
D. Hou Statement on Research, Teaching, and Service 1

Research Statement (Daqing Hou, Clarkson University)

The long-term goal of my research program is to find ways to improve the effectiveness of software
reuse as a general approach for software productivity. I am interested in the problem of how
developers reuse existing software, the situations when reuse is a good idea, and how to make the reuse
more effective when it occurs. This is a worthwhile and important problem as software is increasingly
being built from existing parts. So far, my research has involved identifying the actual obstacles for
effective software reuse [3, 7, 12]; understanding how reusable software and API’s (Application
Programming Interfaces) evolve as well as the intents behind the evolution [1]; and finally, building
and evaluating tools that find errors and provide advice for client code that uses an existing design [5,
11, 13]. In our research, we frequently draw on the usability principles for software design [1-4, 7-8,
13]. Our tooling efforts often involve the customization of existing software development
environments and tools, such as Eclipse [2, 5, 10, 11] and gcc [8], as well as the application of static
program analyses [2, 5, 10, 11] and other formal methods [5]. As research methodologies, I have used
case studies [1, 3, 9], laboratory user studies [6], and tool building and empirical evaluation with
practical data [2, 5, 10, 11]. I treat rigorous research evaluation seriously and prefer to validate my
research in industrial settings [11]. I publish papers mainly in peer-reviewed, selective conferences
organized by the IEEE Computer Society or ACM.

Empirical Studies on API Obstacles: Our prior empirical studies characterize some of the obstacles
to the effective use of API’s [3, 7, 12]. For example, in a recent study [3], we analyzed 172 randomly
selected newsgroup discussions about the Swing API, using a two-dimensional approach. The first
dimension concerns the programmer's goal and status when asking a question. The second dimension
concerns the complexity of the solution sought in the newsgroup discussion, for which we distinguish
between simple method calls and customization tasks. This study results in a list of specific obstacles
for using APIs. In addition, it shows that customization tasks are challenging to use because they
involve multiple pieces of dispersed information. For example, to display an empty folder as an
internal tree node, a programmer would have to call three methods from three classes (Figure 4 in [7]).
This is consistent with the result of another prior study [7], where we have shown the prevalence of
customization tasks (twelve) for the JTree widget. The study also shows that the same API-related
problems do occur multiple times, and that a programmer often provides code as contextual
information to help illustrate his or her needs (92 cases). These findings have been used as the basis for
our current tooling effort on building a critic for critiquing the use of API’s [4, 13].

Enforcing Design Intent in Code: As part of my PhD work, we have investigated an approach for
checking code conformance to important structural properties required by an API [11]. Our current
work extends that research by treating behavioral properties as well as the evaluation of tool usability
more thoroughly. For example, recently we have developed a concept recognition algorithm to
recognize how a Java equals() method is defined [5]. Our algorithm can recognize abstractions such as
array and set comparisons and translate these abstractions into an equality model in Alloy [14]. The
extracted Alloy model is checked by Alloy Analyzer for violations of the equivalence properties. The
analysis is inter-procedural, path-based. Our empirical evaluation using large systems such as JDK 5.0
shows that the tool can produce human-understandable Alloy models, find true bugs with reasonably
low rates of false positives and negatives, and be efficient [5].

D. Hou Statement on Research, Teaching, and Service 2

API Critics: With PhD student Chandan Rupakheti, currently we are investigating a tool to try to infer
a developer’s goals by symbolically executing and analyzing his or her code that uses a certain API.
Based on the inferred goals, the tool offers pertinent, pre-packaged advices appropriate for the inferred
goals. We call such a tool a critic. A real-world analogy for a critic would be a specialty shopping-
assistant working in a hardware store such as Lowes and The Home Depot, who listens to a
customer’s problems and guides the customer to the appropriate tools and their use. More than an
error-finding tool, however, a critic not only tries to find errors in the client code, but also gives other
helpful advices. To assess the potential usefulness of the proposed critic, we have investigated another
set of API discussions in the Swing Forum [13]. To narrow down the scope of our analysis, we chose
to focus on issues related to GUI hierarchies and layout because these are fundamental topics that
many find difficult to work with. We analyzed 124 of the 274 threads that contain the keyword
“layout”. We conclude that 63 threads could have been helped by our proposed critic. The other 61
were too general and lacked code snippets for us to concretely assess whether our critic could be
helpful. Moreover, we formalized a dozen API rules that can be used by our proposed critic. These
rules cover aspects of composing the GUI trees such as using a layout manager versus absolute
positioning; creating a dynamic GUI; and common mistakes such as idempotent actions, sharing a
layout manager by multiple panels, and parent switching in the GUI trees. These rules cover a
substantial portion of the obstacles related to GUI hierarchies and layout. This provides encouraging
initial evidence that the proposed critic can be both useful (in the sense of solving specific instances in
the problem space) and near-complete (in the sense of covering a significant portion of the problem
space). We are testing the effectiveness of our first prototype of a critic in my GUI design course
EE408 this semester.

