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Abstract

We study the problem of PAC-learning Boolean functions with random attribute noise under
the uniform distribution. We define a noisy distance measure for function classes and show that
if this measure is small for a class C and an attribute noise distribution D then C is not learnable
with respect to the uniform distribution in the presence of noise generated according to D. The
noisy distance measure is then characterized in terms of Fourier properties of the function class.
We use this characterization to show that the class of all parity functions is not learnable for any
but very concentrated noise distributions D. On the other hand, we show that if C is learnable
with respect to uniform using a standard Fourier-based learning technique, then C is learnable
with time and sample complexity also determined by the noisy distance. In fact, we show that
this style algorithm is nearly the best possible for learning in the presence of attribute noise.
As an application of our results, we show how to extend such an algorithm for learning AC? so
that it handles certain types of attribute noise with relatively little impact on the running time.
Keywords: computational learning theory; learning with noise; Fourier analysis.

1 Introduction

The problem of attribute noise in PAC-learning was studied originally by Shackelford and Volper
[8] for the case of k-DNF expressions. Their uniform attribute noise model consists of a Bernoulli
process that will either flip or not flip each attribute value with a fixed probability p € [0,1] that
is the same for every attribute. While Shackelford and Volper assumed that the learner knows the
noise rate p, Goldman and Sloan [4] proved that this assumption is not necessary in order to learn
monomials.

In addition to uniform attribute noise, Goldman and Sloan also considered a product noise
model in which there are n noise rates p;, one for each distinct attribute z;, ¢ € [n]. They showed
that if the product noise rates p; are unknown, then no PAC-learning algorithm exists that can
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tolerate a noise rate higher than 2¢, where € is the required-accuracy parameter for PAC learning.
Subsequently, Decatur and Gennaro [3] proved that if the different noise rates are known (or if
some upper bound on them is given) then there exist efficient PAC-learning algorithms for simple
classes such as monomials and k-DNF expressions.

In this paper we consider a very general attribute noise model, but limit the distribution that
will be used to generate examples and to evaluate the accuracy of the hypothesis generated by
the learning algorithm. Specifically, we focus on the problem of PAC learning with respect to the
uniform distribution over examples, with little or no constraint on the distribution used to generate
attribute noise in the examples. We give both lower and upper bounds.

First, we define a measure of noisy distance for concept classes and show that the sample size
required for PAC learning a class over the uniform distribution is inversely proportional to the
noisy distance of the class. We also give a characterization of the noisy distance in terms of Fourier
properties of the class. As an example of how this characterization can be used, we show that the
class of all parity functions is not (even information theoretically) PAC learnable with respect to
uniform unless the attribute noise distribution puts nonnegligible weight on one or more of the
bit-vectors representing the noise to be applied to an example. So, for example, if the attribute
noise is applied by independently flipping a coin with constant bias for each bit then the maximum
weight on any noise vector is exponentially small, implying that the parity class is not learnable
for this noise distribution. This holds even if the noise process is known. On the other hand, we
observe as a corollary of a result of Blum, Burch, and Langford [1] that the class of monotone
Boolean functions is weakly PAC-learnable even if the noise process is unknown.

We then turn to developing positive learnability results. Specifically, we show that any concept
class that is PAC-learnable with respect to the uniform distribution using an algorithm in the style
of Linial, Mansour, and Nisan [7] can be adapted to handle attribute noise, assuming the probability
distribution of the noise process is known. However, the noisy distance of a class depends on the
noise distribution, so the sample complexity of our algorithm is dependent on the noise process
as well as the usual PAC factors. The dependence of the the sample complexity of our algorithm
matches, to within polynomial factors, our lower bound for learning with attribute noise. We
then apply our theory to show that for a specific class of noise distributions—mild known rates of
attribute noise independently applied to the inputs—AC? remains learnable with respect to the
uniform distribution in time comparable to that of the best known noise-free bound.

