Notes/Corrections/Clarifications for lecture given on $1 / 13 / 2011$ (Thursday)

Faraz Hussain

January 16, 2011

1 Arguments in Oz procedures and functions

Question: Can Oz procedures return multiple values?
Answer: Quoting from [2, §2.3.4]:
A function always has exactly one output. A procedure can have any number of inputs and outputs, including zero.

2 Pascal's triangle

Question: Pascal's formula, [4], states that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$, where the formula for choosing k items out of a total of n items is: $\binom{n}{k}=\frac{n!}{k!*(n-k)!}$. Now consider, say, the last entry in row $n=3$ (see Figure 1); this value is $\binom{3}{3}^{1}$. By the Pascal's formula, $\binom{3}{3}=\binom{2}{3}+\binom{2}{2}$. However, if we apply the definition of Combinations on $\binom{2}{3}$ we get $\frac{2!}{3!*(-1)!}$ which is undefined since the factorial function is defined only for positive integers, [3]. So this means we have an undefined entry in the Pascal's triangle!

Answer:

- First, recall that the entries in row n of a Pascal's triangle are: $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$. These are all non-negative integers, so all values in triangle are welldefined.

[^0]```
n=0: 1
n=1: 1
n=2:
n=3:
n=4:}10<4%\mp@code{6
```

Figure 1: Pascal's triangle

- The prescribed textbook, [2, §1.4], describes Pascal's triangle as follows:

It starts with 1 in the first row. Each element is the sum of the two elements just above it to the left and right. (If there is no element, as on the edges, then zero is taken ).

In this way, the book sidesteps this problem by not using Pascal's formula for the entries at the "boundaries" of the triangle. Therefore, the identities $\binom{n}{0}=\binom{n}{n}=1$ have be used (along with Pascal's formula) to calculate the entries of a Pascal's triangle, starting from the initial row.

- Rosen, [1, §5.3], defines $\binom{n}{k}$ only for non-negative $n$ and $0 \leq r \leq n$. If we follow this convention, the troublesome expression (the factorial of a negative number), would never arise. Following this convention, $\binom{2}{3}$ is undefined and hence cannot be used to determine the value of $\binom{3}{3}$ (and therefore we will have to rely on using the identity $\binom{3}{3}=1$ ).


## References

[1] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGrawHill Higher Education, 6th edition, 2006.
[2] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. MIT Press, 2004.
[3] Eric W. Weissstein. Factorial. http://mathworld.wolfram.com/ Factorial.html. From MathWorld-A Wolfram Web Resource.
[4] Eric W. Weissstein. Pascal's formula. http://mathworld.wolfram. com/PascalsFormula.html. From MathWorld-A Wolfram Web Resource.


[^0]:    ${ }^{1}$ The entries in row $n$ of the Pascal's triangle are: $\binom{n}{0}$ to $\binom{n}{n}$.

