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We describe new constructions of graphs which exhibit perfect state transfer on continuous-time

quantum walks. Our constructions are based on generalizations of the double cones and variants
of the Cartesian graph products (which include the hypercube). We also describe a generaliz-

ation of the path collapsing argument (which reduces questions about perfect state transfer to

simpler weighted multigraphs) for graphs with equitable distance partitions.
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1. Introduction

Recently, perfect state transfer in continuous-time quantum walks on graphs has

received considerable attention. This is due to its potential applications for the

transmission of quantum information over quantum networks. It was originally
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introduced by Bose1 in the context of quantum walks on linear spin chains or paths.

Another reason for this strong interest is due to the universal property of quantum

walks as a computational model as outlined by Childs.2 From a graph-theoretic

perspective, the main question is whether there is a spectral characterization of

graphs which exhibit perfect state transfer. Strong progress along these lines were

given on highly structured graphs by Bernasconi et al.3 for hypercubic graphs and by

Bašić and Petković4 for integral circulants. Nevertheless, a general characterization

remains elusive (see Godsil5).

Christandl et al.6,7 showed that the n-fold Cartesian product of the one-link P2

and two-link P3 graphs admit perfect state transfer. This is simply because P2 and P3

have end-to-end perfect state transfer and the Cartesian product operator preserves

perfect state transfer. They also drew a crucial connection between hypercubic net-

works and weighted paths using the so-called path-collapsing argument. This argu-

ment was also used by Childs et al.8 in the context of an exponential algorithmic

speedup for a black-box graph search problem via continuous-time quantum walks.

Christandl et al.7 proved that, although the n-vertex path Pn, for n � 4, has no end-

to-end perfect state transfer, a suitably weighted version of Pn has perfect state

transfer (via a path-collapsing reduction from the n-cube Qn). A somewhat critical

ingredient of this reduction is that each layer of Qn is an empty graph. We generalize

this argument to graphs which have equitable distance partitions (see Godsil and

Royle9).

Bose et al.10 observed an interesting phenomena on the complete graph Kn.

Although Kn does not exhibit perfect state transfer, they show that by removing an

edge between any two vertices, perfect state transfer is created between them. Note

that the graph we obtain from removing an edge from Kn is the double cone K2 þ
Kn�2 (where GþH denotes the join of graphs G and H). This phenomena was also

observed by Tsomokos et al.11 in relation to the cocktail party graph. This obser-

vation was generalized in Angeles-Canul et al.12 where perfect state transfer was

proved for double cones fK2;K2g þG, where G is some regular graph (in place of

complete graphs). The analyses on these double cones showed that perfect state

transfer need not occur between antipodal vertices and that having integer eigen-

values is not a su±cient condition for perfect state transfer (which answered ques-

tions raised by Godsil5).

Our goal in this work is to combine and extend both the Cartesian product and the

double cone constructions. The Cartesian product construction (which combines

graphs with perfect state transfer) has the advantage of producing large diameter

graphs with antipodal perfect state transfer. In fact, this construction provides the

best upper bound for the order-diameter problem; for a given d, let fðdÞ be the

smallest size graph which has perfect state transfer between two vertices of distance

d. Then, the best known bounds are d � fðdÞ � �d, where � ¼ 2, if d is odd, and

� ¼ ffiffiffi
3

p
, if d is even; here, the upper bounds are achieved by P �n

2 and P �n
3 . On the

other hand, the double cone construction allows graphs whose quotients (modulo its

equitable partition) contain cells which are not independent sets. This can potentially

824 Y. Ge et al.



allow for a broader class of graphs with perfect state transfer (see Bose et al.,10

Tsomokos et al.,11 and Angeles-Canul et al.12,13).