Our Fourier techniques share some commonalities with methods developed by Benjamini, Kalai,
and Schramm [2] in their work that studied percolation and its relation to noise sensitivity of
Boolean functions. Their techniques, like ours, were strongly motivated by the influential work of
Kahn, Kalai, and Linial [6] on Fourier analysis of Boolean functions.

2 Definitions and Notation

The problem considered in this paper is PAC learning Boolean functions under some fixed distri-
bution over instances when attribute noise is also applied to the instances. To a lesser extent, we
also consider classification noise. We define these concepts more precisely below. For simplicity,
our definitions suppress some standard details (particularly the notion of size of functions) that are
not critical to the results in this paper.

For a natural number n, we consider classes of Boolean functions f : {0,1}" — {—1,+1} and
distributions over {0,1}". The uniform distribution on {0,1}" is denoted U,, (or just U when n is
understood from context), i.e., Up(z) = 277, for all z € {0,1}". The bitwise ezclusive-or of two n-
bit vectors a,b € {0,1}" is denoted a @ b. The unit vector e; € {0,1}" has its i-th bit set to one and



all other bits set to zero. For a € {0,1}", the parity function y, is defined as x,(z) = (—1)2i=1 %%,
It is known that any Boolean function f : {0,1}" — {—1,+1} can be represented as a weighted
sum of parity functions (see [7])

f@)= 3 fla)xal2)
aE{O,l}n

where f(a) = Ey[f(z)xa(z)] is the Fourier coefficient of f at a. This is called the Fourier repre-
sentation of f and is a direct consequence of the fact that {x, | a € {0,1}"} forms an orthonormal
basis for all Boolean (or even real-valued) functions over {0,1}", i.e., Ey[xa(z)xs(z)] is one ifa = b
and zero otherwise. Notice that if f = x. for some ¢ then f(¢) =1 and f(a) = 0 for all a # c.
The focus of the paper is on a learning model in which the instance distribution is uniform and
the noise process is characterized by a pair of parameters (D, R). The noise process can be viewed
as drawing a random vector a from the distribution D (representing the attribute noise process)
and a random value b from the distribution R (representing classification noise), then returning the
exclusive OR of a with the original example vector z and the exclusive OR of the label f(z) with b.
So the noise process changes an example (z, f(z)) to an example (z @ a, f(z) ®b) (actually, because
we consider functions mapping to {—1,+1}, we will assume that R produces values in {—1,+1}
and replace the latter @ with multiplication). We will call this (D, R)-noise and denote the oracle
that returns a (D, R)-noisy example for f with respect to the uniform distribution by EXp r(f,U).

Definition 1 Let C be a concept class containing functions f : {0,1}" — {—1,+1}. Then C is
PAC learnable under the uniform distribution with (D, R)-noise if there is an algorithm A such
that for any €,6 € (0,1) and for any target f € C, given the inputs €,0 and access to a noisy
ezample oracle EXp r(f,U), the algorithm A outputs a hypothesis h such that Prylh # f] < €
with probability at least 1 — 6. The algorithm must make a number of oracle calls (have sample
complexity) at most polynomial in n, 1/€, and 1/§. If C can be learned for e = 1/2—1/p(n), where
p() is a fized polynomial, then C is said to be weakly learnable. The time complexity of A is the
number of computation steps taken by A. A PAC algorithm is efficient if its time complexity is also
polynomial in n, 1/€, and 1/4.

Notice that we are implicitly assuming in the definition above that D and R are known to the
learning algorithm A, although as we will see later we can relax this somewhat for some of our
positive results. However, in general, some assumption about the form of these noise distributions
seems to be necessary. For example, consider the problem of learning the concept class M containing
just the two monomials z; and Z7 when the classification noise process R is arbitrary and no
information about R is available to the learner. Then M is not learnable, because one cannot
distinguish examples representing z; in a noiseless setting (E[R] = 1) from examples representing
71 in a full-noise setting (E[R] = —1). Thus, there are situations in which learning is possible if
the noise process is known and impossible otherwise. If the classification noise process R always
returns 1, then (D, R)-noise is simply attribute noise and we refer to it as D-noise. Our lower
bounds focus on this type of noise.

