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We prove new results on perfect state transfer of quantum walks on quotient graphs.
Since a graph G has perfect state transfer if and only if its quotient G/π, under any

equitable partition π, has perfect state transfer, we exhibit graphs with perfect state
transfer between two vertices but which lack automorphism swapping them. This answers
a question of Godsil (Discrete Mathematics 312(1):129-147, 2011). We also show that

the Cartesian product of quotient graphs kGk/πk is isomorphic to the quotient graph

kGk/π, for some equitable partition π. This provides an algebraic description of a
construction due to Feder (Physical Review Letters 97, 180502, 2006) which is based on
many-boson quantum walk.
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1 Introduction

Perfect state transfer in continuous-time quantum walk on graphs has received considerable

attention in quantum information and computation. This is in large part due to its potential

applications in quantum information transmission over networks and its role in quantum

aContact author: tino@clarkson.edu
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computation. Recently, continuing ideas developed by Childs [9], Underwood and Feder

[31] used perfect state transfer to show that continuous-time quantum walk is a universal

computational model. The notion of perfect state transfer was introduced by Bose [7] in the

context of information transfer on linear spin-chains. His original scheme can be generalized

to arbitrary graphs (as described by Albanese et al. and Christandl et al. [1, 12, 11]) which

we briefly outline in the following.

Given a weighted graph G on n vertices with adjacency matrix A(G), we imagine a col-

lection of n qubits associated with each vertex of G and arranged so that their interaction

is governed by a Hamiltonian HG which depends on the edge structure of G. Here, our col-

lective Hilbert space is
⊗

u∈V C
2 which is 2n-dimensional. Suppose an arbitrary one-qubit

state |ψ〉 = α0|0〉+ α1|1〉 is located at vertex a of G. Our goal is to move this state to vertex

b. For simplicity, we depict a as the leftmost qubit whereas b is the rightmost qubit. The

initial configuration has the qubit at vertex a be in state |ψ〉 and the other qubits are in the

|0〉 state, while the final configuration has the qubit at vertex b be in state |ψ〉 with the other

qubits being in the |0〉 state:

|start〉 = |ψ〉a ⊗ |0〉 ⊗ . . .⊗ |0〉 ⊗ |0〉b = α0|00 . . . 00〉+ α1|10 . . . 00〉 (1)

|final〉 = |0〉a ⊗ |0〉 ⊗ . . .⊗ |0〉 ⊗ |ψ〉b = α0|00 . . . 00〉+ α1|00 . . . 01〉. (2)

The main goal of perfect state transfer is to achieve, at some time t,

|〈final|e−itHG |start〉| = 1. (3)

Natural assumptions can be placed on HG which will allow us to view (3) as a continuous-time

quantum walk on G.

For example, one typically assumes HG commutes with Z =
∑

u∈V Zu, where the latter

operator counts the number of qubits in the |1〉 statea. Note that the eigenvalues of Z are

given by λk = −n + 2k, for k = 0, 1, . . . , n. Since |00 . . . 00〉 belongs to the zero eigenspace

of HG, we may focus on the unitary evolution of |10 . . . 00〉 under e−itHG . The latter state

belongs to the eigenspace Λ1 of Z corresponding to the eigenvalue λ1 = −n+ 2 (since it has

exactly one qubit in the |1〉 state). Thus,

e−itHG (α0|00 . . . 00〉+ α1|10 . . . 00〉) = α0|00 . . . 00〉+ α1e
−itHG |10 . . . 00〉. (4)

Since HG and Z commute, the eigenspace Λ1 is HG-invariant; this is because if |z〉 is

an eigenvector of Z with eigenvalue λ, then so is HG|z〉. Thus, the time evolution of

exp(−itHG)|10 . . . 00〉 stays inside the eigenspace Λ1. Moreover, we have the following basis

states for Λ1:

|1〉 = |100 . . . 0〉, |2〉 = |010 . . . 0〉, . . . , |n〉 = |000 . . . 1〉 (5)

which forms a natural correspondence with the vertices of G; thus, |a〉 = |1〉 and |b〉 = |n〉.
Furthermore, suppose HG agrees with A(G) on the subspace Λ1 where 〈v|HG|u〉 equals the

weight ωu,v of the edge (u, v), for all u, v ∈ V . Examples of HG satisfying these assump-

tions include the XY exchange Hamiltonian HG = 1
2

∑

(u,v)∈E(G) ωu,v(XuXv + YuYv), as well

aHere, Zu denotes an n-fold tensor product of identity matrices except at position u which has the Pauli Z
matrix; the same convention applies to the other Pauli matrices.
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as the Heisenberg exchange (which is related to the Laplacian of G). This shows that the

2n-dimensional time evolution e−itHG |start〉 can be viewed as a n-dimensional time evolu-

tion e−itA(G)|a〉 since the former is confined to the single-excitation subspace Λ1. Further

background on these connections may be found in [7, 11, 28, 3].

By the preceding arguments, we may study perfect state tranfer (3) as a continuous-time

quantum walk on the graph G (see Farhi and Gutmann [14]). Thus, without loss of generality,

we say a graph G = (V,E) has perfect state transfer (PST) from a to b at time t if

|〈b|e−itA(G)|a〉| = 1, (6)

where A(G) is the adjacency matrix of G (thus, focusing on the XY interaction model). This

allows us to investigate mathematical properties of the graph G which enable such phenomena

to occur. The reduction to quantum walk on graphs was a crucial element in the early works

on perfect state transfer (see [7, 1, 12, 11]).

Christandl et al. [12, 11] showed that taking an k-fold Cartesian graph product of either

a 2-path or a 3-path (that is, K2 or P3) with itself yields a high-diameter graph which has

perfect state transfer. This follows since both K2 and P3 have antipodal perfect state transfer

and because the Cartesian product operation preserves perfect state transfer. They also

made a crucial connection between hypercubes and weighted paths using the so-called path-

collapsing argumentb. Christandl et al. [11] also observed that the n-path Pn, for n ≥ 4,

has no antipodal perfect state transfer but a suitably weighted version of it has perfect state

transfer. The weighting scheme on Pn is derived from a path-collapsed (n− 1)-cube.