Managing Copy-and-Paste Programming: With PhD student Patricia Jablonski, we have also
worked on improving the effectiveness of copy-and-paste programming (To answer the question “Will
our tools help a programmer code faster and produce fewer errors?”) [6, 10]. The code clone
literature has reported strong evidence that lack of clone awareness on the part of a developer often
causes bugs. However, to our knowledge, there has not been a user study conducted to investigate the
potential effects of clone awareness on bug reduction. To that end, we conducted a first laboratory user
study to test the effects of increasing clone awareness and making the cloning relationship explicit
inside the Eclipse IDE. Our study used a within-subject design and involved 14 student subjects and 8
clone-related programming tasks. While our study showed that subjects who used our tools in their
tasks (CReN [10] and LexID for renaming identifiers) were statistically significant faster than those
without, the effect of clone-awareness within the IDE was not shown to be statistically significant. In
hindsight, we suspect that clone-awareness would be helpful mostly when programmers compare and
reason about clones systematically (systematic approach). However, our detailed analyses of the
captured videos revealed that a major confounding factor would be that the subject programmers use
multiple other strategies to complete the programming tasks, for example, trial and error; and less than
half of them actually employed the systematic approach. A better-controlled user study is needed to
confirm this conjecture in the future.

Collaborative Work: I have been fortunate enough to have the opportunities to conduct two major
collaborative projects with two ECE colleagues, Dr. Thomas Ortmeyer and Dr. Paul McGrath, as well
as with Dr. Michael Schuckers from St. Lawrence University. The first effort is in the area of design
methodologies for electric power distribution systems reliability. My contribution is the advanced
computational analysis of the actual utility fault data to determine fault causes and establish historical
fault rate data [15]. This work has resulted in a journal publication [16] and a technical report [15],
both jointly with my collaborators. The second effort involves developing a usable software

D. Hou Statement on Research, Teaching, and Service 3

application for Dr. Schuckers’ statistical methods for biometric authentication performance evaluation,
PRESS v2 (See description in the Software Section below). PRESS v2 is currently being used by both
the biometric industry and universities.

Software Development Tools and Applications: Over the years, we have developed and maintained
several open-sourced software tools and applications, which are listed as follows (See
http://serl.clarkson.edu/site/?page_id=24 for more details):

1. Structured Constraint Language (SCL) Software developers often fail to respect design
intent due to either missing or ignored documentation of intent. SCL helps capture and confirm
aspects of design intent by using structural constraints on a program model extracted through
static analysis. The original designer expresses design intent in terms of constraints on the
program model using the SCL language, and the SCL conformance checking tool examines
developer code to confirm that the code honors these constraints.

2. Copy and Paste (CnP) Programmers often copy and paste code so that they can reuse existing
code to complete a similar task and/or save time. Many times, they modify the pasted code. The
CnP project includes several IDE features (e.g., CReN and LexId) to track the copy-and-pasting
relationship and facilitate the process of modifying the pasted code.

3. Better Code Completion (BCC) BCC is a research prototype that is meant to improve one of
the most commonly-used IDE features: Code Completion. The new strategies include sorting,
grouping, and filtering API methods.

4. Equals Checker (EQ) EQ is a static analysis tool for finding problems from Object.equals() in
Java in two layers. The low level detects errors through data flow analysis. The high level
detects equality-related semantic errors through model finding using Alloy and its Analyzer.

5. PRESS v2 (Program for Rate Estimation and Statistical Summaries) PRESS v2 is a
software tool that implements a set of domain-specific statistical methods for biometric
authentication performance evaluation. The methods are documented in a book that Dr.
Michael E. Schuckers has recently published. PRESS v2 is implemented in Java and
AWT/Swing to offer an easy-to-use user experience.