3 Model Transformation

Before developing our main results, it is useful to relate the (D, R)-noise model to another model
where the example (z, f(z)) is changed to (z, f(z ® a)b) for a random vector a drawn according to
distribution D and b € {—1,+1} drawn according to distribution R.



Lemma 1 Let U = U, be the uniform distribution over n-bit vectors and (D, R) be any distribu-
tions over {0,1}" and {—1,+1}, respectively. Let f : {0,1}" — {—1,+1} be any Boolean function.
If X €y {0,1}", A €p {0,1}" and B €r {—1,+1} are independent random variables then the
random variables (X & A, f(X)B) and (X, f(X & A)B) have identical distributions.

Proof Consider the random variables X; = (X, A, B) and X2 = (X®A, A, B). Since X is uniformly
distributed and independent of A, X; and X, are identically distributed. Define ¢(z,y,2) =
(z, f(z ®y)z). Then

where ~ denotes that the two random variables have the same distribution. This completes the
claim. 2

This lemma is key to our subsequent results, as it allows us to consider the easier noise model
of (X, f(X & A)B) instead of the random attribute noise model when learning is with respect to
the uniform distribution.

4 Sample Complexity Lower Bound

In this section we give a lower bound for PAC-learning with D-noise. Because D-noise is a special
case of (D, R)-noise, our lower bounds immediately generalize to this latter model as well.

We start with some intuition for the lower bound. Let C be the class being learned. Let f and g
be two functions in the class C and suppose Pry[f # g] > €. If for a fixed = and distribution D the
expectation E,p[f(z @ a)] is very close to Eqwplg(z @ a)], then we cannot notice the difference
between (z, f(z @ a1)) and (z,g(z @ a2)). Now since the example oracle we consider chooses z
according to the uniform distribution, we will look at E[|E,[f(z @ a) — g(z & a)]|]. This, we will
show, is a good measure for learnability with noise. We now formalize the above.

Definition 2 Let C be a concept class over {0,1}" and let f,g € C. Let D be any distribution
over {0,1}"™. Then the noisy distance between f and g under the distribution D is defined as

Ab(f,9) = yElIBalf(z ® @) — g(x © a)]],

where the expectation of x is taken over the uniform distribution over {0,1}" and the expectation
of a is taken with respect to D. Also define for C and D as above and for any € > 0,

AH(C) = min{Ap(fg) | .9 € C with Pr(f #g] > )
We say that f is e-close to g (or vice versa) if Pry[f # g] <.

The following theorem states an information-theoretic lower bound on the number of samples
required by any PAC learning algorithm.

Theorem 2 Let C be a concept class and, for fized € and D, represent AL (C) by A. Then any
PAC learning algorithm for C under D-distribution noise that, with probability at least 1 — /2,
outputs an (e/2)-close hypothesis requires a sample complezxity of (%‘5).



Proof Consider an algorithm that tries to distinguish whether a sample S = {(z;,b;) | 7 € [m]} is
labeled by the function f or g, where f,g € C and Ap(f,g) = A. The claim is that no algorithm
has a distinguishing probability greater than 2mA.

Formally, let F and G be distributions over {0,1}" x {—1,+1} that produce (z, f(z @ a))
and (z,g(z @ a)), respectively, where z is drawn according to the uniform distribution and a is
drawn according to the noise distribution D. Also let F™ and G™ be induced distributions on m
independent samples drawn according to F' and G, respectively. We will show that there exists no
(possibly randomized) prediction algorithm A (that outputs {0,1}) with the property that

SNII)?EI,T[A(S) =1]— SN%rm,T[A(S) = 1]| > 2mA,
where r denotes the randomness of A.

