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We study the set of probability distributions visited by a continuous-time quantum
walk on graphs. An edge-weighted graph G is universal mixing if the instantaneous or
average probability distribution of the quantum walk on G ranges over all probability
distributions on the vertices as the weights are varied over non-negative reals. The graph
is uniform mixing if it visits the uniform distribution. Our results include the following:

• All weighted complete multipartite graphs are instantaneous universal mixing.
This is in contrast to the fact that no unweighted complete multipartite graphs
are uniform mixing (except for the four-cycle K2,2).

• For all n ≥ 1, the weighted claw K1,n is a minimally connected instantaneous
universal mixing graph. In fact, as a corollary, the unweighted K1,n is instanta-
neous uniform mixing. This adds a new family of uniform mixing graphs to a list
that so far contains only the hypercubes.

• Any weighted graph is average almost-uniform mixing unless its spectral type is
sublinear in the size of the graph. This provides a nearly tight characterization
for average uniform mixing on circulant graphs.

• No weighted graphs are average universal mixing. This shows that weights do not
help to achieve average universal mixing, unlike the instantaneous case.

Our proofs exploit the spectra of the underlying weighted graphs and path collapsing
arguments.
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The theory of random walks on graphs is an important topic in mathematics, physics, and

computer science [25, 6, 12]. In recent years, a generalization of the classical random walks

– called quantum walks – has gained considerable interest in the quantum information and

computation research areas due to its potential applications [1]. In particular, the study of

continuous-time quantum walks on graphs has shown promising applications in the algorithmic

and implementation aspects. As an alternate algorithmic technique to the Quantum Fourier

Transform and the Amplitude Amplification techniques, Childs et al. [7] demonstrated the

power of continuous-time quantum walk algorithm for solving a specific blackbox graph search

problem. As a generalization of classical random walks, the dynamics of quantum walks

reveal unique characteristics. Moore and Russell [24] proved faster mixing times of quantum

walks on the hypercubes. Kendon and Tregenna [19, 21] observed a striking phenomena that

decoherence can improve the mixing dynamics of discrete quantum walks. This observation

was subsequently confirmed for continuous-time quantum walks in [4, 11].

In this paper, we study the set of probability distributions generated by continuous-time

quantum walks on edge-weighted graphs. Previous works had studied the question of whether

a quantum walk on certain graphs visits the uniform distribution on the vertices of the graph

[24, 2, 14]. Here, we consider graphs which visit all probability distributions on the vertex set

of the graph. We call such graphs having the universal mixing property, whereas graphs that

hit the uniform distribution have the uniform mixing property. We consider both the instan-

taneous and average distributions for such quantum walks. It is necessary to allow symmetric

edge-weights on our graphs, since no unweighted graphs are universal mixing (although some,

like the hypercubes, are uniform mixing [24]).

Our study of universal mixing via quantum walks is motivated by recent works in ran-

dom walks on graphs. In [20], Kindler and Romik provided a characterization of the set of

distributions computable by random walks on finite state generators (directed graphs with

outputs). In another set of works, Boyd et al. [8, 9] studied the problem of finding the set of

edge weights on a fixed given graph so as to obtain the fastest mixing time for the random

walk. In the context of these works, the main problem that we study is as follows: given a

fixed family of graphs, as we vary the edge weights on these graphs, will the quantum walk

visit all probability distributions on the vertices? Stated differently, we are looking for a set

of edge weights that allows the quantum walk to hit any specified probability distribution.

Our main goal in this work is to discover and characterize graphs which allow such universal

mixing property, as well as the more restricted uniform mixing property.

First, we prove that complete multipartite graphs are instantaneous universal mixing.