In an intriguing work, Feder [15] generalized the construction of the weighted paths with

perfect state transfer described by Christandl et al. in [12, 11]. His construction used a many-

boson quantum walk on a single primary graph. He showed that this induced a single-boson

quantum walk on a secondary graph and that the secondary graph has perfect state transfer

if the primary graph does. In this construction, the weighted path of length n is obtained

from a (n− 1)-boson quantum walk on K2.

In algebraic graph theory, the main question is to find a characterization of graphs which

exhibit perfect state transfer. Some progress on specific families of graphs were given by

Bernasconi et al. [5] and by Cheung and Godsil [8] for hypercubic graphs and by Bašić and

Petković [4] for circulant graphs. Although a general characterization remains beyond the

reach of current methods, strong general results towards this goal were recently proved by

Godsil [18, 19]. In one of his results, Godsil proved that a necessary condition for G to

have perfect state transfer between vertices a and b is that they are cospectral, that is, the

vertex-deleted subgraphs G \ a and G \ b are isomorphic. This intuitively suggests that the

neighborhoods around a and b must look similar. In fact, prior to this work, all known exam-

ples of graphs with perfect state transfer between vertices a and b admit an automorphism

which maps a to b. In [24], Kay proved that the latter property is necessary for paths, while

in [18], Godsil asked if this necessary condition holds for any graph.

Our goal in the present work is to explore the role of quotient graphs in perfect state

transfer. Since quotient graphs naturally arise in the context of equitable partitions, we use

this formalization to capture the idea behind path-collapsing arguments [12, 11, 10]. We

bThis argument was used earlier by Childs et al. [10] in the context of exponential algorithmic speedup for a
graph search problem.
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Fig. 1. The Cartesian product construction for perfect state transfer (PST): (a) K�3

2
; (b) P�2

3

(see Christandl et al. [11]). Antipodal PST occurs between vertices marked white.

argue that equitable partitions provide the most natural way to view these arguments since

the resulting proofs are more transparent. Moreover, equitable partitions have been studied

extensively in algebraic graph theory (see Godsil and McKay [20] and Godsil and Royle [21])

and have a well-established collection of results which we can build upon.

A main observation we use throughout is the following statement which admits a simple

proof: a graph G has perfect state transfer if and only if its quotient graph G/π modulo an

equitable partition π has perfect state transfer. Although weaker forms of this statement had

appeared in different guises before, we give a simple and direct proof using the machinery

of equitable partitions. The necessary condition was used by Christandl et al. [12, 11] to

establish that certain weighted paths have perfect state transfer (in contrast to its unweighted

variants). Childs et al. [10] used the sufficient condition to analyze hitting times of specific

graphs related to binary trees. We will use the backward implication of the equivalence

to construct new perfect state transfer graphs. In our first application, we use this lifting

property to construct a graph with perfect state transfer between two vertices but has no

automorphism which maps one vertex to the other. This answers the aforementioned question

posed by Godsil [18].

Using equitable partitions, we also provide an algebraic framework to Feder’s construction.

We prove that the secondary graph obtained from a k-boson quantum walk on a primary

graph G is equivalent to a quotient of the k-fold Cartesian product of G, that is, G�k/π,

for some equitable partition π. This equivalence is related to works by Audenaart et al.

[3] on symmetric powers of graphs and by Osborne [28] on wedge product on graphs. Our

work differs from [3] in that we preserve diagonal entries and from [28] in that we work in a

symmetric vector space (rather than exterior vector space). A common thread in all these

works is the use of algebraic graph theory to provide an explicit connection between many-

particle and single-particle quantum walks. Another related work along the same lines was

given in [32]. In our algebraic formalism, we employ a model of many-particle quantum walk

used by Gamble et al. [16] and by Smith [29] in their works on graph isomorphism.

Finally, we explore Feder’s construction when distinct primary graphs with commensurable

perfect state transfer (or even periodic) times are used. We prove a composition theorem

which shows partial commutativity between the Cartesian product and quotient operators.

This mixed construction is akin to perfect state transfer graphs obtained using weak and

lexicographic products (see Ge et al. [17]) and graph joins (see Angeles-Canul et al. [2]).

We found new families of perfect state transfer graphs using cube-like graphs (which were

studied by Bernasconi et al. [5] and by Cheung and Godsil [8]). The graphs derived from

these cube-like graphs are different from weighted graphs obtained in Feder’s construction.
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Fig. 2. Feder’s weighted lattice PST graphs obtained from k-boson quantum walks on P3 with
k = 2, 3, 4 (see Feder [15]). Equivalently, these are the quotient graphs P�k

3
/π (see Theorem 3).

Antipodal PST occurs between vertices marked white.

Our proofs rely on basic ideas from algebraic graph theory and exploit spectral properties

of the underlying graphs.

2 Preliminaries

For a logical statement S, the expression [[S]] equals 1 if S is true and 0 otherwise. We use

[n] to denote {1, 2, . . . , n}. The all-one m × n matrix is denoted by Jm,n; we also use jn to

denote the all-one n-dimensional column vector.

The graph G = (V,E) we study are finite, undirected, and connected. The adjacency

matrix A(G) of G is defined as A(G)u,v = [[(u, v) ∈ E]]. A graph G is called k-regular if each

vertex u of G has exactly k adjacent neighbors. We say a graph G is (n, k)-regular if it has

n vertices and is k-regular. The distance d(a, b) between vertices a and b is the length of the

shortest path connecting them. For weighted graphs G = (V,E, ω), where ω : E → R
+ is the

weight function on edges, we let A(G)u,v = ω(u, v) be the edge weight of (u, v).

An automorphism τ of a graph G = (V,E) is a bijective map on the vertex set V that

respects the edge relation E; that is, (u, v) ∈ E if and only if (τ(u), τ(v)) ∈ E. If P is a

permutation matrix which represents an automorphism τ of G, then P commutes with A(G),

or PA(G) = A(G)P . The automorphism group of G is denoted Aut(G).

Standard graphs we consider include complete graphs Kn, paths Pn, and Cayley graphs.

