edge
devices or autonomous robots operated byROS.Themain contribution of this chapter
is as follows:

• the design of EdgeLite, a lightweight image recognition CNN architecture for
detecting the presence or absence of supermarket floor hazards

• a novel framework, EasyDLROS, for deploying deep learning models on
autonomous robots integrated within the ROS environment

• a comparison of EdgeLite with six state-of-the-art deep learning models (viz.
MobileNetV1,MobileNetV2, InceptionNet V1, InceptionNet V2, ResNet V1, and
GoogleNet) for supermarket hazard detection when deployed on the NVIDIA Jet-
son TX2 showing EdgeLite to have the highest F-1 score and comparable resource
requirements in terms of memory, inference time, and energy, and

• a new dataset of images of floor hazards in supermarkets
• a case-study using a real-world example with a robot in a simulated environment.

1 https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/EasyDLROS.

https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/EasyDLROS
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The rest of the chapter is organized as follows: Sect. 2 presents related work
on hazard detection using deep learning and edge computing, and deploying deep
learning models on autonomous robots. Section3 provides a brief introduction of
relevant CNN architectures, their training, and inference. Section4 describes the
design and architecture of EdgeLite, a lightweight CNN architecture for hazard
detection. The architecture of our novel EasyDLROS framework is discussed in
Sect. 5.Data collection and generationmethods are described in Sect. 6. Experiments,
performance evaluation, and analysis of EdgeLite along with six other DL models,
both with and without using EasyDLROS framework, are described in Sect. 8, which
is followed by the conclusion.

2 Related Work

Despite the challenge posed by the computational requirements of deep learning,
several researchers have explored ways of deploying state-of-the-art DL systems in
resource-constrained settings. In most of the work so far in this area, researchers
have used a large computing system or cloud servers for performing deep learning
on a small device or ROS-powered autonomous robot. However, most autonomous
robots get energy from an on-board battery. Running a compute-heavy deep learning
model on a robot puts a tremendous burden on the battery. On the other hand, using
cloud servers compromises data security and increases latency. Therefore, our work
focuses on using small computation devices (such as the Jetson Nano) to locally
perform all deep learning inference and other tasks.

Although Hsu et al. used a large cloud server, they have developed a fall hazard
detection system that generates an alert message when an object falls [9]. Their
approach has three key aspects:

1. a skeleton extraction performed for building an ML prediction model to detect
falls,

2. a Raspberry Pi used as an edge computing device for primary data processing and
to reduce the size of videos/images,

3. and finally, falls are detected using machine learning inference on the cloud, and
users are notified in appropriate cases.

In another study, a human fall detection system was developed using a convolu-
tional neural network [32]. This fall detection system can detect human falls in video
sequences.

A hierarchical distributed computing architecture has been designed for a smart
city to analyze big data at the edge of the network to detect hazardous events in a
city area [30]. A working prototype was constructed using a machine learning algo-
rithm on low-power computing devices to quickly detect hazardous events to avoid
potential damage. Researchers have also used deep learning models to detect small-
sized hazards on roads (e.g., lost cargo) which is a vital capability for autonomous
vehicles [19].
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Lane et al. developed a software accelerator capable of lowering the computational
resources required by deep learning and a software accelerator capable of lowering
the device resources required by deep learning [14]. They used two techniques,
viz, run-time layer compression and deep architecture decomposition which help to
control the memory and computation run-time during the inference phase.

A service robot that assists a customer in shopping has been developed by Su
et al. [27]. ROS and deep learning techniques were used in this system to detect a
customer and answer some simple questions. In another study, the combination of
ROS and deep learning were used to annotate maps with regions of crowded and
non-crowded scenes [13]. The identification of non-crowded regions helps a drone
to find paths to fly safely. However, the performance of DL models on a robot was
not discussed in these studies.

Sisido et al. designed a traffic signs recognition system using deep learning and
tested the system on a ROS simulator [26]. Chang et al. developed an object detection
systemusing theFasterR-CNNalgorithmandROS [2]. Theydeployed the full system
onaRaspberryPi-based robot andused theKinect sensor to capture the images.Cloud
services were used in the system to detect objects in real-time. Liu et al. developed
an autopilot system using deep learning and ROS distributed architecture [15]. They
used three cameras to capture images of the roads and used deep learning to detect
road signs, lane lines, and signal lights on those images. Then they passed detection
results to the decision module and process those results. Finally, they used a control
module to control the car automatically. They used 3 cameras, 3 Jeston TX1 boards,
and a big industrial computer to detect objects and drive the car.

Most research on DL within the ROS environment has used public cloud comput-
ing or external computing systems to perform data processing tasks. In our experi-
ments, we only use onboard devices for data processing, allowing us to keep all data
private.

3 Deep Learning Background

This section presents a brief background discussion on the key concepts in the deploy-
ment of deep learning models on resource-constrained devices.

3.1 CNNs

The majority of modern deep learning architectures are based on Artificial Neural
Networks (ANNs). Artificial neural networks combined with a set of mathematical or
other operations, known as convolutions, are called Convolutional Neural Networks
(CNNs). CNNs are one of the most widely used types of ANNs which can take
images as input, learn different features of those images and classify them into cat-
egories accurately [1]. Techniques based on CNNs have made tremendous progress



220 M. G. Sarwar Murshed et al.

not only on image recognition but also on speech recognition, natural language pro-
cessing making it one of the most popular method in deep learning. CNN-based deep
learning techniques mimic human intelligence using ANNs and progressively learn
to solve problems. CNNs consist of millions of artificial neurons and connections
among those neurons. The connections between neurons carry weights. The number
of neurons in deep learning networks has a great impact on the performance of the
network. A CNN performs better if the depth of layers increases [3] and the training
dataset is rich. However, increasing the depth of the network increases the number of
the parameters in the network. The number of parameters has a great impact on com-
putational resources and energy usage. This high computational requirement inhibits
deep learning deployment on battery-powered robots. However, several models have
recently been developed that maintain an excellent balance between the number of
parameters and performance as well as limiting the use of computation resources
[17]. MobileNet and SqueezeNet are examples of such lightweight models which
use fewer parameters compared to other well-known models, such as AlexNet, but
perform well in resource-constrained settings [5, 11].

