Quantum Information and Computation, Vol. 6, No. 3 (2006) 263-276
© Rinton Press

MIXING AND DECOHERENCE IN
CONTINUOUS-TIME QUANTUM WALKS ON CYCLES

LEONID FEDICHKIN

Center for Quantum Device Technology, Department of Physics, and
Department of Electrical and Computer Engineering, Clarkson University
Potsdam NY 13699 USA

DMITRY SOLENOV
Center for Quantum Device Technology and
Department of Physics, Clarkson University
Potsdam NY 13699 USA

CHRISTINO TAMON
Department of Mathematics and Computer Science and

Center for Quantum Device Technology, Clarkson University
Potsdam NY 13699 USA

Received September 24, 2005
Revised November 9, 2005

We prove analytical results showing that decoherence can be useful for mixing time in
a continuous-time quantum walk on finite cycles. This complements the numerical ob-
servations by Kendon and Tregenna (Physical Review A 67 (2003), 042315) of a similar
phenomenon for discrete-time quantum walks. Our analytical treatment of continuous-
time quantum walks includes a continuous monitoring of all vertices that induces the
decoherence process. We identify the dynamics of the probability distribution and ob-
serve how mixing times undergo the transition from quantum to classical behavior as our
decoherence parameter grows from zero to infinity. Our results show that, for small rates
of decoherence, the mixing time improves linearly with decoherence, whereas for large
rates of decoherence, the mixing time deteriorates linearly towards the classical limit. In
the middle region of decoherence rates, our numerical data confirms the existence of a
unique optimal rate for which the mixing time is minimized.
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1. Introduction

The study of quantum walks on graphs has gained considerable interest in quantum compu-
tation due to its potential as an algorithmic technique and as a more natural physical model
for computation. As in the classical case, there are two important models of quantum walks,
namely, the discrete-time walks [5, 28, 2, 4], and the continuous-time walks [13, 10, 9, 11]. Ex-
cellent surveys of both models of quantum walks are given in [22, 23]. In this work, our focus
will be on continuous-time quantum walks on graphs and its dynamics under decoherence.
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Some promising non-classical dynamics of continuous-time quantum walks were shown
in [30, 24, 9]. In [30], Moore and Russell proved that the continuous-time quantum walk
on the n-cube achieves (instantaneous) uniform mixing in time O(n), in contrast to the
Q(nlogn) time needed in the classical random walk. Kempe [24] showed that the hitting
time between two diametrically opposite vertices on the n-cube is n°(), as opposed to the
well-known (2") classical bound (related to the Ehrenfest urn model). In [9], an interesting
algorithmic application of a continuous-time quantum walk on a specific blackbox search
problem was given. This latter result relied on the exponentially fast hitting time of these
quantum walks on path-collapsible graphs. Despite these promising results, other works by
Miilken and Blumen [29], Tregenna et al. [33], and Lo et al. [27] have shown the sensitivity
of the dynamics of the quantum walks to initial conditions.

Further investigations on mixing times for continuous-time quantum walks were given in
[3, 18, 1]. These works prove non-uniform (average) mixing properties for complete multipar-
tite graphs, group-theoretic circulant graphs, and the Cayley graph of the symmetric group.
The latter graph was of considerable interest due to its potential connection to the Graph
Isomorphism problem, although Gerhardt and Watrous’s result in [18] strongly discouraged
natural approaches based on quantum walks. A non-uniform mixing phenomena was also
observed in the discrete-time quantum walk on the cycles by Bednarska et al. [8]. For infi-
nite lattices, non-classical limit theorems for continuous-time quantum walks were observed by
Konno [25] and Gottlieb [15]. For the topic of interest in this paper, the dynamics of quantum
walks on cycles had been analyzed in detail in both the discrete-time and the continuous-time
models [2, 8, 3, 20]. But, all of these works have focused on unitary or coherent quantum
walks, where we have a closed quantum system without any interaction with its environment.

