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This paper studies quantum perfect state transfer on weighted graphs. We prove that the join of

a weighted two-vertex graph with any regular graph has perfect state transfer. This generalizes a
result of Casaccino et al.1 where the regular graph is a complete graph with or without a missing

edge. In contrast, we prove that the half-join of a weighted two-vertex graph with any weighted

*Corresponding author.

International Journal of Quantum Information
Vol. 7, No. 8 (2009) 1429�1445

#.c World Scienti¯c Publishing Company

1429

December 29, 2009 2:21:43pm WSPC/187-IJQI 00610



regular graph has no perfect state transfer. As a corollary, unlike for complete graphs, adding

weights in complete bipartite graphs does not produce perfect state transfer. We also observe

that any Hamming graph has perfect state transfer between each pair of its vertices. The result is

a corollary of a closure property on weighted Cartesian products of perfect state transfer graphs.
Moreover, on a hypercube, we show that perfect state transfer occurs between uniform super-

positions on pairs of arbitrary subcubes, thus generalizing results of Bernasconi et al.2 and Moore

and Russell.3

Keywords: Perfect state transfer; quantum networks; weighted graphs; join.

1. Introduction

Recently, the notion of perfect state transfer on quantum networks modeled by

graphs has received considerable attention in quantum information.1,2,4�8 A main

goal in this line of research is to ¯nd and characterize graph structures, which exhibit

perfect state transfer between pairs of vertices in the graph. This is a useful property

of quantum networks since it facilitates information transfer between locations.

We may conveniently view the problem of perfect state transfer in the context of

quantum walks on graphs.9,10 In this setting, the initial state of the quantum system

is described by a unit vector on some initial vertex a. To achieve perfect transfer to a

target vertex b at time t, the quantum walk amplitude of the system at time t on

vertex bmust be of unit magnitude. In other words, we require that jhbje�itAG jaij ¼ 1,

where AG is the adjacency matrix of the underlying graph G which describes the

quantum network.

Christandl et al.4 observed that the Cartesian products of paths of length 3 (two-

link hypercubes) admit perfect state transfer between antipodal vertices. They also

noted that paths of length 4 or larger do not possess perfect state transfer unless their

edges are weighted in a speci¯c manner.5 In fact, this weighting scheme corresponds

closely to the hypercube structure. Feder11 has extended this observation to a more

sophisticated construction in the context of bosons. This crucially shows that edge

weights can be useful for achieving perfect state transfer on graphs which are known

not to possess the property.

It is known that complete graphs do not have perfect state transfer. But, sur-

prisingly, Casaccino et al.1 observed that adding weighted self-loops on two vertices

in a complete graph helps create perfect state transfer between the two vertices. We

generalize their observation by considering the join of a weighted two-vertex graph

with an arbitrary regular graph. We prove that adding weights also helps for perfect

state transfer in this more general case. On the other hand, we show that the half-join

between a weighted two-vertex graph with a weighted self-join of an arbitrary regular

graph, where each vertex of the two-vertex graph is connected to exactly half of the

join graph, has no perfect state transfer for any set of weights. This implies that

weights provably do not help in achieving perfect state transfer in a complete

bipartite graph. The full connection that is available in the standard join seems

crucial in achieving perfect state transfer.
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Bernasconi et al.2 gave a complete characterization of perfect state transfer on the

hypercubes. In fact, their result holds for any Z
n
2 -circulant graph. They proved that

perfect state transfer is possible at time t ¼ �=2 between any pair of vertices. We will

refer to this stronger property as universal perfect state transfer. Previously known

results on perfect state transfer on other graphs, such as integral circulants8 and two-

link hypercubes P �n
3 ,4 allow only perfect state transfer between antipodal vertices

(which are vertices at the maximum distance from each other). Recent results on

integral circulants and other graphs12 have exhibited perfect state transfer between

non-antipodal vertices, but most of these graphs still lack the property of universal

perfect state transfer.

We show that weights are useful for universal perfect state transfer on the family

of Hamming graphs K�n
q , which is a generalization of the hypercube family. We

prove this result by extending the observation of Christandl et al.4 to perfect state

transfer on weighted Cartesian products. For the hypercube Qn, we prove a stronger

property of universal perfect state transfer. We show that perfect state transfer

occurs between uniform superpositions over two arbitrary subcubes of Qn. This

generalizes the results of Bernasconi et al.2 (mentioned above) and also of Moore and

Russell3 on the uniform mixing of a quantum walk on the n cube.

Note that if we allow zero edge weights, then universal perfect state transfer

becomes trivial. Assuming that the two source and target vertices are connected, ¯nd

a path connecting them, assign the hypercubic weights to the edges on this path

(as in Ref. 4) and zero weights to the other edges. This shows that universal perfect

state transfer can be achieved if zero edge weights are allowed.