3.2 Training

Figure1 shows an overview of CNN training and inference. During training, a CNN
network learns the value of its parameters, such as filters, weights, etc., from previous
data based on specific task of interest. Training of a CNN is performed in two phases:

1. Forward phase: input data is fed to the CNN and passed completely through the
network. The CNN makes a prediction based on the input data and calculates the
error in the prediction using “loss function”.

2. Backward phase: the errors are received and weights (connections between the
artificial neurons) updated based on the error values.

After training, the weights, biases, and other parameters are stored as part of a
trained deep learning model. This trained model is used for the prediction and/or
classification on new data during inference.

3.3 Inference

Deep learning inference is a processwhere amodel is used to apply knowledge gained
during training to make a prediction and/or classification on previously unseen data.
For example, when a new image is shown to a trained model as input, the model
outputs a prediction score based on the value of its weights which were learned in
the training phase. Generally, a model is trained using 32-bit floating point preci-
sion and uses the same precision for inference. However, a model deployed on a
battery-powered robot that is based on 32-bit operations drains too much energy for
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Fig. 1 CNN training and inference for resource-constrained setting. In the forward pass, input data
is fed to the network. Each layer of the network uses an activation function to process the input data
and calculates an error between the current output vector of the network and the expected output
vector. In the backward pass, the network tries to minimize the error by repeatedly adjusting its
weights and biases. 32-bit floating point format is used in this forward and backward pass. Once
trained, the model is quantized to 8-bit. During inference, the quantized model is used to save
computational resources and energy to enable ease deployment on resource-constrained devices

a power-scare scenario. Therefore, DL models are often quantized to 8-bits before
being deployed on a robot. This conversion reduces the accuracy of the model a little
bit, but sacrificing this accuracy saves energy, making the techniques feasible for
resource-constrained settings. Figure1 shows the quantization and inference of a DL
model.

4 Deploying DL Models on Resource-Constrained Devices

Fitting deep learning models on edge devices is challenging due to their limited
memory and computational capabilities. For example, an edge device may not have
enough memory to store parameters, the weight values of CNN filters, or the input
data arrays, additionally, the battery power may be insufficient for real-time model
inference. Therefore, there is increasing interest in lightweight, compute-efficient
CNNs with some acceptable loss in accuracy.

A typical CNN performs millions of mathematical operations to generate results,
and therefore has significant energy requirements. The dominant numerical format
used for CNN training and inference is 32-bit floating points. Performing mathemat-
ical operations with that precision can be very resource hungry and time-consuming.
Lower-precision numerical formats can address such issues without incurring sig-
nificant accuracy loss.
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Amongmany state-of-the-artmodel compression techniques, transferred/compact
convolutional filters, and parameter quantization are two widely adopted approaches
used to fit CNNs on edge devices [4, 6, 17, 36]. The first is reducing the number
of mathematical operations required for a model to improve inference time with a
minimal loss in accuracy. Examples of this category are MobileNet [5], SqueezeNet
[11], EfficientNet [29], and ShuffleNet [35]. Another approach is to quantize the
model weights from a higher bit floating point (e.g., 32 bit) into lower bit-depth
representations (e.g., 8 bit). This technique is exemplified byBinaryNeuralNetworks
(BNNs) [10] and XNOR-Net [20].

The approach we take is to train the deep learning models on a desktop machine
using 32-bit floating point precision, and then quantize the model to 8-bit, before
deployment on a robot using ROS. The inference is performed solely on a robot.
Quantization helps not only reduce the use of computational resources but also
reduces energy consumption and latency of generating results.

To test our technique, we applied it to the problem of automatically detecting of
hazards on supermarket floors.We tested several pre-trainedmodels including Incep-
tionV1 & InceptionV2, MobileNetV1 & MobileNetV2, and ResNet, used transfer-
learning technique to train them on our supermarket hazard dataset, and then devel-
oped a new architecture EdgeLite that outperforms other models for hazard detection
on resource-constrained devices. EdgeLite, a simplified CNN model that requires
fewer mathematical operations than InceptionNet was quantized to run on resource-
constrained edge devices. We experimented with a varying number of layers in order
to create a model that can run on resource-constrained devices (such as the Coral
Dev Board and the Raspberry Pi) using as little memory as possible while retaining
high accuracy.

4.1 EdgeLite Architecture

In order to have a model that can be used for inference on resource-constrained
edge devices, with a low-memory footprint without any additional hardware, we
developed a lightweight CNN architecture which achieved more than 90% accuracy
on our hazard dataset.

EdgeLite has 19 layers, not counting the pooling layers. We used filters with
multiple sizes which operate on the same level of the CNNnetwork to extract features
at different scales. The different types of filters used were of size 1 × 1, 3 × 3, and
5 × 5. To make the network computationally cheaper, 1 × 1 convolutions were used
to reduce the input channel depth and an extra 1 × 1 convolution was used before
the 3 × 3 and 5 × 5 convolutions.