A more realistic analysis of quantum walks that take into account the effects of decoherence
was initiated by Kendon and Tregenna [26]. In that work, Kendon and Tregenna made a
striking numerical observation that a small amount of decoherence can be useful to improve
the mixing time of discrete quantum walks on cycles. In this paper, we provide an analytical
counterpart to Kendon and Tregenna’s result for the continuous-time quantum walk on cycles.
Thus showing that the Kendon-Tregenna phenomena is not merely an artifact of the discrete-
time model, but suggests a fundamental property of decoherence in quantum walks. Recent
realistic treatment for the hypercube was provided in a recent work by Alagi¢ and Russell
[6]. Developing algorithmic applications that exploit this positive effect of decoherence on
quantum mixing time provides an interesting challenge for future research.

In this work, we prove that Kendon and Tregenna’s observation holds in the continuous-
time quantum walk model. Our analytical results show that decoherence can improve the
mixing time in continuous-time quantum walk on cycles. We consider an analytical model
due to Gurvitz [16] that incorporates the continuous monitoring of all vertices that induces the
decoherence process. We identify the dynamics of probability distribution and observe how
mixing times undergo transition from quantum to classical behavior as decoherence parameter
grows from 0 to co. For small rates of decoherence, we observe that mixing times improve
linearly with decoherence, whereas for large rates, mixing times deteriorate linearly towards
the classical limit. In the middle region of decoherence rates, we give numerical data that
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confirms the existence of a unique optimal rate for which the mixing time is minimal.

2. Preliminaries

Continuous-time quantum walks are well-studied in the physics literature (see, e.g., [14],
Chapters 13 and 16), but mainly over constant-dimensional lattices. It was studied recently
by Farhi, Gutmann, and Childs [13, 10] in the algorithmic context. Let G = (V, E) be an
undirected graph with adjacency matrix Ag. The Laplacian of G is defined as £ = Ag — D,
where D is a diagonal matrix with D;; is the degree of vertex j; so, D = kI if G is k-
regular. Here, we assume that the transition rates between adjacent vertices in G are the
same and equal to one. If the time-dependent state of the quantum walk is [¢(t)), then, by
the Schrodinger’s equation, we have

. d
i [9(t) = Lly(t))- (1)

The solution of the above equation is [¢(t)) = e~£|4(0)) (assuming % = 1).

We consider the N-vertex cycle graph Cy whose adjacency matrix Ac, is a circulant
matrix. The eigenvalues of A¢,, are A\; = 2cos(2mj/N) with corresponding eigenvectors |v;),
where (k|v;) = \/Lﬁexp(—Zﬂ'ijk/N), for 7 = 0,1,... ,N — 1. So, if the initial state of the
quantum walk is [1/(0)) = |0), then |¢(t)) = e~*L|0). After decomposing |0) in terms of the
eigenvectors |v;), we get

BO) = Y ), ©)

The scalar term e?® is an irrelevant phase factor which can be ignored.
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Fig. 1. Continuous-time quantum walk on the cycle Cs. This is a plot of |¢g(t)|? for ¢ € [0, 500].
It exhibits a short-term chaotic behavior and a long-term oscillatory behavior.

If |1(t)) represents the state of the particle at time ¢, let P;(t) = |(j[4(t))|*> be the prob-
ability that the particle is at vertex j at time ¢. Let P(t) be the (instantaneous) probability
distribution of the quantum walk on G.

To define the notion of mixing times of continuous-time quantum walks, we use the total
variation distance between distributions P and @ that is defined as ||[P — Q|| =", |P(s) —
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Q(s)|. For € > 0, the e-mixing time Ty, (g) of a continuous-time quantum walk is the
minimum time T so that ||P(T) — Ug|| < ¢, where Ug is the uniform distribution over G, or

N-1
Tiz(¢) = mind T : Z
§=0

P - | <. )

Gurvitz’s Model To analyze the decoherent continuous-time quantum walk on Cp, we
use an analytical model developed by Gurvitz [16, 17]. In this model, we consider the density
matrix p(t) = |¢(t)) (¥ (t)| and study its evolution under a continuous monitoring of all vertices
of Cn. Note that in this case, the probability distribution P;(t) of the quantum walk is
specified by the diagonal elements of p(t), that is, P;(t) = p; ;(t).