These are classes of graphs whose vertices are partitioned into disjoint sets, where all edges

are present except for edges connecting vertices from the same partition. In contrast, it is

known that none of the unweighted complete multipartite graphs are uniform mixing, except

for the four-cycleK2,2 (see [2]). To show our multipartite theorem, we prove that the weighted

three-vertex path P3 and the claw (star) graph K1,n are both instantaneous universal mixing

(see Figure (1) for examples of both graphs). Our proofs employ a generalization of the

path collapsing technique used in [7], adapted for weighted graphs. In [7], a path collapsing

argument was used to show a fast hitting time of a continuous-time quantum walk on glued

tree graphs; whereas, in this paper we use a generalization of the argument to show universal
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Fig. 1. Examples of edge-weighted graphs that are instantaneous universal mixing. From left to
right: (a) path P3; (b) claw K1,5; (c) bipartite double-claw K2,5; (d) 4-partite K2,2,2,2.

mixing on multipartite graphs.

In fact, the claw is a minimally connected graph that is universal mixing, since it forms a

tree on the set of vertices. This shows that any graph with a claw subgraph is also instanta-

neous universal mixing. As a corollary, we observe that the unweighted claws are instantaneous

uniform mixing. This adds a new family of uniform mixing graphs to a list that so far contains

only the hypercubes [24].

Next, we consider a closure result on graphs with instantaneous uniform mixing. More

specifically, the Cartesian product G ⊕ H of two uniform mixing graphs G and H is also

uniform mixing provided the two graphs share a common mixing time. This is the fundamental

property used to show that the hypercubes Qn are uniform mixing, since they are the n-fold

Cartesian product of the complete 2-vertex graph K2 with itself [24]. We obtain several

other classes of graphs with uniform mixing by combining the hypercubes Qn and the claws

K1,n, for n ≥ 1, the complete three-vertex and four vertex graphs (K3 and K4), using the

Cartesian product operator. Since the three- and four-vertex cycles are equivalent to K3 and

Q2, respectively, they are also uniform mixing. The status of the n-cycles Cn is still open

though; but we show that C5 is not uniform mixing.

Finally, we prove that no weighted graphs are average universal mixing. Intuitively, this

is because the quantum walk never forgets its start vertex; or, more formally, the average

probability weight of the start vertex is bounded away from zero. In the case of uniform

mixing, we observe that a necessary condition for a weighted graph to be an average uniform

mixing is for its spectral type (the number of distinct eigenvalues) to be linear in the size

of the graph. This provides a nearly tight characterization for circulant graphs since these

graphs are average almost-uniform mixing if their eigenvalues have bounded multiplicities

[22].

In this paper, our focus is on continuous-time quantum walks. For a more complete

exposition on quantum walks, the interested reader is referred to the excellent surveys by

Kendon and Kempe [18, 19, 17].

2. Preliminaries

Notation: For a logical statement S, the Iversonian [[S]] (introduced in [13]) denotes the

characteristic function of S which evaluates to 1 if S is true, and to 0 if it is false.

We consider graphs G = (V,E) that are simple (no self-loops) and undirected, with edge

weights. The edge weights are given by a non-negative real-valued function α : E → R
+∪{0}
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that is symmetric, i.e., αj,k = αk,j , for all j, k ∈ V . Let AG be the adjacency matrix of G,

where AG[j, k] = αj,k[[(j, k) ∈ E]]. The set of eigenvalues of AG is denoted Sp(G), and the

(algebraic) multiplicity of an eigenvalue λ is denoted m(λ). The spectral type τ(G) of a graph

G is the number of distinct eigenvalues of the adjacency matrix AG of G. The maximum

(algebraic) multiplicity of any eigenvalue of graph G is denoted µ(G).