Our CNN architecture, shown in Table1, consists of convolution, max-pooling,
avg-pooling, and EdgeLite layers. EdgeLite layers are incorporated into CNNs as
a way of reducing computational expense through a dimensionality reduction with
stacked 1 × 1 convolutions. Multiple kernel filter sizes are used in this layer and
an extra 1 × 1 convolution is added whenever 3 × 3 and 5 × 5 layers are used. All
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Table 1 Outline of the architecture of EdgeLite

Type Patch size/stride Output size

Conv 7 × 7/2 112 × 112 × 64

Max pool 3 × 3/2 56 × 56 × 64

Conv 3 × 3/1 56 × 56 × 192

Conv 3 × 3/1 56 × 56 × 256

Conv 3 × 3/1 56 × 56 × 480

Pool 3 × 3/2 14 × 14 × 480

5×EdgeLite_conv 14 × 14 × 832

Pool 3 × 3/2 7 × 7 × 832

2×EdgeLite_conv 7 × 7 × 1024

Pool 7 × 7/1 1 × 1 × 1024

Dropout 1 × 1 × 1024

Linear 1 × 1 × 1000

Softmax Classifier 1 × 1 × 2

the kernels are ordered to operate on the same level sequentially. A max-pooling
is performed in this layer and the resulting outputs are concatenated, and then sent
to the next layer. EdgeLite’s architecture is inspired by Inception [28]. However,
we reduced the number of layers and the size of the kernels to make it suitable for
resource-constrained devices.

5 Architecture of EasyDLROS

This section presents the relevant background on the Robot Operating System, the
structure of our novel EasyDLROS framework, the basic components of ROS, and
how those components are used in EasyDLROS.

5.1 ROS

The Robot Operating System (ROS [21]) is a meta-operating system, based on mid-
dleware, which provides a flexible framework for developing robot software. ROS
provides a set of software libraries and tools that help to build robot applications
on a heterogeneous computer cluster. Distributed computing, portability, and ease
of testing are among the main features of ROS. These features help to implement
multi-machine communication, real-time operation, and distributed computing. The
software in ROS is organized in packages that help implement applications such as
perception, simultaneous localization, robot models and mapping, simulation tools,
and other algorithms.
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A ROS node is a process that performs computations necessary for completing
a task. A node is an executable program that resides in a ROS application. ROS
allows multiple nodes in one application. A package consists of multiple nodes that
communicate with each other using ROS topics, services, actions, etc.

A ROS topic is a data stream that helps to exchange information between nodes.
Topics implement a publish/subscribe communication mechanism for exchanging
data in a ROS system.

ROS has various types of drivers, libraries, and protocols for handling different
types of devices attached to a robot. These components provide support for com-
puter vision and make it possible to deploy deep learning models on a ROS-based
autonomous robot to perform tasks like object recognition, voice recognition, and
so on. Many of the current deep learning models take images as input. An image
pipeline of the ROS framework helps with capturing images, color decoding, and
other low-level operations to make an image suitable for a deep learning model.

ROS supports reusing existing drivers and code written for other robots and plat-
forms. These features greatly help developers not only achieve a specific problem-
based task but also improve the ROS community. The next section describes the node
and topic design for the application layer of our novel framework.

5.2 EasyDLROS Framework

An overview of the architecture of our novel deep learning system is shown in Fig. 2.
It shows how EasyDLROS helps to deploy deep learning models on a robot and
performs all analytic tasks locally (without the use of cloud servers). The system is
divided into three main parts:

Fig. 2 The architecture of our novel EasyDLROS framework. EasyDLROS is a ROS-based on-
device deep learning deployment system. First, the camera node captures raw image data using a
camera mounted on a robot. Then, the image processing node processes the raw image data and
makes it suitable for a deep learning model. The deep learning node deploys a pre-trained DLmodel
and generates image classification results. The decision node then analyzes the classification results
and generates the necessary commands to perform robot’s subsequent tasks. Finally, the control
node receives commands from the decision node and performs the necessary user-defined tasks in
addition to controlling the robot
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1. Perception module: This module includes a camera node, which is responsible
for taking all necessary input images. These images are thenprocessedby an image
processing node. The main functionality of this node includes image conversion
(ROS msgs/Image message to OpenCV image), brightness adjustment, resizing
the pixels, etc.

2. Decision module: This module is the brain of our system. All images from the
previous module are processed in this module using DLmodel. It fuses the results
to the other nodes.

3. Control module: This module contains logics to control the robot. It gets input
from the decision module and uses control logic to make a control decision.
Then it generates control commands, such as for modifying speed, front wheel
angles, verifying hazardous or clean floor, brake, etc. Steer and speed nodes that
generate predictive robot lateral and longitudinal control commands including
vehicle speed and front-wheel rotation angle are deployed in the module.

ROS standard nodes are used to achieve the functionality of these modules. In our
prototype, we used one camera and one Jetson TX2 as the edge device.

Camera node

The camera node is part of the perception module (see Fig. 2) and is used to handle
the camera attached to the robot. All input images are taken using this node which
makes this one of the most important nodes. In our experimental setup, an 8.08MP
wide-angle Leopard imaging camera, with a 136◦ field of view, was mounted in front
of the robot to capture images. Other types of cameras can also be used on this node.
Figure3 shows the overall structure of the camera node.

ROS uses a camera_info_manager package for saving and restoring the cam-
era calibration data. Again, the Camera_info_manager uses a camera_package and
OpenCV to save and restore msgs/CameraInfo data. After capturing an image, this
camera node publishes two outputs: an image_rawmessage and a camera_infomes-
sage. The image_raw message contains all the necessary unprocessed data required
for generating a digital image and the camera_infomessage contains additional infor-
mation like the location of the calibrated camera, height, and width of the captured

Camera Node
Package usage:

Camera_info_manager
cv_camera

cv_camera/raw_image

cv_camera/camera_info

Fig. 3 The block diagram of the camera node. This node captures raw image data using robot
camera and feeds it to the image processing node
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cv_camera/raw_image

cv_camera/camera_info

Image Processing Node
Package usage:

OpenCV 
CvBridge
Swapaxes

Numpy 

RGB image in 
numpy array format

Fig. 4 Block diagram of the image processing node

image. However, if camera_info_manager fails to find camera devices then it starts
to save and publish dummy image data, which is a common cause of hard-to-detect
bugs. To handle these issues, the camera should be calibrated properly to make sure
that the camera_info_manager only stores real images using camera_info message.