The time-dependent non-unitary evolution of p(t) in the Gurvitz model is given by (see
32)):

d .| Pik+1 — Pj+1,k — Pi—1,k T Pjk—1
g i@ =1 [Z B ’ —T(1—=6k) pik (4)

Our subsequent analysis will focus on the variable S;  defined as
Sije =" pjn (5)

The above substitution reduces the system differential equations with complex coefficients
into the following system with only real coefficients:

%Sj,k = i (Sik+1 4 Sitrk = Sj—1,k — Sjk—1) =T (1 = ;1) Sj- (6)
Throughout the rest of this paper, we will focus on analyzing Equation (6) for various rates
of I'. One can note that, if I' = 0, there is an exact mapping of the quantum walk on a cycle
onto a classical directed continuous-time random walk (diffusion) on a two-dimensional torus.
If T #£ 0, there is still an exact mapping of the quantum walk on a cycle onto some classical
dynamics on a directed toric graph. This observation may be useful in estimating quantum
speedup in other systems.

3. Small Decoherence

‘We consider the decoherent continuous-time quantum walks when the decoherence rate I' is
small. More specifically, we consider the case when I'N < 1. First, we rewrite (6) as the
perturbed linear operator equation

d
450 =L +1) 5@), (7)

where the linear operators I. and U are defined as

y 1
]LEZ:,H)) = 3 Oaudpp—1+0au-19p0 — Saudput1 — dau+19p) (8)
ULs) = —Téaubp. (1—bas)- (9)
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Fig. 2. The classical recurrence on the 2-dimensional torus derived from a decoherent continuous-
time quantum walk on the cycle.

Here, we consider L as a N? x N2 matrix where LEZ ;)) is the entry of L indexed by the row

index (p,v) and the column index (o, 3). We view U in a similar manner. The solution of
(7) is given by S(t) = etV 5(0), or
d N (L) g
g5 = D (]L(Z’,ﬂ) + U(Z’,ﬁ)) Suws (10)
=0

where 0 < o, B, 4, v < N — 1. The initial conditions are
Pa,8(0) = Sa,8(0) = 6a,003,0- (11)

Perturbation Theory We will use tools from the perturbation theory of linear operators
(see [21, 19]). To analyze Equation (7), we find the eigenvalues and eigenvectors of L + U.
Suppose that V is some eigenvector of L. with eigenvalue A, that is, LV = AV. Considering
the perturbed eigenvalue equation

L+U(V+V)=A+X) (V+V), (12)
we drop the second-order terms UV and AV to obtain the first-order approximation
UV+LV = AV + AV. (13)

By taking the inner product of the above equation with V1, and since L is Hermitian, we see
that the eigenvalue perturbation term )\ is defined as

A = viow (14)

Let £y be an eigenspace corresponding to the eigenvalue A and let {V; : k € I} be a
set of eigenvectors of L that spans &). Let V = Eke 1 ckVk be a unit vector in £y. Using
Equation (13), we have

chUVk == XZCka, (15)

kel kel
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and after taking the inner product with VJ-T, we get Y .o; cijTUVk = ch. If the linear
combination is uniform, that is ¢; = c, for all j, then the eigenvalue perturbation X is simply
given by
A=) viuw. (16)
kel
In the case when &) is one-dimensional or the matrix U is diagonal under all similarity actions
VjTTUVk, for j, k € I, the correction to the eigenvalues is given by the diagonal term X = ViUV.
Otherwise, we need to solve the system described by det(Uy — AI) = 0.
To analyze the equation S’(t) = (L + U)S(t), for which the solution is S(t) = exp[t(L +
U)]S(0), we express S(0) as a linear combination of the eigenvectors of L + U, say {V; + V;}-
In our case, the evolution of S(t) can be described using the eigenvectors of L, since the

contribution of the terms V; are negligible. If S(0) = 3° ;¢jVj, where V; are the eigenvectors
of I, then

S(t) = Zet()""j‘) Z ¢ Vj. (17)
A

JEEA
Spectral Analysis The unperturbed linear operator L has eigenvalues
. . (7m(m+n) 7(m —n)
A(m,n) = @ sin ( N ) cos ( N (18)

with corresponding eigenvectors

oy 1 2
vy = o (5 et m) ) (19)
Thus, for 0 <m,n < N — 1, we have
N g () 1 mom) (m,n)
782 m,n) m,n
ZO]L(a,ﬂ)V(u,V) = Am,n) Vi) - (20)
pov=