Some of the families of graphs studied here include paths Pn, cycles Cn, hypercubes Qn,

complete graphs Kn, complete multipartite graphs K
(k)
n , and circulant graphs. A complete

multipartite graph K
(k)
n is the graph complement of k disjoint complete graphs Kn. A graph

is a circulant graph if its adjacency matrix is a circulant matrix. A circulant matrix A is com-

pletely specified by its first row, say (a0, a1, . . . , an−1), and is defined as Aj,k = ak−j (mod n),

where j, k ∈ Zn. Here Zn denotes the group of integers {0, . . . , n− 1} under addition modulo

n. The Cartesian product of two graphs G and H , denoted G⊕H , is the graph defined on

the vertex set G ×H , where (g1, h1) is adjacent to (g2, h2) if g1 = g2 and (h1, h2) ∈ E(H);

or (g1, g2) ∈ E(G) and h1 = h2 (see page 617, [23]). Further background on graphs and their

spectral properties are given in [6, 5].

A continuous-time quantum walk on a graph G = (V,E) is defined using the Schrödinger

equation with the real symmetric matrix AG as the Hamiltonian (see [12, 10]). If |ψ(t)〉 ∈ C|V |

is a time-dependent amplitude vector on the vertices of G, then the evolution of the quantum

walk is given by

|ψ(t)〉 = e−itAG |ψ(0)〉, (1)

where i =
√
−1 and |ψ(0)〉 is the initial amplitude vector. We usually assume that |ψ(0)〉 is

a unit vector, with 〈x|ψ(0)〉 = [[x = start]], for some vertex start. The amplitude of the

quantum walk of vertex j at time t is given by ψj(t) = 〈j|ψ(t)〉. The instantaneous probability

of vertex j at time t is pj(t) = |ψj(t)|2. The average probability of vertex j is defined as

pj = lim
T→∞

1

T

∫ T

0

pj(t) dt. (2)

The average probability distribution of the quantum walk will be denoted P . This notion of

average distribution (defined in [1] for discrete-time quantum walks) is similar to the notion

of a stationary distribution in classical random walks [3].

Definition 1 (Universal and Uniform Mixing)

Let G = (V,E) be a simple, undirected, and connected graph that is edge-weighted. Then, G

has the instantaneous (or average) universal mixing property if for any probability distribution

D over the vertex set V and for any start vertex x, there is a set of non-negative real weights

on E, so that the continuous-time quantum walk on the weighted G, starting from x, has an

instantaneous probability distribution at time t (or average distribution) that equals D.

If the above condition holds for D being the uniform distribution on V , we say G has

the instantaneous (or average) uniform mixing property. The mixing is almost-uniform if the

instantaneous (or average) probability of each vertex is at most O(1/|V |).

Example: A quantum walk on the connected 2-vertex graph K2 is given by

exp

{
−it

(
0 1
1 0

)} (
1
0

)
=

(
cos(t)

−i sin(t)

)
. (3)
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Thus, the instantaneous probability distribution of the quantum walk is p(t) = [cos2(t) sin2(t)]T .

This shows that the quantum walk on K2 can generate any probability distribution on the

two vertices. Unfortunately, this case does not generalize to arbitrarily many vertices. It was

shown in [2] that the instantaneous probability distribution quantum walk on the complete

graph Kn never visits the uniform distribution on n vertices, for any n > 4. A main ques-

tion considered in this work is: will the quantum walk visit the uniform distribution if edge

weights are allowed? In fact, as we vary the edge weights on Kn, will the quantum walk visit

all probability distributions on n elements (as is the case with the unweighted K2)? We an-

swer both questions in this paper; moreover, we will exhibit a family of minimally connected

graphs with such universal property. Note that in a classical random walk, the interference

phenomenon commonly observed in a quantum walk does not exist; thus, it is impossible for

vertices reachable from the start vertex to have a zero probability.

3. Instantaneous Universal Mixing

In this section, we prove that all weighted complete multipartite graphs are instantaneous

universal mixing. First, we prove some results about the weighted 3-path P3 and claw K1,n.

Lemma 1 The weighted P3 has instantaneous universal mixing.

Proof Without loss of generality, we assume that the weights on P3 are 1 and α; since we

can always scale the first weight to unity. Let A be the adjacency matrix of G.