This relates to the PAC confidence parameter § as follows. Fix any prediction algorithm A
and denote by 8"} (f,g) the above absolute difference of probabilities. Then the probability that
A correctly predicts whether the sample was drawn from F™ or G™ is at most 67(f,g) + (1 —
0 (f,9))/2. That is, with probability 677(f,g), A can distinguish the source of the sample, and in
the best case it predicts correctly every time this occurs. However, with probability 1 — 6% (f,g), A
can at best guess randomly as to whether the source is F™* or G™. Therefore, since below we will
show that, for all A, 6"F(f,g) < 2mA, we have that if any algorithm A correctly predicts whether
the sample source is F™ or G™ with probability at least 1/2 + §'/2 then the sample size m used
must be such that m > ¢’/(2A). Making the substitution &' = 1 — § gives the PAC form of the
bound stated in the theorem. So what remains is to prove the the bound on 77 (£, g).

Let F(z,y),G(z,y) be the probability weight assigned to (z,y) € {0,1}" x {—1,+1} by F, G,
respectively. Note that F(x,y) = 2n%(l + E,[y- f(z ® a)]), which implies that for all z,y,

|Ealf(z @ a) — g(z @ a)]| = 2" |F(z,y) — G(z,y)|.

Relating this to the noisy distance between f and g, we have Ap(f,g) = >, |F(z,1) — G(z,1)|
(notice that for every z, |F(z,y) — G(z,y)| is independent of the value of y).

Now we define A(F,G) = ), |F(z,y) — G(z,y)|, so we have that A(F,G) = 2Ap(f,g) =
2A. Notice that A(F,G) is a measure of the distance between two probability distributions F
and G in terms of the L; norm of the difference of these distributions viewed as vectors over
{0,1}" x {—-1,+1}. More generally, for m > 1 define A(F™,G™) = 3 . -|F™(Z,9) — G™(Z, 9|,
where 7 € ({0,1}")™ and ¥ € {—1,+1}". This measure is similar to the statistical distance of
Yang [10], although his measure uses an Ly norm. We will now use an approach similar to Yang’s,
based on the subadditivity of our distance measure, to obtain our result.

First, notice that for all m > 1, A(F™,G™) is an upper bound on §7(f, g), since

S A = 1= o A =1]] = [SPAGS = 11 (P - 6@ )

< Y CIFME ) - GME D)
z,g

We prove next that A(,-) is subadditive, that is, that A(F™ G™) < A(F™ 1, G™ 1) + A(F,G).



Let z € {0,1}", y € {—1,+1}, a € ({0,1}")™ ! and B € {—1,+1}™ !, for m > 1. Then

A(F™,G™) = Zﬂ |F(z,y) F™ o, f) — G(z,y)G™ e, B)]
< ,y,Z’ﬂ |F(z,y) F™ o, f) — F(z,9)G™ (, B)]
f’ iﬂ |F(2,y)G™ (e, ) — G(z,y)G™ (o, B)]
< E;T;?;"_l(a,ﬂ) — G Yo, B) + Y |F(2,y) — Glz,y)|-
o oy
Thus, §7(f,g) < AF™,G™) < mA(F,G) = 2mA, proving the theorem. O

4.1 Near Tight Characterization

In the following we will use Fourier analysis to obtain a nearly tight characterization of the noisy
distance quantity Ap(f,g).

Definition 3 Let f : {0,1}" — {—1,+1} be a Boolean function and let o € [0, 1]{0’ 13" be ¢ vector
of reals in the range [0, 1] indezed by n-bit vectors. Then the a-attenuated power spectrum of f is

salf) =) a2f(e)*.

As it turns out, Ap(f,g) is characterized by the a-attenuated power spectrum of f — g when «
is defined as follows:

ac = Eavp(xe(a)]- (1)
In particular, define sp(f) to be so(f) with «, defined in this way. Then we have:

Theorem 3 Let f,g:{0,1}" — {—1,+1} be Boolean functions and D any probability distribution
over {0,1}". Then

29 < Ap(f,0) < Van (T~ 9) e

Proof Using the fact that E[|X|] < \/E[X?], we get

An(f,0) < 5 VB, (Ban [ (@ & @) — 9@ )]

Let h(z) = (f(z) — g(x))/2. Then right hand side of the previous expression becomes

VE[E2h(z @ a)]].