For a given group G and a subset S ⊆ G, the Cayley graph X(G, S) has the group G as its

vertex set where two group elements g and h are adjacent if gh−1 ∈ S. For X(G, S) to be

connected, we require S to be a generating set of G. If S is closed under taking inverses, that

is, S−1 = S, then X(G, S) is undirected. An n-vertex circulant graph G is a Cayley graph

X(Zn, S) of the cyclic group of order n. Known examples of circulants include complete

graphs Kn and cycles Cn.

The complement of a graph G = (V,E), denoted G, is a graph where u is adjacent to v if

and only if (u, v) 6∈ E, for u 6= v. The Cartesian productG H is a graph defined on the vertex

set V (G) × V (H) where (g1, h1) is adjacent to (g2, h2) if either g1 = g2 and (h1, h2) ∈ EH ,

or (g1, g2) ∈ EG and h1 = h2. The adjacency matrix of G H is A(G) ⊗ I + I ⊗ A(H).

The n-dimensional hypercube (or n-cube) Qn is defined recursively as Q1 = K2 and Qn =

K2 Qn−1, for n ≥ 2. Note Qn is simply the Cayley graph X(Zn
2 , S), where S is the standard

generating set for Zn
2 .

The join G+H is a graph defined on V (G)∪V (H) obtained by taking two disjoint copies

of G and H and by connecting all vertices of G to all vertices of H. The cone of a graph G
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is defined as K1 +G whereas the double cone of G is given by K2 +G.

A (vertex) partition π of a graph G = (V,E) given by V =
⊎m

j=1 Vj is called equitable

if the number of neighbors in Vk of any vertex in Vj is a constant dj,k, independent of the

choice of that vertex (see [21]). We call each component Vj a partition or a cell of π. We say

a graph G has an equitable distance partition π with respect to vertices a and b if both a and

b belong to singleton cells. Further background on algebraic graph theory may be found in

the standard monographs by Biggs [6] and by Godsil and Royle [21].

Continuous-time quantum walk For a graph G = (V,E) with adjacency matrix A(G),

a continuous-time quantum walk on G is defined through the time-dependent unitary matrix

UG(t) = exp(−itA(G)). (7)

This model was introduced by Farhi and Gutmann [14]. We say that G has perfect state

transfer (PST) from vertex a to vertex b at time t if

|〈b|UG(t)|a〉| = 1, (8)

where |a〉, |b〉 denote the unit vectors corresponding to the vertices a and b of G, respectively.

The graph G has perfect state transfer if there exist vertices a and b in G and time t for which

Equation (8) is true. We call a graph G periodic at vertex a if it has perfect state transfer

from a to itself at some time t > 0. Further background on quantum walks and perfect state

transfer may be found in the surveys [25, 26] and [24, 18, 30, 27].

3 Equitable partitions and quotient graphs

Christandl et al. [11] showed that certain weighted paths have perfect state transfer by

appealing to a path-collapsing argument. Their argument is based on the fact that the n-cube

Qn has perfect state transfer and it can be collapsed to a weighted path. So they deduce that

weighted paths have perfect state transfer since the underlying n-cube Qn has this property.

This argument was used in the opposite direction by Childs et al. [10] in the context of

exponential algorithmic speedup of a quantum walk search algorithm. Here, they deduced

properties of the underlying unweighted graphs based on properties of the weighted paths.

A natural way to view this path-collapsing argument is via equitable partitions. The

benefit of this is evident in the simple algebraic equivalence of perfect state transfer between

a graph and its quotient. The notion of equitable partition was introduced by Godsil and

McKay [20] in their work on walk-regular graphs. Our treatment here follows closely the ones

given by Godsil and Royle [21] and by Godsil [19, 18].

Let G = (V,E) be a graph with an equitable partition π =
⊎m

k=1 Vk into m cells. For each

j, k ∈ [m], let dj,k be the number of neighbors in Vk of any vertex in Vj (which is independent

of the choice of the vertex). The partition matrix P associated with π is defined as the |V |×m
matrix where Px,k equals 1 if vertex x belongs to partition Vk, and equals 0 otherwise; that

is, Px,k = [[x ∈ Vk]]. The quotient graph G/π defined in the literature is a weighted directed

graph whose adjacency matrix is defined as B(G/π)j,k = dj,k. A fundamental fact here is

that A(G)P = PB(G/π) (see [21], Lemma 9.3.1, page 196).
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Fig. 3. The cube-like graph X(Z3, {100, 010, 001, 011}) (see Bernasconi et al. [5]). Its quotient

graph is a Cartesian product of a perfect state transfer and a periodic graph (both at time π/2).

We focus on quotient graphs which are undirected. So, we consider the normalized partition

matrix Q defined as

Q =

m∑

k=1

1
√

|Vk|
P |k〉〈k|. (9)

Note that Qx,k = |Vk|−1/2Px,k, and so Q is simply P with each column normalized. Moreover,

we still have the fundamental relation A(G)Q = QA(G/π), where A(G/π) is a symmetric

matrix defined by

A(G/π)j,k =
√

dj,kdk,j . (10)

So, A(G/π) describes a weighted graph G/π which is an undirected quotient graph of G with

respect to the equitable partition π. We state further useful properties of the partition matrix

Q.

Lemma 1 (Godsil [19, 18]) The following properties on Q hold:

1. QTQ = Im

2. QQT = diag(|Vk|−1J|Vk|)
m
k=1.

3. QQT commutes with A(G).

4. A(G/π) = QTA(G)Q.

The following theorem relates the perfect state transfer properties of a graph G and its

quotient G/π with respect to an equitable distance partition π. A similar statement appeared

in Ge et al. [17] but our proof here is simpler and more direct.

Theorem 1 Let G = (V,E) be a graph with an equitable partition π where vertices a and

b belong to singleton cells. Then, for any time t

〈b|e−itA(G)|a〉 = 〈π(b)|e−itA(G/π)|π(a)〉. (11)

Therefore, G has perfect state transfer from a to b at time t if and only if G/π has perfect

state transfer from π(a) to π(b) at time t.
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Proof Since A(G) commutes with QQT , we have (QQTA(G))k = A(G)kQQT for k ≥ 1.