P3 : 1 α
t t tleft middle right

A =




0 1 0
1 0 α
0 α 0





The eigenvalues of A are λ0 = 0 and λ± = ±∆, where ∆ =
√

1 + α2, with the following set

of orthonormal eigenvectors:

|v0〉 =
1

∆



−α
0
1


 , |v±〉 =

1√
2∆2




1
±∆
α


 , (4)

We have two cases to consider depending on the starting vertex of the quantum walk.

case A: The quantum walk starting at the left vertex is given by:

e−itA|left〉 =
−α
∆

|v0〉 +
1√
2∆2

∑

±
e∓it∆|v±〉 =

1

∆2




(α2 + cos(∆t))
−i∆ sin(∆t)
α(cos(∆t) − 1)



 (5)

Thus, the instantaneous probability distribution at time t is:

pleft(t) = (1 − 2Γ)2, pmiddle(t) = 4Γ(1 − Γ∆2), pright(t) = α2(2Γ)2, (6)

where Γ = sin2(∆t/2)/∆2. Combining the first and third expressions, we get α =
√
pright(t)/(1−√

pleft(t)), which shows that (α, t) can be selected to satisfy any probability distribution on

the three vertices.
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case B: The quantum walk starting at the middle vertex is given by:

e−itA|middle〉 =
1√
2∆2

∑

±
(±∆)e∓it∆|v±〉 =

1

∆




−i sin(∆t))
∆ cos(∆t)
−iα sin(∆t)



 (7)

Thus, the instantaneous probability distribution at time t is:

pleft(t) =
sin2(∆t)

∆2
, pmiddle(t) = cos2(∆t), pright(t) = α2 sin2(∆t)

∆2
. (8)

Thus α =
√
pright/

√
pleft, and hence, we see that (α, t) can be chosen to satisfy any required

probability triples.

In the following, we show that the weighted claw (star) graph is instantaneous universal

mixing, for an arbitrary starting vertex. We will use Lemma 1 to prove this in combination

with a weighted version of the path collapsing argument (used in [7]).

Theorem 1 The weighted K1,n has instantaneous universal mixing, for n ≥ 1. Moreover,

the weighted complete graphs Kn are also instantaneous universal mixing, for n ≥ 1.

Proof Let the edge weights on the claw be α1, . . . , αn, respectively. Then, the adjacency

matrix is given by:

A =




0 α1 α2 . . . αn

α1 0 0 . . . 0
α2 0 0 . . . 0
...

...
...

...
...

αn 0 0 . . . 0




(9)

The eigenvalues of A are λ± = ±∆, where ∆ =
√∑n

k=1 α
2
k, and λ0 = 0. The eigenvalues λ±

are simple, whereas 0 has multiplicity n− 1. The eigenvectors are given by:

|v±〉 =
1√
2

(
1 ±α1/∆ . . . ±αn/∆

)T
(10)

|v0〉 =
(
0 y1 . . . yn

)T
, where

∑n
k=1 αkyk = 0 (11)

Depending on whether the quantum walk starts at the center of the claw or not, we have two

cases to analyze.

case A: The quantum walk starting at the center of the claw is given by:

|ψ(t)〉 = e−itA
∑

±

1√
2
|v±〉 (12)

which yields 〈center|ψ(t)〉 = cos(∆t), and 〈k|ψ(t)〉 = −iαk sin(∆t)/∆, for k = 1, . . . , n.

Thus, the instantaneous probabilities are given by:

pcenter(t) = cos2(∆t), pk(t) =
α2

k

∆2
sin2(∆t), where k = 1, . . . , n (13)

This shows that the above instantaneous probabilities ranges over all probability distributions

on n+ 1 vertices as t and the αk’s range over R+ ∪ {0}.
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Fig. 2. Case B: the claw K1,3 is universal mixing, when start 6= center; a reduction to P3. The
start vertex is labeled by p1 and the target probabilities (left) are shifted onto the edges of the
graph (right).

case B: We can assume without loss of generality that the quantum walk starts at vertex

k = 1. But, this case is similar to the weighted P3 case where vertex 1 is left, the center

of the claw is middle, and the rest of the other vertices are viewed as right; see Figure 2.