Our camera node is camera-device independent and can capture images with any
type of camera attached to the robot. In our experiments, we have used 224 × 224
images in our deep learning model. Therefore, we keep the resolution of the camera
to 224 × 224. This low resolution helps to increase image capturing and image
processing speed.

Image processing node

A ROS camera node captures a raw image in a special sensor_msgs/Image mes-
sage format. Most DL models use images in a matrix format as input, hence sen-
sor_msgs/Image format data cannot be used directly as input to any DL model.
Therefore, we used the OpenCV CvBridge library to convert these raw images. This
library converts sensor_msgs/Imagemessage format files into OpenCV images mak-
ing them readable by DL models. Figure4 shows the overall structure of this node
and the code snippet to convert the images is shown in Listing 9.1.

CvBridge supports different types of encodings to convert ROS raw images to
OpenCV images. Mono8, bgra8, rgb8 are the most popular image encodings. The
deep learning models used in our experiments accept RGB images as input, so we
converted all ROS raw images messages to RGB images using rgb8 encoding. An
overview of the functionality of a CvBridge is shown in Fig. 5.

Listing 9.1 Image data received from a robot camera is converted to a rgb image

from cv_bridge import CvBridge
bridge = CvBridge()
cv_image = bridge .imgmsg_to_cv2(image_message, ‘ ‘rgb8’ ’ )

Although we have converted the ROS image message to an RGB image, further
image processing tasks such as swapaxes, ndarrary conversion, etc. are required
before it can be used in a DL model. In our experiments on floor hazard detection,
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ROS

ROS Image
Message

CvBridge

OpenCV

OpenCV cv::Mat
Image 

Fig. 5 A ROS camera node captures images in the ROS sensor_msgs/Imagemessage format. This
image format is not suitable for conventional DL models. This figure shows a block diagram of
image conversion from ROS image format to OpenCV cv::Mat format using CVBridge. OpenCV
cv::Mat can directly be used as input to a DLmodel. CVBridge provides different types of OpenCV
image encodings, such as, mono8, bgr8, rgb8, rgba8, to support gray-scale and color images

DL inference Results
Deep Learning Node
Pre-trained DL Models

Tensorflow 
MXNet
Keras

Pytorch

RGB image in 
numpy array format

Fig. 6 This figure shows the deployment of a pre-trained DL model in the ROS environment using
a ROS node. This node receives processed RGB image data as input and feeds that data to the pre-
trained DL model to generate output results. Finally, it publishes the output results. The decision
node receives this result and makes a decision (e.g., increase or reduce the speed of the robot) based
on this result

all processing in this node is done using the CvBridge package in order to publish
data in a readable format for the DL models. The deep learning node receives this
data and performs classification.

Deep learning node

This node contains a pre-trained DL model as described earlier (Sect. 3.2), in the
ROS environment.

Figure6 shows the structure of the deep learning node. For our experiment, we
used the DL models trained by the MXNet framework. However, models trained by
other popular frameworks like TensorFlow, Keras, Pytorch can also be used in this
node.

All packages required to use the MXnet model were installed on the robot’s
onboard computer [12]. To use theMXnet DLmodels on a robot, first, the pre-trained
model was loaded into the MXNet module and then assigned the corresponding
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parameters such as input size, argument types, etc. Then, we completed the model
load and parameter binding (Listing 9.2).

Listing 9.2 Load a deep learning model and bind parameters using MXNet

import mxnet as mx
name =‘mobilenetv1−1.0’
sym, argp , auxp = mx.model. load_checkpoint(name, 100)
mod = mx.mod.Module(symbol=sym, context=mx.cpu() )
mod.bind( for_training=False , data_shapes= [( ‘data ’ , (1,3,224,224)) ])
mod. set_params(argp , auxp)

When all the binding is done, we feed the input image data received from the
image processing node to the DL model. The model uses this image data to find out
if there are any hazards in the input image or not. Finally, the node publishes a clean
or a hazard report as an output result.

Decision node

This node first analyzes the output received from the previous node. If the decision
node received “hazard” as input, it first tries to measure the area of the hazard so
that the robot can avoid that hazard. In the end, this node provides some decisions
to control nodes. Based on these decisions, the control node can control the robot.
Another major function of this node is to publish an alert topic if it finds a hazard in
an image.

Control node

The control node can be used to modify the speed, brake, and wheel angle of the
robot according to the input received from the decision node.

EasyDLROS uses lightweight CNN models during training and inference, so
that the framework drains less energy from the robot battery. The complete CNN
training and deployment processes using EasyDLROS are shown in Fig. 7. To show
the effectiveness of our framework, we deployed seven pre-trained models on a
robot and evaluated the performance, the details of which are described in detail
later (Sect. 8).
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Fig. 7 This figure depicts an overview of our EasyDLROS framework. First, deep learning models
are trained on a desktop computer using frameworks such as TensorFlow and MXNet. Then, the
models are compressed which helps to reduce compute requirements and facilitate easy integration
with ROS. Finally, the models are deployed on the robot and the output results obtained from the
DL models can be used to control the robot and perform other tasks

6 Dataset

Since we know of no publicly available dataset for supermarket hazards, we built a
newdataset of images showing hazards on supermarket floors.Wemanually collected
1180 images of clean and hazardous floors and used data augmentation and synthesis
[7] to generate new images to enrich our dataset.

We generated an additional 300 images using the data synthesis technique
designed byDorr et al. [7]. First, we collected images of common grocery items (e.g.,
bakery, bread, broken eggs, sauces, and liquid spills). These images were cropped
and resized and placed on clean floor images. In other words, images of clean floors
were used as the background layer and cropped hazards were layered on them.