We now work with the inner expression E,[EZ[h(z @ a)]].
E,[Ei[h(z ®a)]] = Eu[Eulh(z® a)Ey[h(z &b)]

Z t)xs(z @ a)xt(z  b)

= B [Z i),(s)il,(t)xs(a)xt(b)Ez[Xs(«T)Xt(x)]]
= Zh )’ E;[xs(a)]

= sD(h).

Hence we get

Ap(f.9) < Vsp(f —9).

Next, we show a lower bound on Ap(f,g). We note that 0 < |E,[h(z & a)]| < 1, since
h € {-1,0,+1}. Thus

sp(f —9)

Ap(f,9) = Byl|Ea[h(z @ a)][] > Eg[Ej[h(x & a)]] = sp(h) = ==,

using the same analysis as in the upper bound. This completes the theorem. O

Define
S5(C) = min{sn(f — g) | . € C with Pr(f #g] > ¢}.

Using this definition with Theorem 3 we have the following inequalities.

Theorem 4 For any class C and any € we have

Sef) < A%(C) < +/55(0).

Then combining this with Theorem 2 we have the following lower bound.

Theorem 5 Let C be a concept class with S5,(C) < S. Then any PAC learning algorithm for C
under D-distribution attribute noise that outputs an (e/2)-good hypothesis with probability at least

1 —8/2 requires a sample complezity of Q (1—\/%‘5)

We now show that the class of parity functions is not PAC learnable under the uniform distri-
bution with D-noise for almost every noise distribution D.

Theorem 6 Let D be a distribution such that max, D(a) is superpolynomially small (or 1/w(poly(n))).
Then the set of parity functions is not PAC-learnable under D-distribution noise.

Proof Notice that for any two distinct parity functions f and g we have Pr[f # g| = 1/2. Since f
and g are parity functions, sp(f — g) = sp(f) + sp(g), and by the preceding theorem it is enough
to find two distinct parity functions f and g with superpolynomially small sp(f) and sp(g).



First, notice that
Qe = EaND[Xc ZXG = 2nﬁ(c)'
Also, by Parseval’s identity,
> D?*(c) = Eu[D*(a)].
c
Therefore,

E.v,[sp(x.)] = E 2]_ZD2 ) < [max D(a ZD ) < max D(a).

Thus, since sp(f) is nonnegative for all D and Boolean f, only a superpolynomially small fraction
of parity functions x. can have sp(x.) inverse polynomially large if D(z) is superpolynomially small
for all . So there are at least two parity functions f and g for which both sp(f) and sp(g) are
superpolynomially small. O

Finally, it should be noted that Theorem 5 is only a hardness result for strong PAC learnability.
As an example of a class that can be weakly learned in spite of arbitrary and unknown random
attribute noise, consider monotone Boolean functions. Blum, Burch, and Langford [1] have shown
that every monotone Boolean function f is weakly approximated with respect to the uniform
distribution by either one of the two constant functions or by the majority function. Since applying
random attribute noise alone does not change the expected value of the label of f, f is weakly
approximated by a constant function if and only if the noisy function represented by EXp(f,U) is
weakly approximated by a constant function. This implies an obvious algorithm for weakly learning
monotone functions with respect to the uniform distribution despite arbitrary unknown attribute
noise.