Assessment of Research Impact: As of October 8, 2011, Google Scholar (link clickable1) reports a
total of 186 citations of my papers. The most-cited two papers are about my PhD work on SCL [11]
(45 citations, published in IEEE TSE June 2006), and a copy-and-paste management tool CReN [10]
(33 citations, published in October 2007 with Clarkson PhD graduate Patricia Jablonski). My empirical
study on programmer questions about API’s has also received some attention [12] (2005, 17 citations).
The findings of these papers have been cited as supporting evidence for their own research by authors
from several prominent Software Engineering research groups, such as CMU, McGill, University of
Calgary, UCLA, University of Washington, and University of Waterloo. More recent work at Clarkson
University [1-9] expands and refines my earlier research in the area of supporting software reuse, but
with a higher standard of rigor and depth in terms of research methodology, so I expect them to be
better received by the software engineering research community gradually in the years to come.

1 Use Google Scholar to search for D. Hou’s publications:
http://scholar.google.com/scholar?as_q=daqing+hou&num=30&btnG=Search+Scholar&as_epq=&as_oq
=&as_eq=relay+petroleum&as_occt=any&as_sauthors=&as_publication=&as_ylo=&as_yhi=&as_sdt=1.
&as_sdtf=&as_sdts=33&hl=en

D. Hou Statement on Research, Teaching, and Service 4

My PhD work on SCL has attracted external attention from practitioners as well as others active in the
software engineering research community. This shows that SCL is probably solving a problem that is
relevant to the software industry.

• SCL has been used by practitioners at Comverse and at Ml Global Solutions, whom I have
never met in person.

• In 2008, a researcher from Siemens Research, Princeton, NJ tried out the SCL idea in their
software projects and published lessons-learned as a paper in FSE 2009 (Foundation of
Software Engineering Conference).

• Several MS and PhD theses have been completed with major influence from SCL. SCL has
been used by researchers at University of Alberta, University of California at Santa Cruz,
University of Waterloo, Universidade Federal de Minas Gerais in Brazil, IIT India, and
Technical University of Darmstadt, Germany.

My work on CnP (support for Copy-and-Paste Programming) and CReN is less than four years old, yet
the CReN tool [10] has attracted 33 citations as well as several technical inquiries from National
University of Singapore, the Free University of Berlin in Germany, and the University of Calgary.

Since the release of PRESS v2, we have received several inquiries about the use of PRESS v2 from
organizations such as the GREYC laboratory in France and Northrop Grumman Corporation.
Furthermore, Dr. Stephanie Schuckers’ biometric class at Clarkson University is using PRESS v2 this
semester. Our NYSERDA funded distribution systems reliability project was conducted in close
collaboration with key industrial partners (such as National Grid, Central Hudson, and Massena
Electric Department) to address their needs for improving reliability.

Ongoing Research and Future Funding Opportunities: In addition to my core research on API
Critics, other ongoing research projects include applying text mining techniques to discover knowledge
from API newsgroup discussions, a semantic-oriented clone differencing tool, automated algorithm
recognition and its applications, and free-text keystrokes as a continuous authentication method.

References (with acceptance rates when known)

1. Daqing Hou, Xiaojia Yao. Exploring the Intent behind API Evolution: A Case Study. IEEE WCRE

2011. 10 pages. (29%)
2. Daqing Hou, David M. Pletcher. An Evaluation of the Strategies of Sorting, Filtering, and

Grouping API Methods for Code Completion. IEEE ICSM 2011. 10 pages. (28%)
3. Daqing Hou, Lin Li. Obstacles in Using Frameworks and APIs: An Exploratory Study of

Programmers’ Newsgroup Discussions. IEEE ICPC 2011. 10 pages. (24%)
4. Chandan Raj Rupakheti, Daqing Hou. Satisfying Programmers’ Information Needs in API-based

Programming. Student Research Symposium, IEEE ICPC 2011. 4 pages.
5. Chandan Raj Rupakheti, Daqing Hou. An Abstraction-Oriented, Path-Based Approach for

Analyzing Object Equality in Java. IEEE WCRE 2010: 205-214. 10 pages. (31%)
6. Patricia Jablonski, Daqing Hou. Aiding Software Maintenance with Copy-and-Paste Clone-

Awareness. IEEE ICPC 2010. 10 pages. (20%)
7. Daqing Hou, Chandan Raj Rupakheti, H. James Hoover. Documenting and Evaluating Scattered

Concerns for Framework Usability: A Case Study. IEEE APSEC 2008. 8 pages. (30%)
8. Cheng Wang, Daqing Hou. An Empirical Study of Function Overloading in C++. IEEE SCAM

2008. 10 pages. (38%)

D. Hou Statement on Research, Teaching, and Service 5

9. Daqing Hou. Investigating the Effects of Framework Design Knowledge in Example-based
Framework Learning. IEEE ICSM 2008. 10 pages. (26%)

10. Patricia Jablonski, Daqing Hou. CReN: A Tool for Tracking Copy-and-paste Code Clones and
Renaming Identifiers Consistently in the IDE. ACM ETX 2007. 5 pages.