Given that a and b are in singleton cells, |π(a)〉 = QT |a〉 and |π(b)〉 = QT |b〉. Thus, we have

〈π(b)|e−itA(G/π)|π(a)〉 = 〈π(b)|e−itQTA(G)Q|π(a)〉 (12)

= 〈b|Q
[

∞∑

k=0

(−it)k
k!

(QTA(G)Q)k

]

QT |a〉 (13)

= 〈b|
[

∞∑

k=0

(−it)k
k!

(QQTA(G))k

]

QQT |a〉, by regrouping (14)

= 〈b|e−itA(G)QQT |a〉, (15)

which proves the claim since QQT |a〉 = |a〉 because a belongs to a singleton cell.

4 Lifting graph constructions

In this section, we focus on the backward implication of Theorem 1. This is a lifting theorem

which states if a quotient graph G/π1 has perfect state transfer, for some equitable partition

π1, then the graph G itself must have perfect state transfer. This also implies that any

quotient of G, say G/π2, for any other equitable partition π2, has perfect state transfer. We

use this property to construct new graphs with perfect state transfer.

In [18], Godsil asked the following question: if a graph G has perfect state transfer between

vertices a and b, does there exist an automorphism of G which maps a to b? We contrast

this to Kay’s notion of a symmetry operator S on G which is a unitary operator satisfying

SA(G) = A(G)S and S|a〉 = |b〉. In this latter case, Kay [24] proved that such an operator

S always exists; but Godsil’s question went further and asked if there always exists such an

S which is also a graph automorphism of G. The question is interesting since, prior to this

work, all known graphs with perfect state transfer exhibit this automorphism property.

We answer Godsil’s question in the negative by constructing a perfect state transfer

graph which lacks the requisite automorphism. Our construction proceeds by lifting a simple

weighted 4-vertex path onto a glued double-cone graph. The latter graph was considered ear-

lier in Ge et al. [17] but in a completely different context. We start with a simple observation.

Fact 1 Let P4(a, b) be a weighted path parametrized by edge-weights a and b (see Figure 4(i))

whose adjacency matrix is:

A =







0 1 0 0
1 a b 0
0 b a 1
0 0 1 0







(16)

Let ∆± =
√

1
4 (a± b)2 + 1. Then, P4(a, b) has antipodal (vertex 1 to 4) perfect state transfer

at time t if either

(a) cos(t∆+) cos(t∆−) = +1 and sin(tb/2) = ±1; or

(b) cos(t∆+) cos(t∆−) = −1 and cos(tb/2) = ±1.



R. Bachman, E. Fredette, J. Fuller, M. Landry, M. Opperman, C. Tamon, and A. Tollefson 301

a a

1 b 1

G1 G2

√
2

√
α

√
α

√
2

√
α

√
α

√
α

√
α

α

α

α

α

G

G

Fig. 4. Lifting small PST paths: (i) P4(a, b) and its lifted graph K1 +G1 ◦G2 +K1, where both
G1 and G2 are (n, a

√
n)-regular graphs and the connection between them is (b

√
n)-regular; G1

and G2 need not be isomorphic. Here a = 2k2/
√
4k2 − 1 and b = 2(k2 − 1)/

√
4k2 − 1, or vice

versa, with PST time t = π/2. (ii) General weighting on P5(α) and two of its lifted graphs, where

G is the empty graph and α = 4k2 − 1, k ≥ 1, with PST time t = π/
√
2. Note k = 1 yields a

quotient of the 4-cube Q4.

Proof Let k± = 1
2 (a ± b) and ∆2

± = k2± + 1. The eigenvalues of P4(a, b) are given by

α± = k+ ±∆+ and β± = k− ±∆− with the following corresponding eigenvectors

|α±〉 =
1

M±

[
1 α± α± 1

]T
, |β±〉 =

1

N±

[
1 β± −β± −1

]T
, (17)

whereM2
± = 2(1+α2

±) and N
2
± = 2(1+β2

±) are normalization factors. Assuming the antipodal

vertices are u and v, we have:

〈v|e−itA|u〉 =
∑

±

e−itα±

M2
±

−
∑

±

e−itβ±

N2
±

. (18)

Since (M+M−)
2 = 16∆2

+ and (N+N−)
2 = 16∆2

−, we get

∑

±

e−itα±

M2
±

=
e−itk+

2

[

cos(t∆+) + i
k+
∆+

sin(t∆+)

]

(19)

∑

±

e−itβ±

N2
±

=
e−itk−

2

[

cos(t∆−) + i
k−
∆−

sin(t∆−)

]

. (20)

This proves the claim.

The next theorem shows a construction of a family of graphs with perfect state transfer

between antipodal vertices but which has no automorphism exchanging the two vertices.
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Theorem 2 For m ≥ 2, let n = 15 · 22(m−2), a = 6 · 2m−2, and b = 8 · 2m−2. Let Gn

be the family of graphs of the form K1 + An ◦ Bn + K1, where An = Circ(n, {±(⌊n/2⌋ +
1), . . . ,±(⌊n/2⌋+ a/2)}) and Bn = Circ(n, {±1, . . . ,±a/2}) are two non-isomorphic families

of n-vertex a-regular circulant graphs, and the connection An ◦ Bn is given by a graph Cn

which is an arbitrary n-vertex circulant of degree b. Thus, the adjacency matrix of Gn is given

by:







0 jTn 0 0
jn An Cn 0
0 CT

n Bn jn
0 0 jTn 0







(21)

Let an and bn be the antipodal vertices of Gn. Then Gn has perfect state transfer between an
and bn but there is no automorphism τ ∈ Aut(Gn) with τ(an) = bn.

Proof The graph Gn has a path-like structure with four layers where the two endpoint vertices

have degree n each and the middle two “vertices” are a-regular graphs (given by An and Bn)

which are connected to each other through a b-regular structure (given by Cn). Thus, its

quotient graph is a weighted P4 whose endpoint vertices are connected by edges of weight
√
n

to the middle vertices; and, the two middle vertices have self-loops with weight a each and

are connected to each other with an edge of weight b; see Figure 4. After normalizing the

outer two edges to unit weights, we get Gn/π ∼= P4(6/
√
15, 8/

√
15), where π is the equitable

partition where the antipodal vertices belong to singleton cells.