To analyze the effects of U, we compute the similarity actions of the eigenvectors on U:

Ui, (m! ) = (V(m,n))fw(mf,nf) (21)
r 271
= - (1 —8,,) exp (W[(m' —m)a+ (n' — n)b]) (22)
(a,b)
r
= I Jm’,m 5n’,n + N 5[(m’—m)+(n’—n)] (mod N),0 (23)

where 0 < m,m',n,n' < N —1.

The eigenvalues A(,, ) of L have the following important degeneracies:

(a) Diagonal (m =n): A(m,m) =i sin(2rm/N).
Each of this eigenvalue has multiplicity 2, by the symmetries of the sine function. This
degeneracy is absent in our case, since U is diagonal over the corresponding eigenvectors.
For example, U(m,n),(N/Z—m,N/Z—m) =0, for 0<m< N/2.
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(b) Zero (m+n =0 (mod N)): A n) =0.
This degeneracy is absent in our case since the corresponding eigenvectors are not in-
volved in the linear combination of the initial state S(0).

(c) Off-diagonal (m # n): A(m,n) = A(n,m)-
Since A(m n) = % [sin(2mm/N)+sin(2mm/N)], each of this eigenvalue has multiplicity at
least 4, due to the symmetries of the sine function. In our case, the effective degeneracy
of these eigenvalues are 2, again by a similar argument.

By (23), the off-diagonal contribution is present if m +n = m’ +n' (mod N). Thus,
A(m,n) = A(m’,n) implies that cos(m(m—n)/N) = + cos(w(m'—n')/N), since sin(m(m+
n)/N) = xsin(w(m’ + n’)/N). This implies that m —n = —(m' — n') or |(m — n) —
(m' —n')] = N, since —(N —1) <m —n,m' —n’ < N — 1. In either case, we get
m =n=+ N/2 or m' =n' + N/2. But, upon inspection, we note that U is diagonal over
these combinations, except for the case when (m’,n’) = (n,m).

In what follows, we calculate the eigenvalue perturbation terms X. For simple eigenvalues,
these correction terms are given by the diagonal elements
- N-1
Smmy = (V) gyonm = _p 1) (24)
by Equation (23). For a degenerate eigenvalue Xy, ,) with multiplicity two, if V = c(Vimn) 4
V(™)) for some constant ¢, then Aim,n) = (VMmUY and similarly for V(™). Further
calculations reveal that the eigenvalue perturbation \(,, ) is

i N-2
Rommy = (VR ylmm) 4 (pmmyt gy nm) _F%, (25)

again by Equation (23).

Dynamics We are ready to describe the full solution to Equation (6). First, note that there

5‘1’\‘,", that can be expressed as

exists a trivial time-independent solution given by Sgﬂ(t) =
the following linear combination of the eigenvectors of L:

1
ENOEDY & Omin0 + Omin,N) ymn), (26)
(m,n)

The particular solution will depend on the initial condition S(0), where S, 5(0) = d4,008,0-
Note that we have

1
S(0) = — y(mmn)
©=> 5V (27)
(m,n)
Thus, the solution is of the form
S, t) = 5a'ﬁ ! 1-4§ t(A(m,n) FX(m,m)) 2mi 28
wp(t) = 25+ 25 D (1= Gmsmi(mod 1)0) €+ 2emm) exp | == (ma + nf) | (28)

(m,n)
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The probability distribution of the continuous-time quantum walk is given by the diagonal
terms P;(t) = S]- ;(t), that is
N—Zt

N-1 -
P](t) = N2 Z m+n(mod N), 0) X |: m, neith + (1 - 5m,n)e I'® ]

(m,n)

X exp [isin (W) cos (W)] exp [%(m + n)j]

We calculate an upper bound on the e-uniform mixing time T5,;,(g). For this, we define