A more formal argument for this reduction is as follows. Given the target probabilities p1,

pcenter, and p2, . . . , pn, we define the weights on K1,n as follows: w(1, center) =
√
pcenter and

w(center, k) = αk, where αk =
√
pk, for k = 2, . . . , n. Along with the states |left〉 = |1〉

and |middle〉 = |center〉, we define a new state:

|right〉 =

n∑

k=2

αk

∆̃
|k〉, where ∆̃ =

√∑n
k=2 α

2
k. (14)

Under this new reduced basis, the quantum walk on K1,n, starting at vertex 1, is expressed

using a collapsed Hamiltonian on P3:

|Ψ(t)〉 = exp




−it




0 1 0

1 0 ∆̃

0 ∆̃ 0












1
0
0


 (15)

Note that the amplitudes 〈k|Ψ(t)〉 in the original K1,n is proportional to the amplitude

〈right|Ψ(t)〉, where the constant of proportionality is given by αk. Next, we find a mix-

ing time T on the weighted P3 with the probabilities pleft(T ) = p1, pmiddle(T ) = pcenter,

and pright(T ) =
∑n

k=2 pk. At time T , the probability of vertex k in K1,n is pk(T ) =

α2
k/∆

2 × pright(T ), which equals the target probability pk, for all k = 2, . . . , n.

For the next result, we generalize the previous theorem on K1,n to arbitrary complete multi-

partite graphs.

Theorem 2 All weighted complete bipartite graphs Km,n are instantaneous universal mixing,

for all m,n ≥ 1.

Proof If m = 1, Km,n which is universal mixing by Theorem 1. Now, assume that m > 1.

Let A = {a0, a1, . . . , am} and B = {b1, . . . , bn} be the two partitions of the bipartite graph

G = Km+1,n, with |A| = m + 1 and |B| = n. Without loss of generality, let the start vertex
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Fig. 3. The complete bipartite graph K3,3 is universal mixing: by a reduction to P3. The start
vertex is labeled by q0. The target probabilities q0, q1, q2 and p1, p2, p3 (left) are transferred onto
the edge weights of the graph (right).

be a0. Viewing the start vertex as its own partition, we have a weighted 3-path where a0, B

and C = A \ {a0} form the vertices of P3.

Let p1, . . . , pn be the required probabilities on the vertices of B and let q1, . . . , qm be the

required probabilities on the vertices of C. Let αj =
√
pj , for j = 1, . . . , n, and βk =

√
qk, for

k = 1, . . . ,m, with ∆ =
√∑n

j=1 α
2
j and Γ =

√∑m
k=1 β

2
k . Now, we define the following edge

weights on G:

w(a0, bj) = αj , where j = 1, . . . , n (16)

w(bj , ak) = αjβk, where j = 1, . . . , n and k = 1, . . . ,m , (17)

while the other weights are zero. Consider the following quantum states

|left〉 = |a0〉, |middle〉 =
1

∆

n∑

j=1

αj |aj〉, |right〉 =
1

Γ

m∑

k=1

βk|bk〉. (18)

Under the basis states {|left〉, |middle〉, |right〉}, we have the following collapsed Hamilto-

nian for a weighted P3:

H =




0 ∆ 0
∆ 0 ∆Γ
0 ∆Γ 0


 (19)

In the quantum walk |Ψ(t)〉 = exp(−itH)|a0〉, note that the amplitude 〈bj |Ψ(t)〉 in the orig-

inal Km,n is proportional to the amplitude 〈middle|Ψ(t)〉 by the constant αj , whereas the

amplitude 〈ak|Ψ(t)〉 is proportional to the amplitude 〈right|Ψ(t)〉 by the constant βk.