11. Daqing Hou, H. James Hoover. Using SCL to Specify and Check Design Intent in Source
Code. IEEE Trans. Software Eng. 32(6): 404-423 (2006).

12. Daqing Hou, Kenny Wong, and H. James Hoover. What Can Programmer Questions Tell Us About
Frameworks? IEEE IWPC 2005. 10 pages.

13. Daqing Hou, Chandan Rupakheti. Toward a Critic System for API Client Code using Symbolic
Execution. Unpublished working paper. 2011. 4 pages.

14. Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256-290, 2002.

15. Thomas Ortmeyer, Paul McGrath, Daqing Hou. Development of a Practical Reliability-based
Design Methodology for Electric Power Distribution Systems. NYSERFA Technical Report 10-26,
October 2010. http://www.nyserda.org/publications/development-of-a-practical-reliability-
formatted-edited-final.pdf. Last accessed: October 8, 2011.

16. Thomas Ortmeyer, Joel Reeves, Daqing Hou, Paul McGrath: Evaluation of Sustained and
Momentary Interruption Impacts on Reliability-Based Distribution System Design. IEEE
Transactions on Power Delivery. 25(4): 3133-3138. 2010.

D. Hou Statement on Research, Teaching, and Service 6

Teaching Statement (Daqing Hou)

I find that teaching programming and software engineering is both challenging and rewarding.
Programming and software engineering are challenging because they require close attention to both
abstractions and details simultaneously at multiple levels. To most learners, these topics offer a
completely new experience: novel notations and new ways of thinking about computational processes,
neither of which has been covered as much as Sciences and Mathematics in K-12 education. Yet,
programming and software engineering are increasingly being recognized as vital skills for the future,
and computer science and software engineering are considered the third pillar of Science along with
theory and experimentation. Thus, teaching programming and software engineering is also important
and can be rewarding. For example, I found that determining where/why a learner is having difficulty
involves similar kinds of observations and analyses as in Software Engineering research that involves
industrial programmers. I have also had some success in integrating Software Engineering research and
my own classroom teaching [2].

Based on slightly more than five years of experience in teaching four undergraduate and graduate
courses, I have learned to apply four strategies in my classroom teaching. I have also learned some
lessons in advising graduate students. I summarize these in the following paragraphs. Selected written
comments from student evaluations are included in the end.

One, develop a conceptual framework [1] for the subject matter to be taught, and use the framework to
organize teaching. For example, in my Introduction to Programming course EE261, I focus my
teaching on a set of fundamental concepts such as data values and data types, variables, expressions,
assignment statement, basic control structures, program state, function, and class. This conceptual
framework helps structure the course content, providing a clear path for the topics that need to be
covered throughout a semester. Furthermore, it also prevents me from being distracted by the many
additional features of C++, which could be covered in more advanced courses. Such a framework has
proven even more critical in my upper level GUI Design course EE408, because without its guide, I
could have been easily overwhelmed by the rich details of an industrial framework such as Java Swing.
Instead, I focus on teaching the core design of a GUI framework [2]. Therefore, the development of a
conceptual framework for my course helps focus my teaching on the most important concepts and
allocate enough of the precious lecture time to ensure that students really understand them. It also
helps to avoid the “mile wide, inch deep” problem where too many topics are only superficially
covered in too short a period of time. In this sense, I believe in “less is better.”

Two, motivate and engage students by developing course materials that connect with things and
current societal needs that students can relate themselves to. For example, in my Introduction to
Programming course, I spent the first couple of lectures introducing the broader notion of
computational processes and its practical applications, quoting such diverse examples as the New York
Clearing House, Tax Law, LEGO MINDSTORM Robot, as well as an in-class activity of bubble
sorting with the help of ten students. As another example, when teaching recursion, I used Russian
Dolls and a wooden toy of the Hanoi Towers for illustration. I could clearly sense the excitement from
my class, and some students even expressed in their written teaching evaluation comments that they
liked to have more of these.