2. Preliminaries

For a logical statement S, the Iversonian notation ½½S�� is 1 if S is true and 0

otherwise.13 As is standard, we use In and Jn to denote the n� n identity and

all�one matrices, respectively; we drop the subscript n whenever the context is clear.

The graphs G ¼ ðV ;EÞ which we study are ¯nite, mostly simple, undirected, and

connected. The adjacency matrix AG of a graph G is de¯ned as AG½u; v� ¼ ½½ðu; vÞ
2 E��. A graph G is called k-regular if each vertex has k adjacent neighbors. That is to

say, the neighbor set fv 2 V : ðu; vÞ 2 Eg of u has cardinality k for each vertex u 2 V .

In most cases, we also requireG to be vertex-transitive, i.e. for any a; b 2 V there is an

automorphism � 2 AutðGÞ with �ðaÞ ¼ b.

In this paper, we also consider edge-weighted graphs ~G ¼ ðV ;E;wÞ, where w :

E ! R is a function that assigns weights to edges. In the simplest case, we take an

unweighted graph G ¼ ðV ;EÞ and add self-loops with weight � to all vertices and

assign weight � to all edges; we denote such a graph by ~Gð�; �Þ. Note that the

adjacency matrix of ~G is given by �I þ �AG. Unless otherwise stated, most of our

weighted graphs will be of this form.

We denote the complete graph on n vertices byKn. The Cartesian product G�H

of graphs G and H is a graph whose adjacency matrix is I � AH þAG � I.14 The
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binary n-dimensional hypercube Qn may be de¯ned recursively as Qn ¼ K2 �Qn�1,

for n � 2, and Q1 ¼ K2. Similarly, the Hamming graph Hðq;nÞ is de¯ned as K�n
q ;

this may be viewed as a q-ary n-dimensional hypercube.

The join GþH of graphs G and H is de¯ned as GþH ¼ G [H , i.e. we take a

copy of G and a copy of H and connect all vertices of G with all vertices of H.15

We will also consider the weighted join Gþ�H, where we assign a weight of � to the

edges that connect G and H; more speci¯cally, the adjacency matrix of Gþ�H is

given by

AG �J

�J AH

� �
; ð1Þ

with the appropriate dimensions on the two all�one J matrices. A cone on a graph G

is the graph K1 þG. Similarly, a connected double cone on a graph G is the graph

K2 þG; similarly, a disconnected double cone is the graph K2 þG. When G is the

empty graph, the connected double cone is simply the complete graph, whereas the

disconnected double cone is the complete graph with a missing edge.7,1 On the other

hand, a connected (or disconnected) double half-cone on a graph G is formed by

taking K2 (or K2) and GþG and connecting each vertex of the two-vertex graph to

exactly one copy of G in the join GþG. When G is the empty graph, the double half-

cone simply yields a complete bipartite graph. For more background on algebraic

graph theory, see the monograph by Biggs.16

For a graph G ¼ ðV ;EÞ, let j ðtÞi 2 C jV j be a time-dependent amplitude vector

over V. The continuous time quantum walk on G is de¯ned using Schr€odinger's

equation as

j ðtÞi ¼ e�itAG j ð0Þi; ð2Þ

where j ð0Þi is the initial amplitude vector.9 Further background on quantum walks

on graphs can be found in the survey by Kendon.10 We say that G has perfect state

transfer from vertex a to vertex b at time tH if

jhbje�itHAG jaij ¼ 1; ð3Þ

where jai and jbi denote the unit vectors corresponding to the vertices a and b,

respectively. The graph G has perfect state transfer if there exist distinct vertices a

and b in G and time tH 2 Rþ so that (3) is true. We say that G has universal perfect

state transfer if (3) occurs between all distinct pairs of vertices a and b of G.

2.1. Example: triangle

We begin by describing an explicit example of the role of weights for perfect state

transfer in a triangle, or K3, which is the complete graph on three vertices. The

eigenvalues of K3 are 2 (simple) and �1 (with multiplicity 2) with eigenvectors jFki,
which are the columns of the Fourier matrix, with hjjFki ¼ ! jk

3 =
ffiffiffi
3

p
, for j; k 2
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f0; 1; 2g.16 The quantum walk on K3 yields

h1je�itK3 j0i ¼ h1j
X2
k¼0

e�it�k jFkihFkj
( )

j0i ¼ � 2

3
ie�it=2 sinð3t=2Þ: ð4Þ

So, it is clear that there is no perfect state transfer onK3.
17,1 Now, consider adding

self-loops on vertices 0 and 1 with weight � and putting a weight of � on the edge

connecting 0 and 1. The adjacency matrix of this weighted ~K3 is

~K3 ¼
� � 1

� � 1

1 1 0

2
4

3
5: ð5Þ

The spectra of ~K3 is given by the eigenvalues �0 ¼ �� � and �� ¼ 2��, where
�� ¼ ð1=4Þð� ��Þ, � ¼ �þ � and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 8
p