5 Upper Bounds

In this section we consider a certain type of Fourier-based learning algorithm which we will call
LMN-style. The LMN-style algorithm was introduced by Linial, Mansour, and Nisan [7], who
showed that the class AC? of polynomial-size, constant depth circuits is PAC learnable with respect
to the uniform distribution in quasipolynomial (roughly nP°¥1°8(")) time. The key to their result
was analyzing the Fourier properties of AC? to show that for every AC? function f, the sum of the
squares of the Fourier coefficients of degree polylog(n) or less is nearly 1. They then showed that
the function

o) =sign| Y. Ffl@)xa(@)

|a|<polylog(n)

is a good approximator to the target function f (here |a| denotes the Hamming weight of a, that is,
the number of 1’s it contains). Finally, it follows from standard Hoeffding bounds that all of these
Fourier coefficients can be closely approximated by sampling from a uniform-distribution example
oracle, with sample size and running time dominated by nPo¥los(n),

An LMN-style algorithm, then, given € > 0, consists of estimating—for every n-bit index in a
set T.—Fourier coefficients, with the guarantee that the sum of the squares of these coefficients is



at least 1 — . For example, in the case of Linial et al.’s algorithm for AC?, the Hamming weight
of the Fourier indices in T, grows as € approaches 0. The hypothesis resulting from an LMN-style
algorithm will be of the form

h(z) = sign (Z f(a)xa(w)> ;

aETs

where f(a) represents an estimate of the Fourier coefficient f(a).

In this section we show that if there is an LMN-style algorithm for learning a class of functions
C, then C is PAC-learnable under any (D, R)-noise in time polynomial in |T'|, 1/(1 — 25), and
1/A% (AC?), where 7 is the expectation of the noise rate in the label (i.e., n = E[(1 — R)/2]). Since
1/A%(AC?) is a lower bound for PAC-learning with D-distribution noise and 1/(1 — 27) is a lower
bound for learning with label noise [9], our result is tight (up to polynomial factors). Before we
formally state the result, we recall the following version of Hoeffding bounds.

Lemma 7 (Hoeffding bounds) Let X;, 1 < i < m, be independent, identically distributed random
variables, where B[X;] = p and | X;| < B. Then

=2
Pr _ZXZ'_N
mi:l

Theorem 8 Let C' be a class of Boolean functions that is closed under complement and suppose
that C is learnable with respect to the uniform distribution by an LMN-style algorithm using indez
set Te. Then for every € > 0 for which the set of parity functions indexed by T¢ is a subset of
C, C is learnable with respect to the uniform distribution under any known (D, R)-noise in time
polynomial in 1/€,1/6,1/(1—2n),|T¢|, and 1/A%(C), where 1 is the expectation of the classification
noise rate.

>7] <9,

whenever m > (2B%/~?)1In(2/0).

Proof Let A = A%(C) and T = T¢. Recall from (1) that in defining sp(f), ac = Equbn[xc(a)]-
First we note that there is at most one ¢ € T such that |a.| < A/2, since otherwise there are
distinct ¢; and cg such that |a¢, | < A/2, |ag,| < A/2. This implies by Theorem 3 that

A%< $D(Xer — Xea) = $D(Xer) + $D(Xes) = agl + agz < A2/2>

which is a contradiction. So let ¢op € T, if it exists, be the unique index such that |a.,| < A/2.
Actually, we will now argue that there is no such ¢y in 7T'. Since C' is closed under complement,
if ¢g € T, then —x¢, € C. Thus |Equp[Xco(a)]| = [Ba~bd[—Xeo(a)]| < A/2, which contradicts the
uniqueness of ¢g.

The rest of the proof applies the standard LMN analysis [7] after adjusting against the effects
of the error rates. To find the Fourier coefficient f (c) of f at ¢ € T, we take a sample Sy,
of size m (to be determined later), S, = {(z* @ d*, f(z*)b') | 1 < i < m} (since f is {£1}-
valued, we choose b € {—1,+1}, so XOR becomes multiplication), and estimate the expectation
pe = By o p[f(z)bxc(z @ a)]. Note that

pe = Egzuv, [Eap[Epv[f(z)bxc(z @ a)]]]
Eb[b]Ew[f(w)Xc(w)]Ea[Xc(a)]

~

= (1-2n)f(c)ae.