Three, promote deep, active learning and understanding, and de-emphasize rote learning. In my

D. Hou Statement on Research, Teaching, and Service 7

programming lectures, I strive to give students carefully planned demonstrations and examples with
the necessary scaffolding. I model the problem solving process in a step-wise fashion, making sure that
the process always starts from what the students already know. To enable students to experience non-
trivial design problems within limited time, I provide the necessary scaffolding to embed the concepts
to be learned within a background project. Finally, I always design multiple examples that cover the
same concept so that students can generalize from them.

Four, build multiple feedback channels and adapt teaching to learners’ situations and needs. To gather
feedback about my teaching, I have used the assessment of results from homework grading, in-class
polls, office hours, online forums, and the course management system (moodle). At the end of each
semester, I spent time analyzing the written comments from student evaluation to identify
opportunities for improving a course for the next offering. This effort seems to have paid off as can be
seen from my improved course evaluation scores. I also seek opportunities to interact with students in
informal settings such as cafeteria and libraries to gather feedback. For example, the first time when I
taught Introduction to Programming, I spent four lectures on logic. In the second offering, when
chatting with a student, I was surprised to learn that logic is actually covered in New York’s high
schools, where most of my students were from. As a result, I devote two lectures instead.

I have taught four courses for a total of fourteen times. The two undergraduate courses are part of
Clarkson’s ABET accredited Software Engineering and Computer Engineering degree programs. I re-
developed the content for the four courses based on the existing descriptions in the course catalog,
including weekly lectures, laboratory exercises, homework assignments, and term projects. In addition
to these four courses, I can also teach other courses such as data structures, algorithms, software design
(including but not limited to object orientation and design patterns), capstone project courses, and
compiler construction.

The median score for student evaluation of my instruction is 4.2 (out of a scale of 5: 1, very poor; 2,
poor; 3, satisfactory; 4, good; 5, excellent), which is the same as the announced university median.
Similar to elsewhere in North America, our pool of students is a mix of various ability levels, although
ours would be more critical in teaching evaluation due to the higher cost of a private Clarkson
education. To give a better idea on how our students are like, the US News and World Report’s college
ranking placed Clarkson University in the "A+ Options for B Students" list, where they "identify those
where non-superstars have a decent shot at being accepted and thriving -- where spirit and hard work
could make all the difference in admissions offices."

Graduate Advising: I enjoy working with graduate students. I treat students as adults and tend to
provide a lot of encouragements. I try to instill a sense of humor during our interaction. I realize that
most of my graduate students need me to provide the broader contextual and motivational background
for their research projects, so I assume that responsibility. I often follow a bottom-up process in

Course Average enrollment Times taught
EE261 (Undergrad): Introduction to Programming 67 3
EE408 (Undergrad): GUI Design and Principles of Usability 11 5
EE564 (Grad): Enterprise Computing 6 2
EE569 (Grad): Program Analyses for Software Engineering 4 4

D. Hou Statement on Research, Teaching, and Service 8

guiding student projects. Occasionally, I write code with them, hoping that this can serve as a model
for them to see interactively how things can be done. I regularly (weekly) have lengthy discussions
with graduate students on technical details from their projects. I find that these discussions force both
the students and me to learn to build the right conceptual framework for the research project, to ask the
right research questions, and to clarify and refine the situations. This effort often pays off when it
comes to writing theses and research papers. I have graduated 1 PhD student, 7 MS students, and 1
ME student. All of my graduate students have published at least one full research paper in an IEEE or
ACM conference. Currently, I advise 1 PhD, 4 MS students, and 1 ME student.

Written Comments from Student Evaluations

To provide a quick overview on how students think about my teaching, I include a set of selected
written comments from student evaluations.

EE261: Introduction to Programming and Software Design

• “Professor Hou is extremely knowledgeable on the course topics & very fluent in C++. I was
very impressed by how available he made himself to help students during evening and weekend
hours. He truly went well above and beyond what is expected.”

• “Prof seemed to be very prepared for every class and on time, knew what he was talking about
and gained credibility with the class. He really cared about his students and wanted them to
succeed in a difficult course where it is natural for students to get lost at points and need more
clarifications on topics. He also had multiple study sessions/hw help sessions which was good.”