, with the corresponding ortho-

normal eigenvectors

jv0i ¼
1ffiffiffi
2

p
1

�1

0

2
4

3
5; jv�i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

� þ 1
p ��

��
1

2
4

3
5: ð6Þ

The perfect state transfer equation between the two vertices with weighted self-loops

is given by

h1je�it ~K 3 j0i ¼ h1je�it ~K 2 j0i þ 1

2
e�it� eit�=2 cos

�

2
t

� �
� i

�

�
sin

�

2
t

� �� �
� 1

� �
;

ð7Þ
where ~K2 is ~K2ð�; �Þ. Recall that the perfect state transfer h1je�itK2 j0i on

(unweighted) K2 is given by �i sinðtÞ. Thus, the weighted ~K2 has perfect state

transfer at time tH ¼ ð2Zþ 1Þ�=2�, since the self-loop weight � disappears into an

irrelevant phase factor and the edge weight � translates into a time-scaling. So, to

achieve perfect state transfer on ~K3, it su±ces to have

cos
�

4�
�

� �
cos

�

4�
�

� �
¼ 1: ð8Þ

Fig. 1. Weighted joins: (a) K2 þK1 (b)K2 þ C4. Perfect state transfer occurs between the weighted self-

loop vertices. Without the self-loops and weights, there is no perfect state transfer.
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Equivalently, we require that:

(1) A¼: �=4� be an integer;

(2) B¼: �=4� be an integer; and

(3) A � B (mod 2) or that A and B have the same parity.

From the ¯rst two conditions, we require that �=� be a rational number p=q < 1 with

gcd(p,q)=1. Restating this last condition on p and q and simplifying, we get

� ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

q2 � p2

s
; � ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

q2 � p2

s
: ð9Þ

So, we may choose

� ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

q2 � p2

s
; ð10Þ

so that both �=4� and �=4� are integers. Therefore, we choose odd integers p and q

satisfying gcdðp; qÞ ¼ 1; this will satisfy all the three conditions stated above. This

shows that there are in¯nitely many weights � and � (via in¯nitely many choices of

odd integers p and q) which allow perfect state transfer on ~K3. We generalize this

example in our join theorem for arbitrary regular weighted graphs.

This example complements a result of Casaccino et al.1 which showed the power of

weighted self-loops on complete graphs. Our analysis above shows that perfect state

transfer is achieved through edge weights instead.

3. Join of Regular Weighted Graphs

In this section, we prove that the existence of perfect state transfer on a join of two

arbitrary regular weighted graphs can be reduced to perfect state transfer on one of

the graphs. In fact, since we add weights to our graphs in a particular way, this is a

reduction onto the unweighted version of one of the graphs. This allows us to analyze

the double cone on any regular graph, i.e. the join of K2 with an arbitrary regular

graph. The next theorem is a generalization of a similar join theorem proven by

Angeles-Canul et al.12

Theorem 1. For j 2 f1; 2g, let ~Gjð�j; �jÞ be a kj-regular graph on nj vertices, where

each vertex has a self-loop with weight �j and each edge has weight �j. Also, for

j 2 f1; 2g, let
	j ¼ �j þ �jkj: ð11Þ

Suppose that a and b are two vertices in ~G1. Let G ¼ ~G1ð�1; �1Þ þ ~G2ð�2; �2Þ be the

join of the weighted graphs. Then,

hbje�itAG jai ¼ hbje�itA~G1 jai þ e�it	1

n1

eit�=2 cos
�t

2

� �
� i

�

�

� �
sin

�t

2

� �� �
� 1

� �
;

ð12Þ
where � ¼ 	1 � 	2 and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4n1n2

p
.
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Proof. Let Gj be the simple and unweighted version of ~Gj, for j 2 f1; 2g, i.e.

Gj ¼ ~Gjð0; 1Þ.Whenever it is clear from the context, we denote ~Gjð�j; �jÞ as simply ~Gj.

If �k and juki are the eigenvalues and eigenvectors of AG1
, for k ¼ 0; . . . ;n1 � 1,

then

hbje�itAG1 jai ¼ hbj
Xn1�1

k¼0

jukihukje�it�k

( )
jai: ð13Þ

Here, we assume that ju0i is the all�one eigenvector (which is orthogonal to the other

eigenvectors) with eigenvalue �0 ¼ k1. By the same token, let 
‘ and jv‘i be the

eigenvalues and eigenvectors of AG2
, for ‘ ¼ 0; . . . ;n2 � 1. Also, let jv0i be the

all�one eigenvector (with eigenvalue 
0 ¼ k2) which is orthogonal to the other

eigenvectors jv‘i, ‘ 6¼ 0.