N-1
Mj(t N Z eztsm(27rm/N)wm] (29)
=0
where wy = exp(27i/N). Note that
; N1 ' N—
M) =y X P, M) = 3 (30
m,n=0 m=0
Using these expressions, we have
1 PNz e /N 1 2 — (N mod 2)
P;(t) — N < e TNt Mf(t/2)+ — N [sz(t) - T” (31)
B —tI'/N _ 1
< e T 1+6T(1—2/N)‘. (32)
One can note that |M;(t)| < 1, and therefore,
e 1 N3
S| - | < T (v ey oy, (33)
7=0
Since e~T/N < 1, the above equation shows that Ne T "%t < ¢. This gives the mixing time
bound of

Tpiale) < pln (g) [1+ %] (34)

4. Large Decoherence

We analyze the decoherent continuous-time quantum walks when the decoherence rate I is
large, that is, when I" > 1. In our analysis, we will focus on diagonal sums of the matrix S(t)
from (6). For k =0,... ,N — 1, we define the diagonal sum Dy, as

N-1

Dy = Z Sj, j+k (mod N)» (35)

=0
where the indices are treated as integers modulo N. We note that
d

3D =T (1= 6k0) D (36)
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We refer to the diagonal Dy as magjor and the other diagonals as minor. Equation (36)
suggests that the minor diagonal sums decay strongly with characteristic time of order 1/T.
By the initial conditions, the non-zero elements appear only along the major diagonal. From
(6), it follows that the system will evolve initially in the following way. The elements on the
two minor diagonals nearest to the major diagonal will deviate slightly away from zero due
to nonconformity of classical probability distribution along the major diagonal. This process
with a rate of order 1/4 will compete with a self-decay with rate of order I' > 1/4, thereby
limiting the corresponding off-diagonal elements to small values of the order 1/T'. A similar
argument applies to elements on the other minor diagonals which will be kept very small
compared to their neighbors that are closer to the major diagonal and will be of the order of
1/T'2, etc. By retaining only matrix elements that are of order of 1/I', we derive a truncated
set of differential equations for the elements along the major and the two adjacent minor
diagonals:

1

Sig = 7 Ssg+1+ Sivng = Sj-1,5 = Sji-1), (37)
1

Git1 = g Sivngen = 8i5) = TSjj, (38)
1

Gi-1 = 7 (855 = Si-15-1) =TS -1 (39)

To facilitate our subsequent analysis, we define

aj = Sjj, i = Sjj41+ Sjt1ge (40)
Then, we observe that
(d; = d;_1) (a1 — a;)
a;-: 1 4] , d; = J 5 12 —Td;. (41)

The general solution of the above system of difference equations has the form

N-1
1 )

% = N {Ak,1 exp (—7k,0t) + Ak,2 exp (—,18)} (42)
k=0
g V-1

dj = {Dr1 exp (—7k,0t) + D2 exp (—7k,18)} w’* (43)
k=0

where w = ¢27/N , and the exponents 7 ¢ and 7,1 are the quadratic roots of
1 k
z(I —z) = 3 sin’ (7}1’\[) . (44)

Letting &0 < 7Yk,1, we have

1 ., (7k 1
Ye,0 = ﬁsm <F>+O(f)’ (45)

1 k 1
Yoy = I'— ﬁsin2 (?\f) +o0 <I‘) . (46)
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By the initial conditions a;(0) =d;0 and d;(0) =0, for j =0,...,N — 1. Thus,

1 . .,7k
Ao ~ 1, Apy ~ — T2 sin® N (47)
and, for b = 0,1, we have
Dyp ~ (1) %sin <%> exp (%), (48)

These equations show that the amplitudes of the elements along minor diagonals are reduced
by an extra factor of I' compared to the elements along the major diagonal. Summarizing,
the solution of differential equation at large I' has the form

2

Z exp( sin Alfct) wik, (49)

Based on the above analysis, the full solution for S(t) is given by

a; if j=k
Sia®) =14 /2 i lj-k =1 (50)
0 otherwise

It can be verified that S(t) is a solution to Equation (6) modulo terms of order o(1/T").
The total variation distance between the uniform distribution and the probability distri-
bution of the decoherent quantum walk on Cy is given by