In the weighted P3, we find a mixing time T for which pmiddle(T ) =
∑n

j=1 pj and pright(T ) =∑m
k=1 qk. At this time T , the probability of vertex bj is given by α2

j/∆
2 × pmiddle(T ) = pj ,

and the probability of vertex ak is given by β2
k/Γ

2×pright(T ) = qk. This completes the claim.

Theorem 3 All weighted complete k-partite graphs are instantaneous universal mixing, for

k ≥ 2.
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Proof We prove the claim by induction on k. For k = 2, we have a complete bipartite

graph which is universal mixing by Theorem 2. Assuming the claim is true for all k < `, any

complete `-partite graph contains a complete (`− 1)-partite subgraph (by disconnecting two

arbitrary partitions), and thus, it is universal mixing. This proves the claim.

The above theorem stands in contrast to the fact that (unweighted) complete multipartites,

with the exception of K2,2, are not instantaneous uniform mixing (see [2]).

4. Instantaneous Uniform Mixing

The only unweighted graphs known to be uniform mixing are the hypercubes Qn [24] and the

two complete graphs, K3 and K4 [2]. To this small list, we add another family of graphs.

Corollary 1 The family of (unweighted) claw K1,n graphs is instantaneous uniform mixing.

Proof Apply Theorem 1 with αk = 1, k = 1, . . . , n, and t = cos−1(1/
√
n+ 1)/

√
n.

In what follows, we state a closure result for graphs that are uniform mixing.

Fact 4 If G,H are graphs with instantaneous uniform mixing, then so is G ⊕H, assuming

that their mixing times have a common intersection.

Proof Let {〈µj , |vj〉〉}j and {〈νk, |wk〉〉}k be the spectra of G and H , respectively. The

adjacency matrix of G ⊕ H is given by I ⊗ G + H ⊗ I , which is a sum of two commuting

matrices. Hence, |vj〉 ⊗ |wk〉 are the eigenvectors of G ⊕H with eigenvalues µj + νk, for all

j, k. Without loss of generality, assume that the start vertex is |0〉G ⊗ |0〉H . Also, suppose

that |0〉G =
∑

j αj |vj〉 and |0〉H =
∑

k βk|wk〉 are the initial states in G and H , respectively.

Then, the quantum walk on G⊕H is given by

∑

j,k

(αje
−itµj |vj〉) ⊗ (βke

−itνk |wk〉) = e−itG|0〉G ⊗ e−itH |0〉H (20)

This shows that if the mixing times of G and H have a common intersection, then G⊕H is

instantaneous uniform mixing.

Proposition 5 The following graphs are instantaneous uniform mixing:

(a) G⊕k, k ≥ 1, if the weighted graph G is instantaneous uniform mixing.

(b) Any Cartesian product combinations of Qn and K4, for any n ≥ 1.

Proof (a) Apply Fact 4 to G with itself recursively n − 1 times. (b) It was shown in [24],

the hypercube Qn hits the uniform distribution at times t = (2k+ 1)nπ/4. For the complete
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Fig. 4. Examples of instantaneous uniform mixing graphs: from left to right: (a) P3 ⊕ P3; (b)
K3 ⊕ K3.

graphs Kn, it was proved in [2] that uniform mixing is possible if and only if

4

n
sin2

(
tn

2(n− 1)

)
= 1. (21)

So, for K3, uniform mixing is achieved if sin2(3t/4) = 3/4 (or 3t/4 = sin−1(±
√

3/2)), and for

K4, if sin2(2t/3) = 1 (or t = (2k + 1)(3π/4)). Note that the uniform mixing times of Qn and

K4 have common intersections.

It is not known if the cycles Cn, weighted or not, are uniform mixing [2], except for C3 = K3

and C4 = Q2. In the following, we show that C5 is not uniform mixing.

Fact 6 The unweighted C5 is not instantaneous uniform mixing.