Let G ¼ ~G1 þ ~G2. Note that the adjacency matrix of G is

AG ¼ �1I þ �1AG1
Jn1�n2

Jn2�n1
�2I þ �2AG2

� �
: ð14Þ

Let � ¼ 	1 � 	2, where 	j ¼ �j þ �jkj, for j 2 f1; 2g. The eigenvalues and eigenvec-

tors of AG are given by the following three sets:

. For k ¼ 1; . . . ;n1 � 1, let juk; 0n2
i be a column vector formed by concatenating the

column vector juki with the zero vector of length n2. Then juk; 0n2
i is an eigen-

vector with eigenvalue ~�k ¼ �1 þ �1�k. Note that ~�0 ¼ 	1.

. For ‘ ¼ 1; . . . ;n2 � 1, let j0n1
; v‘i be a column vector formed by concatenating the

zero vector of length n1 with the column vector jv‘i. Then j0n1
; v‘i is an eigenvector

with eigenvalue ~
‘ ¼ �2 þ �2
‘.

. Let j�i ¼ 1=
ffiffiffiffiffiffiffi
L�

p j��; 1n2
i be a column vector formed by concatenating the vector

��j1n1
i with the vector j1n2

i, where j1n1
i, j1n2

i denote the all–one vectors of length
n1, n2, respectively. Then j�i is an eigenvector with eigenvalue ~�� ¼ n1�� þ 	2.

Here, we have

�� ¼ 1

2n1

ð� ��Þ; �2 ¼ �2 þ 4n1n2; L� ¼ n1ð��Þ2 þ n2: ð15Þ

In what follows, we will abuse the notation by using jai, jbi for both ~G1 and ~G1 þ ~G2;

their dimensions di®er in both cases, although it will be clear from the context which

version is used. The quantum wave amplitude from a to b is given by

hbje�itAG jai ¼ hbje�itAG
Xn1�1

k¼1

huk; 0n2
jaijuk; 0n2

i þ
X
�

��ffiffiffiffiffiffiffi
L�

p j�i
( )

ð16Þ

¼ hbj
Xn1�1

k¼1

hukjaie�it~�k juk; 0n2
i þ

X
�

��ffiffiffiffiffiffiffi
L�

p e�it~�� j�i
( )

ð17Þ

¼
Xn1�1

k¼1

hbjukihukjaie�it~�k þ
X
�

�2
�

L�
e�it~�� : ð18Þ
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This shows that

hbje�itAG jai ¼ hbj
Xn1�1

k¼0

jukihukje�it~�k

( )
jai � e�it	1

n1

þ
X
�

�2
�

L�
e�it~�� ð19Þ

¼ hbje�itA~G1 jai þ
X
�

�2
�

L�
e�it~�� � e�it	1

n1

: ð20Þ

To analyze the second term next, we use the following identities whose correctness

follows easily from the de¯nitions of ��, L�, � and �:

�þ�� ¼ �ðn2=n1Þ; ð21Þ
�þ þ �� ¼ �=n1; ð22Þ

LþL� ¼ ðn2=n1Þ�2; ð23Þ
Lþ þ L� ¼ �2=n1; ð24Þ
ð��Þ2L	 ¼ ðn2=n1ÞL�; ð25Þ

~�� ¼ ð�̂ ��Þ=2; ð26Þ
where �̂ ¼ 	1 þ 	2. Therefore, the summand in (20) is given by

X
�

�2
�

L�
e�it~�� ¼ 1

n1

e�it�̂=2 cos
�t

2

� �
� i

�

�

� �
sin

�t

2

� �� �
: ð27Þ

This yields

hbje�itAG jai ¼ hbje�itA~G1 jai

þ e�it	1

n1

eit�=2 cos
�t

2

� �
� i

�

�

� �
sin

�t

2

� �� �
� 1

� �
; ð28Þ

which proves the claim.

We describe several applications of Theorem 1 to the weighted double cone ~K2 þG,

for any regular graph G. For notational simplicity, let Kb
2 denote K2 if b ¼ 1 and K2

if b ¼ 0.

Remark. The next corollary complements the observation made by Casaccino et al.1

on K2 þKm, where each vertex of K2 has a weighted self-loop. They showed that

perfect state transfer occurs in this weighted graph, in contrast to the unweighted

version.

Corollary 1. For any k-regular graph G on n vertices and any b 2 f0; 1g, there exist
weights �; � 2 Rþ so that the double cone ~K

b
2ð�; �Þ þG has perfect state transfer

between the two vertices of ~K
b
2.