We also used data augmentation methods, including horizontal flip, shift, zoom,
and brightness change, to generate an additional 5020 images. After data augmen-
tation, we had 6500 images, where 3250 images for hazardous floors and 3250 for
clean floors. We used 5500 images (2750 images for hazardous floors and 2750
images for clean floors) for training & validation and 1000 images (500 images for
each category) for testing.
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Table 2 The distribution of images in our supermarket floor hazards dataset. Out of a total of 6500
images used in our experiments, 1180 were collected manually while the remaining were generated
using data augmentation and synthesis techniques

Class Training Validation Testing

Hazardous floor 2224 526 500

Clean floor 2224 526 500

Fig. 8 Supermarket images showing clean and hazardous floors

Table2 shows how the images were split among the training, validation, and
testing sets. Figure8 shows sample images from our dataset of clean and hazardous
floors in supermarkets. Synthetically generated images are shown in Fig. 9.

7 How to Use the Code

The seven deep learning architectures listed in Table3 can be built, trained, and
tested with the code provided in our GitHub.2 There are multiple README files in
the repository with details instructions about using the models. To run the code, the
following dependencies need to be met:

2 https://github.com/sarwarmurshed/supermarket_hazard_detection.

https://github.com/sarwarmurshed/supermarket_hazard_detection
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Fig. 9 Images showing hazardous floors in supermarkets that were synthetically generated using
the technique of Dorr et al. [7]

Table 3 The size and the number of parameters of the deep learningmodels used in our experiments

Model InceptionV1 InceptionV2 ResNet GoogleNet MobileNetV1 MobileNetV2 EdgeLite

INV1 INV2 RNV1 GN MNV1 MNV2 EL

Size (MB) 6.80 10.20 5.87 5.05 3.30 2.30 4.90

Parameters
(millions)

5.98 10.17 11.18 6.02 3.21 3.51 5.26

• Install MXNet, TensorFlow
• Install any ROS distribution (our code was tested on ros-melodic)
• Jetpack > 4.2.2, jetson-inference, ros_deep_learning3 (for any NVIDIA
Jetson device)

3 https://github.com/dusty-nv/ros_deep_learning.

https://github.com/dusty-nv/ros_deep_learning
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Training DL models

The EdgeLite4 and fine-tune_existing_models5 directory contains code in Jupyter
Notebook format for building, training, and testing all the models that we used in
our experiments. To train a model, the training dataset needs to be store in data6

directory and then execute the Jupyter Notebook.7 After training, a trained model
(.params, .json files) will be saved to the model directory. This trained model will
be used in the EasyDLROS framework for image classification.

Deploy model on ROS environment

Any model trained on MXNet or TensorFlow can be run using EasyDLROS frame-
work. Models trained on a different DL framework, such as Pytorch, needs to be
converted to TensorFlow-compatible .pb format in order to run using our frame-
work. The following is the sequence of steps to run a model and classify images with
EasyDLROS:

• start roscore
• store the trained model and label files (.pd, synset_label_file.txt for
TensorFlow, .params, json and synset_label_file.txt file MXNet)
in a directory.

• keep live_image_recognition.py file in the same directory
• run ‘rosrun cv_camera cv_camera_node’ to capture images using the
camera mounted in a autonomous robot or in a computer

• ‘python live_image_recognition.py image:=/cv_camera/
image_raw’ should be run to classify images captured in the previous step

• ‘rostopic echo /result’ can be used to display classification results.

8 Experiments

Our experiments are divided into two main phases. The first phase included training
and evaluating DL models in a plain UNIX-based OS without ROS (Sect. 8.1). In
this phase, we used NumPy, OpenCV, etc., to process data and control data flow as

4 https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/edgeLite.
5 https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-
tune_existing_models.
6 https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-
tune_existing_models/fine-tune_googlenet/data.
7 https://github.com/sarwarmurshed/supermarket_hazard_detection/blob/master/fine-
tune_existing_models/fine-tune_googlenet/fine_tune_with_test.ipynb.

https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/edgeLite
https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-tune_existing_models
https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-tune_existing_models
https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-tune_existing_models/fine-tune_googlenet/data
https://github.com/sarwarmurshed/supermarket_hazard_detection/tree/master/fine-tune_existing_models/fine-tune_googlenet/data
https://github.com/sarwarmurshed/supermarket_hazard_detection/blob/master/fine-tune_existing_models/fine-tune_googlenet/fine_tune_with_test.ipynb
https://github.com/sarwarmurshed/supermarket_hazard_detection/blob/master/fine-tune_existing_models/fine-tune_googlenet/fine_tune_with_test.ipynb
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well as to complete image classification tasks. We trained several DL models and
evaluated them, by deploying and testing, in this test phase. In the second phase (Sect.
8.2), we used ROS packages or services such as Camera_info_manager, cv_camera,
ROS nodes, ROS topics, etc., to process data and control the data flow. We deployed
the same models on a robot using the EasyDLROS framework and evaluated model
performance in aROS environment. The robotwas built with anNVIDIATX2 device
and driven by ROS.

We conducted both sets of experiments in resource-constrained settings. Our
experimental results show that image classification of our dataset for the hazard
detection model is possible within less than a second and with less than 3.5 Joules
of energy usage on a resource-constrained robot.

8.1 Experiments on Resource-Constrained Linux
Environment Without ROS

We trained sixwidely usedCNN-based image classificationmodels on our supermar-
ket hazard dataset usingMXNet and then compared their performance with EdgeLite
(Sect. 4.1) in terms of model accuracy, execution time, memory usage, and power
consumption during inference time. The six CNN models used were MobileNetV1,
MobileNetV2, InceptionNet V1, InceptionNet V2, ResNet V1, and GoogleNet. A
Raspberry Pi, an NVIDIA Jetson TX2, and a Coral Dev Board were used as the
edge devices. When deployed on these three edge devices, EdgeLite outperformed
all other models in detecting hazards in supermarket floor images while maintaining
comparable performance in other metrics, i.e., energy utilization, inference time, and
memory usage.