Because we are assuming that D and R are known, the factors of (1 — 27) and «, are known and
can easily be eliminated. We assume that 1 and the a.’s are exactly known; a more tedious error
analysis could be done to eliminate this assumption and is given in Appendix A.

Thus, for each ¢ € T', a good estimate of . gives a good estimate of the Fourier coefficient f (¢).
So, for a fixed ¢ € T, let 3. = = S°7 | x.(z'@a’) f(z*)b' be the estimate for y.. Using the Hoeffding
bound of Lemma, 7, we can estimate this expectation with a sample size (and time complexity, with
polynomial blowup) of

o 32|T In 4|7
(1 —2n)2A2 )

(i.e., letting B = 1, v = /¢/(2|T|)(1 — 2n)A/2, and using §/(2|T|) as the confidence). This
will guarantee that with probability at least 1 — /2, |8, — pe| < +/€/(2|T|)(1 — 2n)|ac| holds
simultaneously for all ¢ € 7. This in turn implies with the same probability that for all ¢, | B. —
f(e)| < \/¢/(2|T|), where B, = B.(1 —2n)~'a; " is the estimate for f(c). This shows that the set
L of all of the relevant coefficients indexed by T' can be estimated in time polynomial in |T'|, 1/A,
1/(1 —2n), 1/e, and 1/6. Letting g(z) = > cp Bexc(z), the final hypothesis is h(z) = sign(g(z)).
By the standard LMN analysis, we get

Prsign(9(e)) # f2)] < 7Bal(7(@) — 9(@)’] = 7 3(F() — §(0))?
N CED N IR,

CgTe c€Te

O

For the LMN-style algorithm for AC?, as long as 1/e = O(nP°Y1°&("))  the parity functions
indexed by T, are of polylogarithmic degree (by results in Linial et al. [7]) and are therefore in AC°
since parity on polylogarithmic bits can be computed in AC? by a result of Hastad (see [5], where
Theorem 2.2, page 13, proved that Parity can be computed by circuits of size O(ng%f 2”1/(d_1)) and
depth d; so, a Parity on O((log, n)%"!) inputs can be computed in n?") size and depth d). This
immediately gives us the following result.

Theorem 9 For 1/(1 — 2n) = O(nPW8() 1/e = O(nPY&8(M) and 1/6 = O(2"), the class
AC? of constant depth, polynomial size circuits is learnable under the uniform distribution with
any known (D, R)-noise in time dominated by

RPOISB(p(1/ A% (ACY))
where p(-) is a fized polynomial.

As a specific example of the application of this theorem, consider a known attribute noise process
D that is a product distribution over {0,1}" defined by possibly distinct noise rates 0 < p; < 1 for
each attribute 1 <4 < n. That is, a vector a is chosen according to D by independently setting
each element a; to 1 with probability p;. We claim that if p; = O(1/polylog(n)) for all i (and if
other parameters are bounded as in Theorem 9) then there is a learning algorithm for AC? with

10



time dominated by nPo¥1°8(n) Ty see this, recall that the hypothesis in an LMN-style algorithm is
formed using only (estimates of) coefficients indexed by T, and that for AC? all of these indices
have polylogarithmic (in n) Hamming weight when e is as given in Theorem 9. Furthermore, based
on results of Linial et al. [7] (see the analysis at the end of the proof of Theorem 8), if f and g are
AC? functions such that

Pr(f # g] > € = Q(1/nPoVioe(n)

then the difference f(c) — §(c) must be at least 1/nPY108(") Jarge for at least one of the coefficients
indexed by T.. But then sp(f —g) = 3., a2(f — 9)%(c) = 3, @2(f(c) — §(c))? (the final equality

[
follows by linearity of the Fourier transform) will be inverse quasipolynomially large as along as
a. = Equplxc(a)] is inverse quasipolynomial for all ¢ in T,.. A simple probabilistic analysis shows
that in fact all of these a, will be sufficiently large as long as |c| is polylogarithmic in n. In

particular,
a. = Eg4up [(_1)Z?=1aic{|

n
= H E;,~p,; [(—1)%], since D is a product distribution
i=1

= JI0—2m)

1€c
> (1 —1/polylog(n))!dl, since (Vi) p; < 1/polylog(n)
> 1/nPoWes(m)  since |¢| < polylog(n)

Therefore, for attribute noise D as defined, A (AC?) is inverse quasipolynomially large, and our
claim follows by the preceding theorem.