Proof. Consider the weighted double cone ~K
b
2ð�; �Þ þ ~Gð0; 1Þ, where ~Gð0; 1Þ is

simply the unweighted graph G. We know that ~K
b
2ð�; �Þ has perfect state transfer for

b�tH ¼ ð2Zþ 1Þ�=2. Note that when b ¼ 0, the perfect state transfer time is 1 or
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nonexistent. Let � ¼ ð�þ b�Þ � k and�2 ¼ �2 þ 8n. By Theorem 1, it su±ces to have

cos
�

2
tH

� �
cos

�

2
tH

� �
¼ cos

�

4�
�

� �
cos

�

4�
�

� �
¼ ð�1Þ1�b: ð29Þ

So, we require that:

(1) A¼: �=4� be an integer;

(2) B¼: �=4� be an integer; and

(3) ½½A � B ðmod 2Þ�� ¼ b; or that A and B have the same parity if and only if b ¼ 1.

From the ¯rst two conditions, we require that �=� be a rational number p=q < 1 with

gcdðp; qÞ ¼ 1. Restating this last condition on p and q and simplifying, we get

� ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n

q2 � p2

s
; � ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n

q2 � p2

s
: ð30Þ

Thus, we may choose

� ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n

q2 � p2

s
; ð31Þ

so that both �=4� and �=4� are integers. Therefore, we choose integers p and q

satisfying gcdðp; qÞ ¼ 1 and ½½p � q ðmod 2Þ�� ¼ b; this will satisfy all the three con-

ditions stated above. Finally, we may choose � ¼ b� � k� � to complete the weight

parameters.

3.1. Double half-cones

In this subsection, we consider graphs obtained by taking a half-join between K2 and

GþG, for some arbitrary k-regular graph G, where each vertex ofK2 is connected to

only one copy of G in the join GþG. When G ¼ Kn, this half-join is obtained by

selecting two adjacent vertices in the complete bipartite graph Knþ1;nþ1. In contrast

to complete graphs, we show that weights are not helpful in complete bipartite

graphs for achieving perfect state transfer. In fact, we prove a stronger result where

perfect state transfer still does not exist even if weights are added to some of the other

sets of edges.

Fig. 2. Weighted half-join between K2 and K3;3. This is equivalent to adding weights to a connected pair

of vertices in the complete bipartite graph K4;4. There is no perfect state transfer between the two vertices

with weighted self-loops.
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Theorem 2. Let G be a k-regular graph on n vertices. Let Gð�; �;	; �; �; "Þ be a graph
obtained from ~K2ð�; �Þ and ~Gð	; �Þþ�

~Gð	; �Þ by connecting each vertex of ~K2ð�; �Þ
to exactly one copy of ~Gð	; �Þ in the weighted join ~Gð	; �Þþ�

~Gð	; �Þ and assigning a

weight of " to each of these connecting edges. Then, there are no nonzero real-valued

weights �, �, 	, � , � or " for which Gð�; �;	; �; �; "Þ has perfect state transfer between

the two vertices of ~K2ð�; �Þ.

Remark. Note that if " ¼ 0, then we have perfect state transfer in G trivially.

Proof. The adjacency matrix of G is given by

AG ¼
� � "1T

n 0T
n

� � 0T
n "1T

n

"1n 0n 	In þ �AG �Jn
0n "1n �Jn 	In þ �AG

2
6664

3
7775; ð32Þ

where 0n and 1n denote the all�zero and all�one column vectors of dimension n,

respectively. Suppose that AGjuji ¼ �jjuji are the eigenvalues and eigenvectors of G,

for 0 
 j 
 n� 1, with ju0i being the all�one eigenvector with �0 ¼ k. Then the

spectra of AG is given by the following sets:

(1) The eigenvectors j0; 0; 0n;uji and j0; 0;uj; 0ni share the eigenvalues 	þ ��j, for

1 
 j 
 n� 1.

(2) Let

�� ¼ 1

2
ð�� ���Þ; ð33Þ

where �� ¼ ð�þ �Þ � ð	þ �kþ �nÞ and �2
� ¼ � 2� þ 4"2n. Then, the two eigen-

vectors

j��i ¼
1ffiffiffiffiffiffiffi
L�

�
p �� �� 1n 1n½ �T ð34Þ

have �� ¼ �� þ ð	þ �kþ �nÞ as eigenvalues. Here L�
� ¼ 2ð��Þ2 þ 2n is the

normalization constant.