8.1.1 Hyperparameter Tuning

Hyperparameter tuning is arguably the most important factor for improving perfor-
mance of CNN models. We tuned multiple hyperparameters for EdgeLite as well
as the other architectures used in our experiments. We paid special attention to the
momentum, learning rate, weight decay coefficients, dropout rates, and corruption
bounds for various data augmentations: random scaling, input pixel dropout, and
random horizontal reflections. We optimized these over a validation set of slightly
more than 1,000 examples drawn from the training set. We used a grid search and
varied the values of these hyperparameters and ran each network for 300 epochs on
the hazard dataset. Due to the small size of our training set, we conducted extensive
tuning experiments (batch size: from 8 to 128, learning rate: from 0.0005 to 0.1,
momentum: from 0.0 to 0.9, decay: 0.00001 to 0.0001) and evaluated the model with
the best-performing hyperparameter configuration on the test set.
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All of the aforementioned hyperparameters were also tuned for other state-of-the-
art DL models used in our experiment. We followed the same procedure to fine-tune
all models and reported the best results of models. TensorFlow and MXNet were
used for composing, training, and evaluating the models.

8.1.2 Experimental Setup for the Linux Environment Without ROS

We conducted our tests on three edge devices as well as a desktop machine, which
was used solely to train the models. The experiments involved three stages:

1. training the DL models on a desktop machine,
2. compressing the model to facilitate deployment on resource-constrained devices,

and
3. performing inference after deploying the model on these edge devices.

The desktopmachine used for training had a 20 core Intel Xeon processor (3GHz)
and 64 GB RAM. TensorFlow and MXNet were used to build and compressed the
networks. We tested using the model that performs best on the validation set. We
got the best EdgeLite model by training the networks using the Adam optimizer
with a momentum of 0.9, and a batch size of 32, the learning rate was 0.002, and
decay of 0.00004 on the model weights. We also investigated and selected the best
hyperparameters for other models used in our experiments. After training with the
appropriate hyperparameters, we evaluated the performance of the models on the
testing dataset.

The trained neural network was exported to Open Neural Network Exchange
(ONNX) format, converted to a TensorFlow Lite flatbuffer file, and finally converted
to a TensorFlow Lite model for reducing storage and inference time. This conversion
reduced the model size by more than 65% compared to the original model.

To evaluate the power consumption during inference, we used NVIDIA’s power
measurement software [18] for the Jetson TX2 and the X-DRAGON Digital USB
meter [34] for the Coral Dev Board and Raspberry Pi. NVIDIA’s powermeasurement
software can capture the power consumption of six of the primary supply rails (CPU,
RAM, GPU, etc.). The X-Dragon meter can measure power consumption directly by
connecting to the device’s power supply.

We monitored and measured the power consumption for all edge devices before
and during inference. The maximum power (Pmax ) recorded at any time during the
entire period of inference (T ) is used to compute an upper bound on the energy
required for inference (Emax = Pmax × T ).

8.1.3 Results for the Linux Environment Without ROS

To analyze the performance of EdgeLite and other state-of-the-art CNN models on
edge devices, we measured the accuracy, the inference time, and the amount of
memory used to classify an image (Table4). We also calculated the average energy
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Table 4 Comparison between the performance of existing deep learning models with EdgeLite
based on experiments on the Coral Dev Board (CB), Raspberry Pi (RP) and NVIDIA Jestson TX2
Model Inference time (sec) Avg RAM usage (MB) Avg. energy usage

(J/img)
Accuracy(%)

CB RP TX2 CB RP TX2 CB RP TX2 CB RP TX2

InceptionV1 0.56 0.71 0.36 7.00 3.26 22.00 1.04 1.78 1.24 86.31 86.41 89.05

InceptionV2 0.79 0.73 0.50 9.00 3.65 22.66 1.44 1.51 1.70 85.11 85.13 83.94

ResNet 0.58 0.75 0.46 8.50 5.87 24.45 1.07 1.55 1.27 84.70 84.67 84.67

GoogleNet 0.55 0.71 0.39 8.00 7.19 20.52 0.95 1.37 1.13 88.10 88.10 91.97

MobileNetV1 0.29 0.69 0.18 6.00 2.89 20.00 0.51 0.70 0.70 87.87 86.80 87.99

MobileNetV2 0.27 0.68 0.16 5.00 2.74 14.60 0.48 0.68 0.6 89.02 88.95 91.24

EdgeLite 0.51 0.69 0.38 5.20 3.10 19.87 0.86 1.29 1.03 92.37 91.98 92.17

consumed by the models during inference. The energy consumption is computed by
summing the energy consumed during the whole inference period and then dividing
by the number of images.

Accuracy. EdgeLite outperformed all other models in terms of accuracy (Table4).
We achieved 92.37% accuracy on the Coral Dev board when using our supermarket
hazards dataset.

Inference time. In Table4, the fastest model is the MobileNetV2, which only took
0.16 sec, 0.268 sec and 0.68 sec for inference on the Jetson TX2, Coral Dev Board
and Raspberry Pi, respectively. EdgeLite took 0.38 sec for inference on the Jetson
TX2, 0.506 sec on the Coral Dev, and 0.69 sec on the Raspberry Pi.

Compared toMobileNet (both V1 andV2), EdgeLite tookmore time andmemory
for classification because the latter has more filters than MobileNet and the number
of convolution filters in each layer of a CNN has a significant effect on inference
time and memory usage.

Memory usage. In terms of memory usage, the Raspberry Pi outperformed all other
devices as shown in Table4. When we measured the maximum memory usage at
any point during the whole inference process, we observed that all models took less
memory for inference on the Pi.MobileNetV2 only took 2.74MBandMobileNetV1
took 2.89 MB while EdgeLite took 3.1 MB during inference. One factor that has a
large impact on inference time and memory usage is the number of pixels of input
images. Table4 illustrates memory usage during inference while using 224 × 224
images. MobileNet V2 used only 5 MB memory for classification on the Coral Dev
Board while EdgeLite used slightly more RAM at 5.2 MB.