6 Conclusion

In this work, we have studied noisy learning models under the uniform distribution. We showed
that Fourier analysis is useful in this setting even in cases where both attribute and classication
noise are present. The Fourier analysis used in this work led to a natural parameter that was used
to characterize the upper and lower bounds for learning complexity in the noisy model.

It would be interesting to explore the extent to which our techniques can be generalized to
non-uniform distributions. In addition, we showed that under certain conditions, AC? is learnable
despite attribute noise; are there other natural concept classes where our techniques can be used
to show that learning remains possible despite attribute noise? Finally, the existing connections
between our techniques and the work done in [2] merit further investigation.
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A Error Analysis

We make the standard assumption that n < n, < 1/2 for some fixed known bound 7. Let

1 €

A
K 39 |T|, mln{ b, 2 }

Next we set p = k- M. Note that clearly p < A/4.
Assume that we have approximations 7] to the noise rate  and &, to a, for all relevant c’s.
More specifically, suppose we have

[n—90 <o and |a,—d <o, VceT

with probability at least 1 — d/2. These approximations might be obtained by sampling from some
sort of oracles for D and R, for example. Note that

and <k

0
1—2n 7 ||
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Consider the m-sample S, = {(%,b") | i € [m]}, where & is the a-noisy attribute vector and b
is the n-noisy label. From S,,, we estimate the quantity

R
e = E;xc(mz)bl
1=

whose expectation is pe = (1 — 2n)acf(c). Since our goal is to estimate f(c) without knowing
precisely the values of n and «.’s, we consider the estimate

5 p
ﬁc = CA ~
(1 —20)é.
The expectation of this estimate is
~ 1-2n o, ;
E[G.] = — 3

Claim 10 For some ¥ < 16k,
E[f] = (1+9)f(c)

Proof First we note

1—2n¢ 1—-2n 1—-29
1-2n4+20 1-27 1—-2n—2p

=il <e=1(1-2n)—(1-29)| <20 =

and thus
§ 1—2n £ 20
1- < 14— h = < 2k.
1—I—£<1—2ﬁ +1_£ where ¢ 1_277_H
Applying a similar manipulation to o, we get
2
S <$<1+ ,  Wwhere T:—Q§2K,.
1+7 Q. 1—7 Qe

Thus Equation 3 becomes

(1_1fr—§) (“i) fe) < E[3] < (1+1%> (1+ 117) ()

This yields (after dropping and adding some terms)

(1- [+ ] ) Fo < B < (142|512 0

We can simplify this further by setting 6 = £/(1 —¢) + 7/(1 — 7) and getting

(1-20)f(c) < E[B] < (1+20)f(c) = [E[B]—f()l < 20f(c).

Finally set 9 = 26.
Note that z/(1 — z) < 2z, for z € (0,1/2), and hence 9 < 4(£ + 1) < 16k. O
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Now using Hoeffding bounds, to guarantee that

d

> -

~ ~ € 0
ﬂc_E[ﬁc] - 4‘T|:| S ﬁ

we need to take

B 1287 4T
T e(1 —27)2A2 J

since |ag| > A/2 and |a, — G| < o < A/4. ) )
This implies that with probability at least 1 — §/2, we have |G, — (1 +9)f(c)| < \/¢/(4|T]), for
all ce T. Thus

2
Z(Bc—f(c))QsZ(M@pr ﬁ) <e

ceT ceT

since |9] < \/e/(4[T|) and |f(c)| < 1.
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