(3) Let

�� ¼ 1

2
ð�� ���Þ; ð35Þ

where �� ¼ ð�� �Þ � ð	þ �k� �nÞ and �2
� ¼ � 2� þ 4"2n. Then, the two

eigenvectors

j��i ¼
1ffiffiffiffiffiffiffi
L�

�

q �� ��� 1n �1n½ � ð36Þ

have 
� ¼ �� þ ð	þ �k� �nÞ as eigenvalues. Here L�
� ¼ 2ð��Þ2 þ 2n is the

normalization constant.
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The following identities can be veri¯ed easily: for � 2 f�; �g, we have

L �
þL

�
� ¼ 4n�2

�="
2; ð37Þ

�þ�� ¼ �n; ð38Þ
� 2�L

�
	 ¼ nL �

�: ð39Þ
Using these, the quantum walk on G starting at a and ending at b is given by

hbje�itAG jai ¼
X
�

e�it��
�2

�
L�

�

( )
�

X
�

e�it
�
� 2
�

L�
�

( )
: ð40Þ

After simpli¯cations, we obtain

hbje�itAG jai ¼ e�ið	þ�kÞt

2
e�ið�nÞte�i��t=2 cos

��

2
t

� �
� i

��
��

sin
��

2
t

� �� �
ð41Þ

� e�ið	þ�kÞt

2
eið�nÞte�i��t=2 cos

��

2
t

� �
� i

��
��

sin
��

2
t

� �� �
: ð42Þ

Ignoring the irrelevant phase factor e�ið	þ�kÞt and noting that the damping factor

�=� forces the sine term to vanish, we get

hbje�itAG jai ¼ e�ið�nÞt

2
cos

��
2
t

� �
cos

��

2
t

� �

� eið�nÞt

2
cos

��
2
t

� �
cos

��

2
t

� �
: ð43Þ

We choose tH so that e�ið�nÞtH ¼ 1, which implies that tH ¼ 2Z�=�n. This simpli¯es

the above expression to

hbje�itHAG jai ¼ 1

2
cos

��
2
tH

� �
cos

��

2
tH

� �
� 1

2
cos

��
2
tH

� �
cos

��

2
tH

� �
: ð44Þ

For simplicity, de¯ne

Z� ¼ cos
��
2
tH

� �
cos

��

2
tH

� �
¼ cos

��
�n

�

� �
cos

��

�n
�

� �
; ð45Þ

Z� ¼ cos
��
2
tH

� �
cos

��

2
tH

� �
¼ cos

��
�n

�

� �
cos

��

�n
�

� �
: ð46Þ

Let

~P � ¼ ��
�n

; ~Q� ¼ ��

�n
; ~P � ¼ ��

�n
; ~Q� ¼ ��

�n
: ð47Þ

To achieve perfect state transfer, we require that Z�Z� ¼ �1. For example, if we

require that Z� ¼ �1 and Z� ¼ 1, then it su±ces to impose the following integrality

and parity conditions:

~P �; ~Q� 2 Z; ~P � 6� ~Q� ðmod 2Þ; ð48Þ
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~P �; ~Q� 2 Z; ~P � � ~Q� ðmod 2Þ: ð49Þ
We will show that there is no � which can satisfy all the above conditions.

Suppose that, for � 2 f�; �g, we have

��
��

¼ p�
q�

2 Q; ð50Þ

where p� and q� are integers with gcdðp�; q�Þ ¼ 1; moreover, since�2
� ¼ � 2� þ 4"2n, we

get

�� ¼ p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4"2n

q 2� � p2
�

s
; �� ¼ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4"2n

q 2� � p2
�

s
: ð51Þ

Consider ~P � and ~Q�, for � 2 f�; �g. Letting � ¼ 2"=�
ffiffiffi
n

p
, we have

~P � ¼ p�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q 2� � p2
�

q ; ~Q� ¼ q�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q 2� � p2
�

q : ð52Þ

Since ~P � � ~P
2
� (mod 2), we know that ~P

2
� 6� ~Q

2
� (mod 2) is equivalent to ~P � 6�

~Q� (mod 2). Likewise, ~P
2
� � ~Q

2
� ðmod 2Þ is equivalent to ~P � � ~Q� ðmod 2Þ. This

changes (52) to

~P
2
� ¼ p2

�

�2

q 2� � p2
�

; ~Q
2
� ¼ q 2�

�2

q 2� � p2
�

: ð53Þ

Since we require that ~P � and ~Q� be integers, ðq 2� � p2
�Þ j q 2��2 and ðq 2� � p2

�Þ j p2
��

2.

However, gcdðp�; q�Þ ¼ 1 implies that gcdðp2
� ; q

2
� Þ ¼ 1. This gives us ðq 2� � p2

�Þ j �2.

Suppose now that p2
� � q 2� ðmod 2Þ. Then q 2� � p2

� is even. This forces �2 to be

even. Similarly, suppose that p2
� 6� q 2� ðmod 2Þ. Then q 2� � p2

� is odd. However, since
~P
2
� � ~Q

2
� ðmod 2Þ and one of p2

�, q
2
� is odd, �2 must be even.