Proof The eigenvalues of C5 are λj = 2 cos(2πj/5), j = 0, . . . , 4 (see [5]). In fact, they

exhibit some symmetries since λ0 = 2, λ1 = λ4 = 2 cos
(

2π
5

)
= (−1 +

√
5)/2, and λ2 = λ3 =

2 cos
(

4π
5

)
= (−1 −

√
5)/2. Let λ± = (−1 ±

√
5)/2; thus, λ1 = λ+ and λ2 = λ−.

The eigenvectors of C5 are |vj〉, where 〈k|vj〉 = ωjk/
√

5, for j, k = 0, . . . , 4 and ω =

exp(2πi/5). Given that |0〉 = 1√
5

∑4
j=0 |vj〉, the quantum walk on C5 is given by:

|ψ(t)〉 =
1√
5

{
e−2it|v0〉 + e−itλ1(|v1〉 + |v4〉) + e−itλ2(|v2〉 + |v3〉)

}
. (22)

We note that |v1〉 + |v4〉 = 1√
5
[λ0λ+λ−λ−λ+]T and |v2〉 + |v3〉 = 1√

5
[λ0λ−λ+λ+λ−]T . Thus,

the amplitude of the quantum walk is given by

〈0|ψ(t)〉 =
1

5

{
e−itλ0 +

∑

±
λ0e

−itλ±

}
(23)

〈1|ψ(t)〉 = 〈4|ψ(t)〉 =
1

5

{
e−itλ0 +

∑

±
λ±e

−itλ±

}
(24)

〈2|ψ(t)〉 = 〈3|ψ(t)〉 =
1

5

{
e−itλ0 +

∑

±
λ∓e

−itλ±

}
(25)
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Let µ± = (5 ±
√

5)/2. After simplifications, the probability function is given by:

p0(t) =
1

25

{
9 + 4

∑

±
cos(µ±t) + 8 cos(

√
5t)

}
(26)

p1(t) = p4(t) =
1

25

{
4 +

∑

±
2λ∓ cos(µ±t) − 2 cos(

√
5t)

}
(27)

p2(t) = p3(t) =
1

25

{
4 +

∑

±
2λ± cos(µ±t) − 2 cos(

√
5t)

}
(28)

Assume that C5 has instantaneous uniform mixing at time T . From p1(T ) = p2(T ), we get

cos(µ+T ) = cos(µ−T ) which implies that µ+ = 2πm±µ−, for some m ∈ Z. So, we get either√
5T = 2πm or 5T = 2πm. From p0(T ) = p2(T ), we get

5 + (5 +
√

5) cos(µ−T ) + (5 −
√

5) cos(µ+T ) + 10 cos(
√

5T ) = 0. (29)

If
√

5T = 2πm, then (5+
√

5) cos(µ−T )+(5−
√

5) cos(µ+T )+15 = 0, which is a contradiction.

On the other hand, if 5T = 2πm, we have 5±10α+10(2α2−1) = 0, by letting α = cos(
√

5T/2).

This implies that α = (∓1 ±
√

5)/4 which equals to cos(πj/5), for some j ∈ Z
+. Since

p0(T ) = p2(T ), we get cos(
√

5T/2) = cos(πj/5); thus,
√

5T/2 = πn/5, for some n ∈ Z. Also,

since 5T = 2πm, we have
√

5T/2 = πm/
√

5 or 5m/n =
√

5, which is a contradiction.

5. Average Mixing

In this section, we prove that no weighted graphs are average universal mixing and show a

necessary condition for a weighted graph to be average uniform mixing. But, first we prove

a lemma on the average probability of the start vertex in a quantum walk on any weighted

graph.