By the above Fact, the quotient graph Gn/π has antipodal perfect state transfer. There-

fore, we know Gn has antipodal perfect state transfer by a lifting argument via Theorem 1. It

remains to show that the graphs An and Bn used to construct Gn are nonisomorphic. This

holds because Bn contains too many triangles whereas An has too few.

A triangle in a circulant Circ(Zn, S) is given by d1+d2+d3 ≡ 0 (mod n) where d1, d2, d3
belong to the generating set S. It is clear Bn has at least two triangles using d1 = d2 = ±1

and d3 = ∓2. For An, we first consider the case when m > 2 or when n is even. Each

generator of An is of the form n/2 ± j, where j ∈ {1, . . . , a/2}. In this case, d1 + d2 + d3 ≡
n/2 + (j1 + j2 + j3) 6≡ 0 (mod n), since j1 + j2 + j3 is at most 3a/2 or is at least −3a/2 and

3a/2 < n/2 by the choice of n and a. Finally, if m = 2, each vertex of An is contained in

exactly one triangle, by inspection.

Thus, Gn has no automorphism which maps an to bn (the two antipodal vertices of Gn),

since otherwise this automorphism will induce an isomorphism between An and Bn. This is

because this automorphism must provide an isomorphism between the neighborhoods of an
and of bn – which in our example are simply the graphs An and Bn, respectively. This is

impossible since An and Bn are non-isomorphic.

Our lifting technique can be applied to other families of small weighted paths.
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Fig. 5. The graphs A2 and B2 used for K1 + A2 ◦ B2 +K1 in Theorem 2.

Fact 2 Let P5(a, b) be a weighted path (see Figure 4(ii)) whose adjacency matrix is:

A =









0 a 0 0 0
a 0 b 0 0
0 b 0 b 0
0 0 b 0 a
0 0 0 a 0









(22)

Let ∆ = a
√
1 + b2. Then, P5(a, b) has antipodal perfect state transfer at time t if a =

√
2,

cos(at) = −1 and cos(∆t) = 1. Moreover, these conditions hold with b =
√
4k2 − 1, for k ≥ 1.

Proof The eigenvalues of A are 0, ±a and ±∆ with the following corresponding eigenvectors:

|0〉 =
1

√

2(1 + 1/b2)

[
1 0 −a/b 0 1

]T
(23)

|a±〉 =
1

2

[
∓1 −1 0 +1 ±1

]T
(24)

|∆±〉 =
1

2∆/a

[
1 ±∆/a ab ±∆/a 1

]T
(25)

The choice of a =
√
2 is determined by the eigenvector form of |∆±〉. We leave a as a variable

whenever possible but use a =
√
2 if it leads to simpler expressions. If the antipodal vertices

are denoted u and v, we have

〈v|e−itA|u〉 = b2

2(1 + b2)
− cos(at)

2
+

cos(∆t)

2(1 + b2)
=
b2 + cos(∆t)

2(b2 + 1)
− cos(at)

2
. (26)

To get perfect state transfer from u to v, it suffices to require cos(∆t) = 1 and cos(at) = −1.

Since a =
√
2, we have t = π/

√
2. The condition cos(∆t) = 1 with b =

√
4k2 − 1 and
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t = π/
√
2 is equivalent to cos(2πk) = 1, which holds for any k ≥ 1.

Remark: The above Fact shows that P5(
√
2,
√
4k2 − 1), where k ≥ 1, is a family of perfect

state transfer paths whose first member P5(
√
2,
√
3) is simply the quotient of the cube Q4 =

K�4
2 . Figure 4 shows an example of two lifted graphs obtained from this family.

5 Quotient graph constructions

Feder [15] described an intriguing construction of perfect state transfer graphs using many-

boson quantum walks. First, we review the basic ideas of this construction, and then we

describe its algebraic characterization using quotient graphs.

Let G = (V,E) be a graph with perfect state transfer which we will call the primary

graph. For a positive integer k, consider a process of k bosons performing a quantum walk

on G. A configuration of these k bosons is given by a collection of numbers {nv : v ∈ V },
where nv represents the number of bosons located at vertex v, with 0 ≤ nv ≤ k. The sum

of these numbers must be k, that is,
∑

v∈V nv = k, since there is exactly k bosons at all

times. So, a natural choice of basis states for the configurations of the k-boson quantum walk

is |nu1
, nu2

, . . . , nun
〉, where V = {u1, . . . , un} is the vertex set of G. The set of these basis

states forms a vertex set in a so-called secondary graph.

In [15], Feder used a nearest-neighbor hopping Hamiltonian H =
∑

(u,v) a
†
uav, where au

and a†u are the bosonic annihilation and creation operators. The interaction term between

the two basis states |nu, nv, nW 〉 and |nu − 1, nv + 1, nW 〉 is
√

nu(nv + 1), where nu ≥ 1 and

W = V \ {u, v}. We summarize this construction in the following.

Definition 1 (Feder’s graph [15]) Let G = (V,E) be a graph and let k ≥ 1 be a positive

integer. Let G = (V, E , ω) be a weighted graph whose vertex set V is the basis states |nV 〉 =
⊗{|nu〉 :

∑

u nu = k} and whose edge set E is the weighted pairs ω(|nu, nv, nW 〉, |nu−1, nv +

1, nW 〉) =
√

nu(nv + 1), assuming nu ≥ 1, where W = V \ {u, v}. We call G the secondary

graph of G with k bosons, denoted by G⊙k.

A nice property of Feder’s construction is that it generalizes the weighted paths of Chri-

standl et al. [12, 11]. As noted earlier, the latter is based on a path-collapsing argument

of the n-cube. This yields a weighted path Pn+1 on the vertex set {0, 1, . . . , n} where the

edge weight of (j, j + 1) is
√

(j + 1)(n− j). In Feder’s notation, we have Pn+1 = K2
⊙n. By

recursion, this generated various infinite families of graphs with perfect state transfer, with

connections to high-dimensional Platonic solids, such as parallelepipeds, hypertetrahedra,

hyperoctahedra (see [15]).

Algebraic characterization Our aim in this section is to cast Feder’s construction in an

algebraic framework. Here, we adopt the explicit many-boson quantum walk model used by

Gamble et al. [16] and Smith [29]. The Hamiltonian of the k-boson quantum walk in this

model is given by

HkB = −
[

1

k!