In both cases, �2 is even. Allowing p2
� � q 2� ðmod 2Þ guarantees that ~P

2
� � ~Q

2
�

ðmod 2Þ. Letting p2
� 6� q 2� ðmod 2Þ gives us q 2� � p2

� to be odd. This again forces
~P
2
� � ~Q

2
� ðmod 2Þ. Both instances contradict our given requirement that ~P

2
� 6� ~Q

2
�

ðmod 2Þ.
The case where we require that Z� ¼ 1 and Z� ¼ �1, i.e. where ~P � is even and ~Q�,

~P �, ~Q� are odd, may be treated similarly.

Corollary 2. For any n � 2, consider the complete bipartite graph Kn;n. Let a and b

be two arbitrary adjacent vertices in Kn;n. Then, there are no self-loop weights � on a

and b and edge weight � on the edge ða; bÞ for which there is perfect state transfer from

vertex a to vertex b in this weighted version of Kn;n.

Proof. We apply Theorem 2 with G ¼ Kn�1 set to the empty graph on n� 1

vertices, i.e. is AG is the all�zero matrix and hence k ¼ 0. Also, we set " ¼ 1, 	 ¼ 0

and � is an arbitrary value. In the proof of Theorem 2, setting 	 ¼ 0 does not a®ect

perfect state transfer since the term 	þ k� may be ignored due to its contribution as

a global phase factor. Setting " ¼ 1 does not a®ect perfect state transfer since it is
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\factored out" through �. Thus, these speci¯c settings of values do not a®ect the

conclusions of Theorem 2.

4. Hamming Graphs

We show that the class of weighted Hamming graphs exhibit perfect state transfer

between any two of their vertices. First, we prove the following closure result on the

Cartesian product of graphs. This is an adaptation of a similar theorem for the

unweighted case.12

Theorem 3. For j ¼ 1; . . . ;m, the graphGj has perfect state transfer from aj to bj at

time tj if and only if G ¼ �m
j¼1

~Gjð�j; �jÞ has perfect state transfer from ða1; . . . ; amÞ to
ðb1; . . . ; bmÞ at time tH, whenever tH ¼ tj=�j. This holds independently of the choice of

the self-loop weights �j.

Proof. We prove the claim for m ¼ 2. Suppose that the unweighted graph Gj has

perfect state transfer from aj to bj at time tHj . Consider the quantum walk on the
~G1ð�1; �1Þ � ~G2ð�2; �2Þ. In shorthand, we denote each graph simply as ~Gj:

hb1; b2je�itA~G1� ~G2 ja1; a2i ¼ hb1jhb2je�itðI�A~G2
Þe�itðA~G1

�IÞja1ija2i ð54Þ
¼ hb1jhb2jðI � e�itA~G2 Þðe�itA~G1 � IÞja1ija2i ð55Þ
¼ hb1je�itA~G1 ja1ihb2je�itA~G2 ja2i: ð56Þ

Since A~Gð�;�Þ ¼ �I þ �AG, we have

hbje�itA~G jai ¼ e�i�thbje�i�tAG jai: ð57Þ
Therefore, the quantum walk on the weighted Cartesian product yields

hb1; b2je�itA~G1�~G2 ja1; a2i ¼ e�ið�1þ�2Þthb1je�i�1tAG1 ja1ihb2je�i�2tAG2 ja2i: ð58Þ
This shows that ~G1 � ~G2 has perfect state transfer from ða1; a2Þ to ðb1; b2Þ at time t if

and only if G1 has perfect state transfer from a1 to b1 at time �1t and G2 has perfect

Fig. 3. Hamming graphs: (a) Hð2; 3Þ, (b) Hð3; 2Þ. Perfect state transfer occurs between any pair of
vertices with the help of weighted self-loops and edges.
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state transfer from a2 to b2 at time �2t. So, if the weights �j satisfy �jt
H ¼ tj, for all j,

then ~G1 � ~G2 has perfect state transfer at time tH. The general claim follows by

induction.

Theorem 4. The class ~H ðq;nÞ of weighted Hamming graphs has universal perfect

state transfer at an arbitrarily chosen time.

Proof. Recall that Hðq;nÞ ¼ K�n
q . Let a ¼ ða1; . . . ; anÞ and b ¼ ðb1; . . . ; bnÞ be two

vertices of ~H ðq;nÞ. By Corollary 1, we know that ~Kq has perfect state transfer

between any two of its vertices for a suitable choice of weights. For each dimension

j 2 f1; . . . ;ng, ¯x a set of weights so that ~K
ðjÞ
q has perfect state transfer from aj to bj.

Then, by Theorem 3, �n
j¼1

~K
ðjÞ
q has perfect state transfer from a to b.

4.1. Hypercubes

In this subsection, we show that a weighted hypercube has the property of universal

perfect state transfer. In fact, we prove a stronger statement as given in the next

theorem. But, ¯rst, we need to de¯ne a particular notion of uniform superposition

over the n cube.