Energy consumption. Most real-life scenarios where resource-limited devices are
deployed are usually battery-powered hence the energy available to the devices is
limited [25]. However, DL models consume a lot of energy during inference due to
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the high levels of computation required to generate output. This inhibits the deploy-
ment of DL models on small battery-powered devices. To see how the quantized DL
models performed on a resource-constrained device, we measured the actual power
consumption of pruned models on the edge devices. Table4 shows the energy con-
sumed during the classification of supermarket floor images (calculated as described
at the end of Sect. 8.1.2) on resource-constrained devices. MobileNet V2 was the
most efficient on our dataset, needing, on average, 0.48 J, 0.6 J, and 0.68 J for
classification on the Coral Dev Board, Jetson TX2, and Raspberry Pi respectively.

8.1.4 Analysis

Impact of device speed & memory on inference time.Model quantization allows
deep learningmodels to be deployed on resource-scarce devices by reducingmemory
footprint and speeding up inference. The inference time of a model is significantly
dependent on the computing power of a device. For example, the computational
power of the Raspberry Pi is 1.2 GHz and available memory is 1 GB. With this
computational power, MobileNet V2 used a maximum of 2.74 MB during inference
on that device and the average inference time for an image was 0.68s. On the other
hand, the Coral Dev Board operates at 1.5 GHz with 32 GFLOPs 32-bit GPU and 1
GB RAM. MobileNet V2 used a maximum of 5 MB on this device and the average
inference time was 0.27s, which is less than half that of the Raspberry Pi. The Jetson
TX2 has two 2-GHz CPUs and a total of 8 GB memory which helps this device to
classify an image in 0.16s. MobileNet V2 used a maximum of 14.60 MB memory
during inference. The inference time of the TX2 is four times less than that of the
Pi and less than half of the Dev Board. In summary, the inference time of a model
significantly depends on the CPU power and available memory of a device.

Impact of model size on accuracy. More parameters do not guarantee high accu-
racy, and there is no linear relationship between model size, complexity, and accu-
racy. MobileNet V2 and EdgeLite achieved higher accuracy than other models on
all devices even though they have fewer parameters than comparatively low number
of parameters (Table3). This finding is independent of the device architecture.

Impact of the device type and model architecture on energy consumption. We
observed that energy consumption depends not only on theDLmodel architecture but
also on design of the computational device onwhich it is executed. The use of devices
specifically designed for DL inference, such as the Coral Dev Board, BeagleBone-
AI, NVIDIA Jetson, is now increasingly common for deploying DL models in order
to achieve high accuracy in real-time. In our experiments, the Coral DevBoard, being
a specialized device for deep learning inference, performs better in terms of energy
consumption than the other common embedded devices such as the Raspberry Pi.
This is because it contains the Coral Edge TPU module, which is designed for fast
prototyping of machine learning hardware and performing energy-saving mathemat-
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Table 5 The F-1 score, accuracy, precision, recall, average inference time, maximum RAM usage,
and average energy consumption of a deep learning model on the Jetson TX2 when operated in a
ROS environment using the EasyDLROS framework

Model F-1 score Accuracy Precision Recall Avg.
inference
time (sec)

Max.
RAM
usage
(MB)

Avg.
energy
used
(J/image)

InceptionV1
(INV1)

87.50 88.00 91.30 84.00 0.84 70 3.18

InceptionV2
(INV2)

83.35 83.67 82.71 84.00 1.23 120 3.16

ResNet
(RNV1)

77.61 79.67 88.14 69.33 1.13 120 3.59

GoogleNet
(GN)

89.04 89.00 91.54 86.67 0.94 90 3.45

MobileNetV1
(MNV1)

87.01 86.68 84.81 89.33 0.34 50 3.41

MobileNetV2
(MNV2)

85.53 84.67 80.95 90.67 0.32 30 3.28

EdgeLite (EL) 90.00 90.39 92.08 88.02 0.93 70 3.32

ical operations, making the Coral Dev Board faster than other devices. This helps to
reduce the inference time of a model hence also reducing energy consumption.

Observations and recommendations. Based on our experiments, we make the fol-
lowing observations and recommendations for deploying deep learning models on
resource-constrained devices:

• The Jetson TX2 was the fastest edge device in our experiments but it is expensive,
consumes more energy and physically larger than Coral Dev Board.

• Although the Coral Dev Board performs well in DL inference, it has a number
of platform dependency issues. Currently, other than TensorFlow Lite, DL frame-
works like Keras, MXNet, and PyTorch cannot run on the Coral Dev Board.

• The Raspberry Pi provides more flexibility to use different DL frameworks com-
pared to the Coral Dev Board and also has a large technical support group making
it useful in a wider range of systems and applications.

• The Raspberry Pi, while the least expensive, performed poorly compared to the
Jetson TX2 and the Coral Dev Board in terms of inference time and energy con-
sumption. For building a prototype, the Raspberry Pi is a good choice but for
industrial deployment where performance metrics are very important, the Coral
Dev Board or the NVIDIA TX2 are better.

• To build a deep learning-based edge infrastructure at a low cost, it is advisable to
use the Coral Dev Board as it uses less energy and is smaller than the Raspberry
Pi and the Jetson TX2, and performs inference faster than the Raspberry Pi.
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8.2 Experiments on the ROS Environment

We created a simulated supermarket environment to test the efficiency of our Easy-
DLROS framework. A Jetson TX2, and a Logitech C925e webcam were used in this
phase of the experiment. All the necessary ROS nodes and pre-trained DL models
were deployed on the Jetson TX2 device and input images were captured by the
webcam. The image node of the framework is capable of capturing 32 images per
second. However, since 32 images per second are not needed to monitor the super-
market environment, we stored one image per second through the camera node. Our
framework classified images captured with the camera node in real-time and stored
them on a hard drive. The camera node captures images in 640 × 480 pixels, then the
image processing node converts those images into 224 × 224 pixels. Finally, the DL
node receives those converted images, feeds the images to DLmodels, and generates
classification results. As we mentioned before, the framework utilizes CvBridge and
OpenCV to capture the input images and MXNet to deploy the DL models.