∑

σ∈Sk

Pα

]

A(G�k), (27)
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Fig. 6. The Cartesian product graphsK�3

2
and P�2

3
and their quotients under equitable partitions,

whose cells are orbits of S3 and S2 acting on the respective vertex sets.

where Sk is the symmetric group of all permutations on k elements. Each permutation σ ∈ Sk

induces the following natural group action on the elements of V k,

σ ◦ (x1, x2, . . . , xk) = (xσ(1), xσ(2), . . . , xσ(k)). (28)

We denote the latter simply as σ(x), whenever x = (x1, . . . , xk). So, the permutation matrix

Pσ is an |V |k × |V |k matrix defined as:

〈x|Pσ|y〉 = [[y = σ(x)]]. (29)

The time evolution of the k-boson quantum walk is then given by UkB = e−itHkB . This

description captures the intuition that each boson is performing a quantum walk on its own

copy of the graph G but collectively they are performing a quantum walk on G�k. Next, we

show that the symmetrization operator in Equation (27) induces an equitable partition on

G�k.

Lemma 2 Let G = (V,E) be a graph and k ≥ 1 be an integer. Then, the operator

S =
1

k!

∑

σ∈Sk

Pσ, (30)

which acts on the set V k, defines an equitable partition π of G�k. Moreover, S equals QQT ,

where Q is the normalized partition matrix of π.

Remark: Osborne [28] considered a related operator which includes an alternating permutation

sign in the summation. Both operators correspond to symmetrization or skew-symmetrization

in a symmetric or exterior vector spaces, respectively (see [13], page 452).

Proof Consider a vertex partition π =
⊎

x Ox of the product graph G�k defined by the cells

Ox = {y ∈ V k : ∃σ ∈ Sk, σ(x) = y}. (31)
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2-boson

|00〉

|22〉

|10〉 |01〉

|12〉 |21〉

|20〉 |02〉
|11〉

|200〉

|002〉

|020〉 |101〉
|110〉

|011〉
π

Fig. 7. The 2-boson walk on P3, its Cartesian product representation P�2

3
, and the Feder diamond

graph D6 = P3
⊙2 ∼= P�2

3
/π. Antipodal PST occur throughout between vertices marked white.

Each cell Ox is an orbit of Sk acting on the vertex set V (G�k) = V k. To show π is equitable,

let x and y be adjacent vertices in G�k. This implies that there is a unique index i for which

xi is adjacent to yi in G and xj = yj for all other j 6= i (this can be shown using induction

on k). Now, let S be the collection of indices where xi appears in x; note i ∈ S. Consider a

permutation τ which swaps i with j ∈ S \ {i}. Then, x is also adjacent to τ(y); moreover,

τ(y) ∈ Oy. Thus, x has |S| neighbors in Oy. Since x is an arbitrary element of Ox, every

element in Ox has |S| neighbors in Oy. This shows π is equitable.

From the definition of Pσ in Equation (29), we have:

〈x|
[

1

k!

∑

σ

Pσ

]

|y〉 = 1

k!

∑

σ

[[y = σ(x)]] =
1

k!
| Stab(x)|[[y ∈ Ox]] =

1

|Ox|
[[y ∈ Ox]] (32)

where Stab(x) = {σ ∈ Sk : σ(x) = x} is the stabilizer of x, which is the set of permutations

which fix x. The last equality follows from |Ox|| Stab(x)| = k!, since the size of the orbit of x

is the index of the stabilizer subgroup of x (see Hungerford [22], Theorem 4.3, page 89). On

the other hand, the partition matrix Q of π is defined as 〈x|Q|j〉 = |Vj |−1/2[[x ∈ Vj ]]. Thus,

we have

〈x|QQT |y〉 = 1

|Ox|
[[y ∈ Ox]]. (33)

This proves our second claim that S = QQT .

By Lemma 2, the unitary evolution UkB of the k-boson quantum walk admits a simpler

description.

Lemma 3 (see [29]) The unitary evolution of the k-boson quantum walk on a graph G using

the Hamiltonian HkB = −
[
1
k!

∑

σ∈Sk
Pα

]
A(G�k), is given by

UkB =

[

1

k!

∑

σ

Pσ

]

(eitA(G))⊗k. (34)

Proof First, we note that ( 1dJd)
m = 1

dJd, for any d,m ≥ 1. Let S = 1
k!

∑

σ Pσ be the

“symmetrizing” operator defined in Equation (30). By Lemma 1 and Lemma 2, we have

S = QQT and it is a block diagonal matrix containing all-one submatrices. The block diagonal
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property of S implies that Sm = S, for any m ≥ 1. Moreover, again by Lemma 1, S commutes

with A(G�k). Therefore,

UkB = exp(−itHkB) = exp(it SA(G�k)) (35)

=

∞∑

m=0

(it)m

m!
S
mA(G�k)m, since S commutes with A(G�k) (36)

= S exp(itA(G�k)), since S
m = S, for m ≥ 1 (37)

This proves the claim since exp(itA(G�k)) = (eitA(G))⊗k.

The next theorem describes our main algebraic characterization of Feder’s construction. We

show that the graph G⊙k is a quotient graph of the k-fold Cartesian product G�k. Moreover,

it shows if G has perfect state transfer, then so does G⊙k, which follows immediately from

Theorem 1.

Theorem 3 Let G = (V,E) be a graph and k be a positive integer. Then,

G⊙k ∼= G�k/π, (38)

where π is an equitable partition of G�k defined by the cells Ox = {y : ∃σ ∈ Sk, σ(x) = y}.
Moreover, if G has perfect state transfer then so does G⊙k, for any positive integer k.