Lemma 2 In a quantum walk on a weighted graph G = (V,E) starting at an arbitrary vertex,

the average probability of the start vertex satisfies:

p
start

≥ 1

τ(G)
. (30)

Proof Since the adjacency matrix A of G is a real symmetric matrix, it has real eigenvalues

and is real orthogonally diagonalizable (see [15]). Let λk and |vk〉 be the eigenvalues and

orthonormal eigenvectors of A, k = 1, . . . , n. Assuming that the start vertex is 0, without loss

of generality, and that |0〉 =
∑

k αk|vk〉, for αk ∈ R, we have
∑

k α
2
k = 1. In what follows, let

βk = α2
k. The quantum walk on G is given by |ψ(t)〉 =

∑
k e

−itλkαk|vk〉. Thus, the amplitude

of the start vertex at time t is ψ0(t) =
∑

k e
−itλkβk; and, the average probability of the start

vertex is

p0 = lim
T→∞

1

T

∫ T

0

dt
∑

j,k

e−it(λj−λk)βjβk =
∑

j,k

[[λj = λk]]βjβk (31)

=
∑

λ∈Sp(G)

∑

j,k

[[λj = λk = λ]]βjβk =
∑

λ∈Sp(G)

B2
λ, (32)
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where Bλ =
∑

j:λj=λ βj . Since
∑

λBλ = 1, the last expression is minimized when Bλ =

1/τ(G), for each λ ∈ Sp(G). Thus, the average probability of the start vertex is at least

1/τ(G).

The previous lemma has two direct implications to uniform and universal mixings. In [22], it

was proved that if a circulant graph G has bounded eigenvalue multiplicity then G is average

almost-uniform mixing. The next claim shows a partial converse to this for arbitrary weighted

graphs, and thus provides a nearly tight characterization of circulant graphs that are average

almost-uniform mixing. This is because if a graph has bounded eigenvalue multiplicity then it

has a linear spectral type; but the converse if not known to hold, even for the case of circulant

graphs.

Corollary 2 If a weighted graph G = (V,E) is average almost-uniform mixing then τ(G) =

O(n).

Proof If τ(G) = o(n), then the average probability of the start vertex is ω(1/n), which implies

that G is not average almost-uniform mixing.

Corollary 3 No weighted graphs are average universal mixing.

Proof Since the average probability of the start vertex is at least 1/τ(G), it is bounded away

from zero.

6. Conclusions

In this work, we investigate the set of probability distributions generated by a continuous-time

quantum walk on weighted graphs. We show that the instantaneous probability distributions

generated by a quantum walk on the weighted claw (or star) graph K1,n ranges over all

distributions as the edge weights are varied over the non-negative real numbers. In this sense,

the weighted claw has the universal mixing property. This is a generalization of the uniform

mixing property on unweighted graphs considered in earlier works on the hypercube [24], the

complete graphs [2], and the Cayley graph of the symmetric group [14]. Our next result shows

that all complete multipartite graphs are universal mixing. This stands in contrast with the

fact that unweighted complete multipartite graphs are not uniform mixing, except for the

lone case of K2,2 (see [2]). The proof of the multipartite result uses a weighted generalization

of the path collapsing argument (from [7]). These results on instantaneous universal mixing

of weighted graphs can be extended to unweighted multigraphs (where multiple edges can

connect two vertices) if an approximate mixing notion is allowed.

For universal mixing over average distributions, we show that there are no graphs with

this property. In fact, a key ingredient in this proof shows a necessary condition for a graph

to be average almost-uniform mixing. A weighted graph is average almost-uniform mixing

unless its spectral type is sublinear in the number of vertices. This provides a near tight

characterization for circulant graphs, since they are known to be average almost-uniform
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mixing if the eigenvalues have bounded multiplicities [22]. Note that bounded eigenvalue

multiplicities implies linear spectral type; but the converse is unclear, even for circulants.

A main open question left from this work is whether weighted paths Pn, n ≥ 4, are

instantaneous universal mixing. If the weighted paths Pn are universal mixing, then so are all

weighted trees; but if they are not, then an interesting question is to characterize the weighted

trees that are universal mixing. A related question on weighted paths is whether they are

average almost-uniform mixing, given that their spectral type is always linear (see [16]). We

leave these questions for future work.
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