Fact 5.3,2 The following facts are known about a quantum walk on the hypercube Qn

at times t 2 f�=4; �=2g:

hbje�itQn jai ¼ ð�iÞja�bj=
ffiffiffiffiffi
2n

p
if t ¼ �=4;

½½a� b ¼ 1n�� if t ¼ �=2:

(
ð59Þ

We say that a superposition j%ni over Qn is in normal form if

j%ni ¼
1ffiffiffiffiffi
2n

p
X

a2f0;1gn

ð�iÞjajjai: ð60Þ

Note that j%ni is the uniform superposition of a quantum walk on Qn from 0n at time

�=4, i.e. j%ni ¼ expð�ið�=4ÞQnÞj0ni.

Theorem 6. For any n � 1, given any two distinct subcubes B1 and B2 of Qn, there

is a set of edge weights w so that Qw
n has perfect state transfer between uniform

superpositions in normal form on B1 and B2.

Proof. First, we show that the hypercube Qn has perfect state transfer from any

vertex to any subcube. Since Qn is vertex-transitive, it su±ces to show perfect state

transfer from the vertex 0n to the subcube B ¼ ð1k0‘HmÞ, where m ¼ n� k� ‘.

De¯ne the adjacency matrix of ~Qn as

~Qn ¼ Qk � I2n�k þ 1

2
I2 kþ‘ �Qm; ð61Þ
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which is a sum of two commuting matrices. Then, letting tH ¼ �=2, we have

h1k0‘jh%mj exp �itH ~Qn

� 	j0k0‘0mi
¼ h1k0‘jh%mj exp �i

tH

2
I2kþ‘ �Qm

� �
j1k0‘0mi: ð62Þ

The equality and the fact that the last expression has unit magnitude follow from

Fact 5.

To show perfect state transfer between two arbitrary subcubes, note that we just

showed that jBi ¼ e�itH ~Qn j0ni. Thus, we also have j0ni ¼ e�itHð�~QnÞjBi. This proves
the claim.

We recover the result of Bernasconi et al.,2 which we restate in the next corollary,

via the use of explicit edge weights on the hypercube.

Corollary 3. For any n � 1, given any two distinct vertices a and b of the hypercube

Qn, there is a set of edge weights w so that Qw
n has perfect state transfer from a to b at

time tH ¼ �=2.

Remark. We note that Bernasconi et al.2 proved universal perfect state transfer for

the n cube by dynamically changing the underlying hypercubic structure of the

graph. In contrast, our scheme is based on using static weights which can be inter-

preted dynamically with time. In both schemes, it is possible to route information

through a Hamiltonian path which visits each vertex once and exactly once. We

believe that this Hamiltonian property might be of interest in further applications of

perfect state transfer.

5. Conclusion

We studied perfect state transfer on quantum networks represented by weighted

graphs. Our goal was to understand the role of weights in achieving perfect state

transfer on graphs.

First, we proved a join theorem for weighted regular graphs and found, as a

corollary, that a weighted double cone on any regular graph has perfect state

transfer. This implies as a corollary a result of Casaccino et al.1 where the regular

graph is a complete graph. In contrast, we also showed that weights do not help in

achieving perfect state transfer on complete bipartite graphs. This is obtained as part

of a more general result on graphs constructed from a half-join of K2 and GþG, for

an arbitrary regular graph G. We found it curious that the full join connection

seemed crucial for weights to have a positive e®ect in achieving perfect state transfer.

We leave the case of complete multipartite graphs and strongly regular graphs as an

open question.

Second, we observed that Hamming graphs have the property of universal perfect

state transfer. This is a stronger requirement than the standard perfect state transfer

property where perfect state transfer must occur between any pair of vertices. Prior
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to this work, the only known family of graphs with universal perfect state transfer

were the (unweighted) hypercubic graphs.2 We proved our result on the Hamming

graphs by showing a closure result for a weighted Cartesian product of perfect state

tranfer graphs, even when the graph components have di®erent perfect state transfer

times. The unweighted version of this closure result, as shown by Angeles-Canul

et al.,12 requires a global common perfect state transfer time for all graphs in the

Cartesian product. For the hypercubes, we showed a stronger property of universal

perfect state transfer, where perfect state transfer occurs between uniform super-

positions of two arbitrary subcubes. We imposed a mild condition on the uniform

superpositions which exhibit perfect state transfer.

Note that if zero weights are allowed, then universal perfect state transfer is

trivial. Simply take any path connecting the two vertices and assign the hypercubic

weights to the edges on the path (as in Ref. 4) and zero weights to all other edges. If

zero weights are not allowed, then we conjecture that near-perfect state transfer is

possible by assigning weights that tend to zero (for the edges which require zero

weights).
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