Proof Let G = (V, E) be the graph G⊙k described in Definition 1, where V is the set of

|V |-dimensional vectors whose entries are non-negative integers that sum to k. For x ∈ V k,

let n[x] be a |V |-dimensional vector whose u-th entry, for u ∈ V , is given by

n[x]u = |{i ∈ [k] : xi = u}|, (39)

which is the number of occurrences of vertex u in x. Consider the map φ : V (G�k) → V
defined by φ(x) = n[x]. By definition of Ox, we have n[y] = n[x] for all y ∈ Ox. So, we may

view φ as a mapping from V (G�k/π) to V.
Next, we show that φ is a graph isomorphism between the quotient graph G�k/π and

Feder’s graph G. Consider two vertices Ox and Oy of the quotient graph G�k/π whose edge

weight between them is
√
dx,ydy,x. Here, dx,y is the number of neighbors in Oy that each

vertex in Ox has and dy,x is the number of neighbors in Ox that each vertex in Oy has.

Let φ(Ox) = n[x] and φ(Oy) = n[y]. If x and y are adjacent in the product graph G�k,

then x and y differ in exactly one coordinate i, where xi and yi are adjacent in G, and agree

in the other coordinates. Suppose xi = u and yi = v with u 6= v but u is adjacent to v in G.

Then, n[y]u = n[x]u − 1 and n[y]v = n[x]v +1. By Definition 1, the edge weight between n[x]

and n[y] in G is given by

ω(n[x], n[y]) =
√

n[x]u(n[x]v + 1) (40)

which equals to

ω(Ox,Oy) =
√

dx,ydy,x, (41)

since dx,y = n[x]u (the number of ways to replace u with v) and dy,x = n[y]v +1 (the number

of ways to replace v with u). This shows that G⊙k ∼= G�k/π.
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The next theorem shows a composition theorem for Feder’s operator G⊙k. We will use this to

describe a reduction method from one perfect state transfer graph to another by combining

and alternating lifting and quotient operations.

Theorem 4 For a given graph G and integers m1,m2 ≥ 1, let π1 be an equitable partition

of G�m1 and let π2 be an equitable partition of (G�m1/π1)
�m2 . Then, there is an equitable

partition π3 of G�(m1m2) where

(G�m1/π1)
�m2/π2 ∼= G�(m1m2)/π3. (42)

Proof Let Q1 and Q2 be the (normalized) partition matrices corresponding to π1 and π2,

respectively. The adjacency matrix of (G�m1/π1)
�m2 is given by

m2∑

k=1

(I ⊗ . . .⊗

k-th position
︷ ︸︸ ︷

QT
1 A(G

�m1)Q1 ⊗ . . . I), (43)

since A(G�m1/π1) = QT
1 A(G

�m1)Q1. By expressing the identity matrices as QT
1Q1 and

factoring it out from both sides, we get

(QT
1 )

⊗m2






m2∑

k=1

(I ⊗ . . .⊗

k-th position
︷ ︸︸ ︷

A(G�m1) ⊗ . . . I)




Q

⊗m2

1 . (44)

The last equation yields

(Q⊗m2

1 )T
[

A(G�m1)�m2

]

Q⊗m2

1 = (Q⊗m2

1 )TA(G�(m1m2))Q⊗m2

1 . (45)

Thus, the adjacency matrix of (G�m1/π1)
�m2/π2 is given by

QT
2 (Q

⊗m2

1 )TA(G�(m1m2))Q⊗m2

1 Q2, (46)

which proves the claim and shows π3 is defined by the partition matrix Q⊗m2

1 Q2.

Remark: Using Theorem 4, the perfect state transfer graphs described in [15] arguably are all

quotients of the n-cube derived using different equitable partitions. For example, the graph

shown in Figure 7 is derived from the 4-cube since P�2
3 /π1 ∼= (K�2

2 /π2)
�2/π1 ∼= K�4

2 /π3.

6 Generalizations

6.1 Inhomogeneous products

Note that Feder’s construction is based on taking the Cartesian product of a single perfect

state transfer graph with itself followied by a quotient operation. Here, we extend this con-

struction by using distinct perfect state transfer and periodic graphs in the product and by

allowing the quotient operations to alternate with the product. But first, we show a compo-

sition theorem for this more general construction (similar to Theorem 4).
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Fig. 8. The perfect state transfer graph K2 (X(Z3

2
, {001, 010, 100, 011})/π), where the latter is

a Cartesian product of K2 with a periodic graph.

Theorem 5 For n ∈ N and for each k ∈ [n], let Gk be a graph and πk be an associated

equitable partition. Then, there is an equitable partition π so that

n
k=1(Gk/πk) = ( n

k=1Gk)/π. (47)

Moreover, if Qk is the partition matrix of πk, then
⊗n

k=1Qk is the partition matrix of π.

Proof Let Qk be the normalized partition matrix of πk. The adjacency matrix of Gk/πk is

defined by QT
kA(Gk)Qk. Thus, the adjacency matrix of k(Gk/πk) is

n∑

k=1

(I ⊗ . . .⊗
k-th position
︷ ︸︸ ︷

QT
kA(Gk)Qk ⊗ . . .⊗ I). (48)

Now, replace each I in the term above by QT
j Qj if it is in position j 6= k. This gives us

n∑

k=1

(QT
1Q1 ⊗ . . .⊗

k-th position
︷ ︸︸ ︷

QT
kA(Gk)Qk ⊗ . . .⊗QT

nQn). (49)

Factoring the common terms QT
k on the left and Qk on the right, we get

(
n⊗

k=1

QT
k

)
n∑

k=1

(I ⊗ . . .⊗
k-th position
︷ ︸︸ ︷

A(Gk) ⊗ . . .⊗ I)

(
n⊗

k=1

Qk

)

. (50)

This yields
(

n⊗

k=1

Qk

)T

A( n
k=1Gk)

(
n⊗

k=1

Qk

)

. (51)

which shows that Q =
⊗n

k=1Qk is the partition matrix of π.

The following corollary extends Feder’s operator G⊙k which is based on a single graph G.

Here, we take a product of different graphs Gk (and their quotients Gk/πk) and allow both

perfect state transfer and periodic graphs with commensurable times.
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G/π1

G

G/π2

π1
π2

“π3”

G

G/π1 ∼= G′/π2

G′

π1
π2

“π3”

Fig. 9. (i) Lift-and-quotient: if G/π1 has PST, then G has PST; which implies G/π2 has PST.
So, G/π1 reduces to G/π2 via “π3”. (ii) Quotient-and-lift: if G has PST, then G/π1 has PST;
which implies G′ has PST if G′/π2

∼= G/π1. So, G reduces to G′ via “π3”.