N-1 2 mk ..

sin 2mijk 1
Y Jo- 1= 3 3 Do (- em () - 1L
j=0 j=0

which simplifies to

= 1 1 sin? ’xf 2rky
jgo a;(t) — Nl = ]ZO kzl exp ( t) (T) ‘ . (52)

Lower bound A lower bound on the mixing time for large decoherence rate I' can be
derived as follows. Note that

= 1 1] 1 sin? =k
_ ~
Z a;(t) — vl 2 ao(t) — NN Z exp ( T t) (53)
=0 k=1
2 sin? N
> Nexp T t]|, (54)

where the first inequality uses the term j = 0 only and the second inequality uses the terms
k =1, N — 1. This expression is monotone in ¢, and is a lower bound on the total variation
distance. It reaches ¢ at time Tjper, when

or 2 OTNZ_ [ 2
Tower = ——n[ =) ~ 2 (-2
fower 7 in® T In (Ns) 2 (Ne) ’ (55)

for large N > 1. Here, we are interested in the region where Ne < 1, since our approximation
to Equation (52) is expected to be on a scale much smaller than 1/N (which defines the uniform
distribution).
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Upper bound An upper bound on the mixing time for large decoherence rate I' can be
derived as follows. Consider the following derivation:

N-1 N-1 2 7rk .
1 1 sin 2mkj
jzzo aj(t) — N‘ = Z Z exp ( t) (T)‘ (56)
1N— 2 k
1 X
< N Z exp ( s’ t), (57)
7=0 k=1

since | cos(z)| < 1. The last expression is equal to

N-1 2 7rk [N/2] . 2 7wk
Sl sSin. —++

Nil = 2 — N ¢ 58

ex ( ) > eXp( 5T >, (58)

k=1 k=1
Lv/2] 2
2k°t
< 2 ,;_1 exp <_FN2)’ (59)

where the last inequality is due to sin(z) > 2z/7, whenever 0 < z < 7/2 (see Eq. 4.3.79,
[7]). Since k > 1, we have k? > k. Thus, we have

N-1

D

=0

[Nv/2]

1 kt - 2kt
a;(t)— =| < 2 Z exp( W) < QZexp <_W> (60)
k=1

The last expression is a geometric series that equals 2/[exp(2t/(T'N?2)) — 1]. This expression
is monotone in ¢, and it is the upper bound for the total variation distance. It reaches ¢ value
at time T',pper, when

' N2 2+¢
Tupper = — In < . ) . (61)
5. Conclusions

In this work, we studied the average mixing times in a continuous-time quantum walk on the
N-vertex cycle Cy under decoherence. For this, we used an analytical model developed by
S. Gurvitz [16]. We found two distinct dynamics of the quantum walk based on the rates of
the decoherence parameter. For small decoherence rates, where I'V < 1, the mixing time is

bounded as
1 N 2

This bound shows that 7,,;, is inversely proportional to the decoherence rate I'. For large
decoherence rates I' > 1, the mixing times are bounded as

T N2 2 ' N2 24¢
3 ln<—> < Toiz < 5 ln< ) (63)

s Ne €
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These bounds are show that T,,;, is linearly proportional to the decoherence rate I', but is
quadratically dependent on V. Note that the dependences on N of the mixing times exhibit
the expected quantum to classical transition.

These analytical results already point to the existence of an optimal decoherence rate for
which the mixing time is minimum. Our additional numerical experiments (see Figure (3))
for I' ~ 1 confirmed that there is a unique optimal decoherence rate for which the mixing time
is minimum. This provides a continuous-time analogue of the Kendon and Tregenna results
in [26].

1800 T T
—— N=35
N=30
1600 - —— N=25
—<— N=20
—&- N=15
1400 |- —— N=10
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1200 -
1000 -
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‘f‘v _ - o
200 #& 5 e
& =—=—H = N O
H o009 ° © .
0 VN ~ VA v I ]
0 0.4 0.5 0.6 0.7 0.8 0.9
r
Fig. 3. The quantum to classical transition of mixing time in a continuous-time decoherent

quantum walk on Cy, for N =5, 10,15, 20, 25, 30, 35.
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