• “Professor Hou does his best to interest the students and to ensure they understand.”
• “Very nice instructor, very kind and great at teaching clearly. Seems to like what he does and is

very good at it. “Very good course. I learned a lot.”
• “The HW was challenging and was very useful for practice. [Prof. possessed] strong

understanding of material; very eager to help, was enjoyable to attend lecture.”
• “Well structured. I feel as though I get good credit for things I worked hard on. Good teacher.

Helped me out numerous times in office hours and really helped me along in the course.”
• “Prof Hou is a smart man who really knows his C++. He is a good teacher. … He is very

helpful in office hours.”
• “Very thankful for the support received through email and how prompt it was.” “More [in-class

examples of] washing machines and Russian doll stories”

EE408: GUI Design and Principles of Usability

• “The course provides insight into the development and creation of GUIs by starting at
fundamental level of hand-coding GUI’s.”

• “The course really helped me understand GUIs from the users perspective.”
• “I enjoyed the course … teaching is very clear and concise, spends a lot of time explaining

things for everyone (a good thing)”
• “The course covers a lot of information effectively in a short amount of time.”
• “The in-class examples were very helpful”
• “Good projects …”
• “Very concerned about students”
• “The Professor is always willing to help students and provides great feedback on how to

improve and fix problems.”

D. Hou Statement on Research, Teaching, and Service 9

EE564: Enterprise Computing (grad course)
• “There was a large range of skills developed during this course, including programming,

reading, writing, presentation, and code exploration.”
• “It is a practice-oriented course, and almost cover all aspects of the Enterprise program.”
• “He is very prepared for his class. He managed to do justice to such a huge course with lots of

technologies involved.”
• “I really liked the in-class discussions…”
• “[Prof] forces us to perform truly critical thinking.”

EE569: Program Analysis for Software Engineering (grad course)

• “I really enjoyed this class a lot. It was challenging, yet fair. It helps us develop many skills …
The division of the course by month was effective. Really good teaching, encouraged class
participation, and students got attention because it was a small class. It was more of a
discussion than a lecture.”

• “It is very helpful to EE graduate students!”
• “Topics were useful.”
• “Teach very clearly with concepts and implementation. Help students learn new concepts easily

and useful.”

References

1. How People Learn: Brain, Mind, Experience and School. Editors: John D. Bransford, Ann L.

Brown, and Rodney R. Cocking, National Research Council (U.S.). ISBN: 9780309070362.
National Academy Press, 2000.

2. Daqing Hou: Investigating the Effects of Framework Design Knowledge in Example-based
Framework Learning. IEEE ICSM 2008. 10 pages.

D. Hou Statement on Research, Teaching, and Service 10

Service (Daqing Hou)

As a faculty member in the Electrical and Computer Engineering Department, I have served on several
standard departmental and inter-departmental committees such as the Software/Computer Engineering
Curriculum Committee, the ECE PhD Comprehensive Exam Committee (Software Design), and thesis
committees. Instead of going over the full list of services which I have contributed to, which can be
found in my CV, I would like to highlight two particular items on the list. One is my voluntary
participation in most of our Fall/Spring Open House activities in the last five years. By assisting the
Director of Software Engineering in organizing the Open House, I had the opportunities to directly
interact with the prospective students and their families, to understand their concerns about the
selection of college majors and career plans, and to communicate to them what we believe is the bright
future of Software Engineering as a profession and its relevance in the future. This in turn helped me in
teaching our students in classroom because I knew my students and understood their needs better.
Overall, I enjoyed this experience and believe that I have made a positive contribution to the growth of
our Software Engineering degree program.

The other service that I want to highlight is serving the broader, international Software Engineering
research community. I have been a Program Committee member or a Session Chair for several major
IEEE and IBM research conferences in the areas of Program Comprehension, Software Maintenance,
and Reverse Engineering. As a Program Committee member, I have always strived to do my best to
write high-quality paper reviews and actively participated in the process of selecting the best papers for
the conference programs in a professional, fair, yet rigorous manner. In the past five years, I have
reviewed a total of 149 full research papers. This experience is unique and valuable in that it allows me
to observe first hand the conference process and how decisions were made on paper selection. Perhaps
more importantly, I learned how to judge a piece of work for its research contributions in Software
Engineering, which in turn helped me in defining my own research program. Last but not least, this
professional service has also helped increase the visibility and awareness of Clarkson University and
our Software Engineering degree program internationally in the Software Engineering research
community.