Corollary 1 Let n ≥ 1 be an integer. For k ∈ [n], let Gk be a graph with perfect state

transfer between vertices ak and bk at time t (Gk is periodic, if ak = bk), where ak 6= bk for at

least one k. Let πk be an equitable distance partition of Gk with respect to ak and bk. Then

n
k=1(Gk/πk) ∼= ( n

k=1Gk)/π (52)

has perfect state transfer between (a1, . . . , an) and (b1, . . . , bn) at time t. Here, π is an equitable

partition of kGk defined by the partition matrix ⊗kQk, where Qk is the partition matrix of

πk.

We show an example of how to build new perfect state transfer graphs using Corollary 1.

For this, we use the following powerful results on cube-like graphs proved by Bernasconi et

al. [5] and by Cheung and Godsil [8].

Theorem 6 (Bernasconi et al. [5] and Cheung-Godsil [8])

Let G = X(Zn
2 , S) be the Cayley graph on Z

n
2 with generating set S and let ωS =

∑

a∈S a be

the sum of the elements in S. Let M be the n × |S| matrix with elements of S as columns

and whose row space is called the code of G. Also, let D be the greatest common divisor of

the weights of the codewords of G. Then, the following holds:

1. If ωS 6= 0, then G has perfect state transfer from 0 to ωS at time t = π/2.

2. If ωS = 0, then G has perfect state transfer at time t = π/4 if and only if D = 2 and

the code of G is self-orthogonal.

Remark: Let Gk = X(Zn
2 , Sk) be any collection of cube-like graphs defined in Theorem 6,

where at least one satisfies
∑

a∈Sk
a 6= 0. This guarantees that at least one graphs has

“antipodal” perfect state transfer at time π/2, while the others might be periodic at time

π/2. By Corollary 1, we know k(Gk/πk) ∼= ( kGk)/π has perfect state transfer, for any

collection of equitable partitions {πk}. A simple example of this construction is given in

Figure 8.

6.2 Reductions

In this section, we describe reductions between perfect state transfer graphs obtained from

alternating a lifting move (from a quotient graph G/π to a graph G, for an equitable partition
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π) and a quotient move (from the graph G to its quotient graph G/π, for a possibly different

equitable partition). By interchanging the order of these two operations, we get a quotient-

and-lift reduction or a lift-and-quotient reductions. We illustrate these two types of reductions

in Figure 9.

As a simple example, consider the diamond graph D6 from Figure 7. There is a lift-and-

quotient reduction from D6 to P5 given by

D6 ր Gց P5 (53)

where G is the graph obtained from attaching two vertices onto K2,3 (each with edge weight√
2). This reduction is depicted in Figure 10. Note we get PST on G for “free”. An alternate

lift-and-quotient reduction based on Theorem 4 is given by

D6 = P�2
3 /π1 ր (K�2

2 /π2)
�2/π1 ∼= K�4

2 /π3 ց P5 (54)

where here G is the 4-cube Q4 = K�4
2 .

Irreducible graphs Godsil’s question in [18] is closely related to an observation of Kay

[23] that any weighted path with perfect state transfer must have mirror-symmetric weights.

Given the construction described in Section 4, it is natural to ask if there is a class of graphs

for which perfect state transfer implies the automorphism property. Let G = (V,E) be a

graph with perfect state transfer between vertices a and b. For each vertex x ∈ V , let da(x)

(respectively, db(x)) be the distance of x from a (respectively, b). To each vertex x, we assign

the distance-pair da,b(x) = (da(x), db(x)) of x from both a and b. We say G is distance-

minimal with respect to vertices a and b if each vertex has a unique distance-pair, that is, for

x 6= y, we have da,b(x) 6= da,b(y). Alternatively, we say a graph G1 is reducible to G2 (with

respect to vertices a and b) if there is a lift-and-quotient or a quotient-and-lift reduction from

G1 to G2 which places vertices a and b in singleton cells, so that G2 has fewer vertices than

G1. We call a graph quotient-minimal if it is not reducible to any other graph. Let us call

a graph minimal if it is either distance-minimal or quotient-minimal. Intuitively, if a graph

is minimal, it can only have (if any) an automorphism switching a and b since the action of

permuting vertices at the same distance from a or b have been ruled out.

Conjecture 1 Let G be a graph with perfect state transfer between vertices a and b. If G is

minimal with respect to a and b, then G has an automorphism τ ∈ Aut(G) so that τ(a) = b.

7 Conclusions

In this work, we explored perfect state transfer in quantum walks using equitable partitions.

Our main focus is on a strong equivalence of perfect state transfer between a graph and its

quotients. Although weaker forms of this equivalence had appeared earlier, we gave a simple

and most direct proof which yields a powerful two-way tool (taking lifts and quotients on

graphs) to study perfect state transfer.

In lifting, if a perfect state transfer graph is a quotient of another graph, then the parent

graph also has perfect state transfer. We used this to construct graphs with perfect state

transfer between two vertices but which lack automorphism swapping the vertices; hence,
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3
/π is lifted to the top graph G (via the

“inverse” of π1) whose “other” quotient is D6/π3. We infer G has PST for “free”.

answering a question posed by Godsil in [18]. This question is relevant since, prior to this

work, all known graphs with perfect state transfer admit the automorphism property.

In a quotient move, if a graph has perfect state transfer graph, then so does its quotient.

These quotient graphs are obtained by forming various equitable partitions of the original

graph. We used this to describe Feder’s intriguing construction of PST graphs [15] based

on many-boson quantum walks. By adopting an explicit model of k-boson quantum walk

in [16, 29], we show that Feder’s graphs are quotients of a k-fold Cartesian product of PST

graphs. The resulting graphs have perfect state transfer due to the equivalence theorem. This

is related to works by Audenaart [3], by Osborne [28], and by Wieśniak and Markiewicz [32]

which used algebraic graph theory to provide explicit connection between multiple and single

excitation subspaces under various coupling schemes on graphs.

It would be interesting to find a property of graphs, for which any graph perfect state

transfer graph with this property must admit an automorphism swapping the two perfect

state transfer vertices. We leave this as an open question for future work.
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