We used EasyDLROS to runDLmodels on aROS environment (inside Linux) and
compared the performance of this framework with the performance of a DL model
run on a Linux environment without ROS. Four metrics (viz, accuracy, memory
usage, inference time, and energy consumption) were used to evaluate the efficiency
of EasyDLROS (Sect. 8.2.1).

During the experiment, we monitored the memory usage carefully and reported
the maximum RAM usage. The inference time of the DL model was captured pro-
grammatically and reported the average time consumed by the model to generate the
classification result of each image. To evaluate the power consumption of the frame-
work, we used NVIDIA’s power measurement software [18], which can capture the
power consumption of six of the primary supply rails (CPU, RAM, GPU, etc.). The
maximum power (Pmax ) recorded at any time (T ) during the evaluation period is
reported as the maximum energy consumption (Pmax × T ) of the framework.

8.2.1 Results for ROS Environment

Seven widely used deep learning models were used to evaluate the effectiveness of
the EasyDLROS framework as summarized in Table5. For assessing the performance
of EasyDLROS, the results of a comparative performance evaluation over an existing
Linux based framework on a set of metrics including accuracy, energy usage, and
inference time are shown in Fig. 10.

F-1 score.Wecreated a simulated environment of a supermarket and captured images
using theROScamera node to build a simulated test dataset. On that dataset, EdgeLite
performed best, achieving an F-1 score of 90.00.GoogleNet is the second-bestmodel,
with an F-1 score of 89.04. In the simulated environment, the input images were cap-
tured from the test-set images of the supermarket dataset using the ROS camera
node. Sometimes the quality of the captured images by this simulated process is
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Fig. 10 A comparison of the performance of seven deep learning models on the ROS and plain
Linux (withoutROS) environments on the JetsonTX2. Figure10a andFig. 10b showmodel accuracy
and execution time of different DL models on the supermarket hazard dataset respectively in two
different environments. Model names and sizes are in Table3. Figure10c shows the maximum
memory usage at any point during inference for the seven models in two different environments.
Figure10d shows the average energy consumption (Joules/image) during classification by the DL
models in ROS and plain Linux environments

not as good as the quality of the original test-set images. This quality degradation
has slightly reduced the accuracy of DL models executed in the ROS environment
compared to models executed on Linux systems. The comparison results are shown
in Fig. 10a. However, when we used the original test-set images as input to the DL
model in the ROS environment, i.e., the imageswere directly copied from the dataset,
we achieved the same accuracy as themodel executed in the plain Linux environment.
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Inference time.MobileNetV2 achieved an average inference time of 0.32 s per image
on the ROS environment. Figure10b shows that all the models in the ROS environ-
ment consumed more time than the inference time in the Linux system. The publish-
ing, subscribing processes consume time which makes ROS systems a little slower
than Linux systems.

Max RAM usage. Executing a DL model on the ROS environment consumes more
memory than the Linux (without ROS) environment. The DL models consume a
maximum of 120 MB RAM in the ROS environment to generate a classification
result. MobileNet V2 consumes 30 MB, which is the best model in terms of memory
usage. On the other hand, Inception V2 and ResNet V1 consume 120MB to generate
a result. Figure10c shows the comparison of RAM usage by different DL models in
the ROS and plain Linux environment.

Average Energy consumption.All DLmodels consume a little over 3 Joules energy
to classify an image in the ROS environment. Inception V1 consumes the lowest
energy, 3.18 Joules, among all models used in the experiment. The comparison of
energy usage of DL models in two different environments is shown in Fig. 10d.

8.2.2 Analysis

We found the execution time of all DL models in the ROS environment takes more
memory, energy, and time compared to the plain Linux environment (i.e., without
ROS). This is primarily because different ROS nodes consume time and energy to
publish and subscribe topics which make the ROS-based system a little slower and
resource hungry. For example, MobileNetV2, the fastest model in the plain Linux
environment, took 0.16 s when run on a TX2 device. It takes 0.32 s in the ROS
environment when run on the same TX2 device. We believe that this performance
cost is acceptable given the benefits of deploying DL models on autonomous robots
run by ROS.

9 Conclusion

Onboard data analysis is rapidly becoming one of the key focus areas for AI
researchers, but modern deep learning models typically have millions of parame-
ters and involve a large number of complex computations, making their deployment
on low-memory devices challenging. This chapter described EasyDLROS, a novel
framework to deploy deep learningmodels on autonomous robots. First, we discussed
why deep learning is important in theROSenvironment and howdeployingDL-based
systems can help autonomous robot industries. We then described EdgeLite, a fast,
lightweight, deep learning model for floor hazards detection geared toward easy
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deployment and inference on resource-constrained edge devices. The advantages
and limitations of EdgeLite were detailed compared to over six state-of-the-art deep
learning-based architectures for object detection on three resource-constrained edge
devices were discussed. EdgeLite was shown to outperform six other models for
detecting hazards in supermarket floors in terms of accuracy and had comparable
performance in other metrics.

We introduced and described EasyDLROS, a framework for easy deployment of
deep learning models on ROS-based autonomous robots. A Jetson TX2 was used
to evaluate the performance of models deployed using EasyDLROS. The EdgeLite
model, when deployed in a ROS environment using EasyDLROS, achieved almost
the same accuracy (only 1.78% loss of accuracy) compared with the scenario in
which the model was deployed on a the Jetson TX2 running plain Linux, without
ROS. Also, EasyDLROS used only a little more memory and energy making it a
useful tool for automating the deployment of deep learning models on edge devices
without causing any significant computational overhead.
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