In this work, we describe new constructions of families of graphs with perfect state

transfer. First, we extend several of the double cone constructions and relax their

diameter restrictions. We show that the double cone K 2 þG of an arbitrary con-

nected graph G has perfect state transfer if we use edge weights proportional to the

Perron eigenvector of G. This extends results given in Ref. 12 where G is required to

be a regular graph. Then, we prove that the glued double cone graph K1 þG1 �
G2 þK1 has perfect state transfer whenever G1;G2 belongs to some class of regular

graphs and if they are connected using some matrix C which commutes with the

adjacency matrices of G1 and G2. In contrast, Angeles-Canul et al.13 proved that

K1 þGþGþK1 has no perfect state transfer, for any regular graph G, even if

weights are allowed.

For cones with larger diameter, we consider the graph K1 þG1 þH þG2 þK1,

where G1;G2 belong to the same class of regular graphs and H is another regular

graph. This symmetry is a necessary condition for perfect state transfer as shown by

Kay.14 Nevertheless, in contrast to the previous positive results, we show there is no

perfect state transfer whenever H is the empty graph. The 4-dimensional cube Q4

(which has perfect state transfer) is an example of such a graph but without the join

(or complete bipartite) connection.

Our other contribution involves constructions of perfect state transfer graphs

using alternative graph products, namely the weak and lexicographic products. An

interesting property of these products is that they can create perfect state transfer

graphs by combining graphs with perfect state transfer and ones which lack the

property. For example, we show that Q2n �K2m has perfect state transfer, for any

integers n and m. Recall that the complete graph has no perfect state transfer (as

observed by Bose et al.10). In comparison, the Cartesian product requires both of its

graph arguments to have perfect state transfer (with the same perfect state transfer

times). We also consider the lexicographic graph product (or graph composition) and

its generalizations. Our generalized lexicographic product of G and H using a con-

nection matrix (or graph) C is a graph GC ½H� whose adjacency matrix is

AG � C þ I � AH . Note we recover the Cartesian product by letting C ¼ I and the

standard lexicographic product by letting C ¼ J . So, this generalization interpolates

Fig. 1. The Cartesian product construction for perfect state transfer (left to right): (a) P2 � P2 � P2; (b)

P3 � P3 (see Christandl, Datta, Dorlas, Ekert, Kay, and Landahl, Physical Review A 71 (2005) 032312).
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between these two known graph products. For example, we show that the lexico-

graphic product G½Qn� has perfect state transfer for any integral graph G and n � 2.

The proofs we employ exploit elementary spectral properties of the underlying

graphs. Some of our results are summarized in Fig. 2.

2. Preliminaries

Let ½n� denote the set f0; 1; . . . ;n� 1g. For a tuple of binary numbers ða; bÞ 2
f0; 1g2nfð0; 0Þg, let Qa;b denote the set of rational numbers of the form p=q, with

gcdðp; qÞ ¼ 1, where p 	 a ðmod 2Þ and q 	 b ðmod 2Þ. These denote rational num-

bers (in lowest terms) that are ratios of two odd integers or of an odd integer and an

even integer, or vice versa. We denote the even and odd integers as 2Z and 2Zþ 1,

respectively.

The graphs G ¼ ðV ;EÞ we study are ¯nite, simple, undirected, connected, and

mostly unweighted. The adjacency matrix AG of a graph G is de¯ned as AG½u; v� ¼ 1

if ðu; vÞ 2 E and 0 otherwise; we also use u 
 v to mean u is adjacent to v. The

spectrum SpecðGÞ of G is the set of eigenvalues of AG. The graph G is called integral

if all of its eigenvalues are integers. A graph G ¼ ðV ;EÞ is called k-regular if each

vertex u 2 V has exactly k adjacent neighbors. For integers n � 1 and 0 � k < n, let

Gn;k be the set of all n-vertex k-regular graphs. The distance dða; bÞ between vertices a

and b is the length of the shortest path connecting them.

Some standard graphs we consider include the complete graphs Kn, paths Pn, and

circulants graphs. An n-vertex circulant graph G is a graph whose adjacency matrix

is an n� n circulant matrix; that is, there is a sequence ða0; . . . ; an�1Þ so that

AG½j; k� ¼ ak�j, where arithmetic on the indices is done modulo n. Alternatively, we

may de¯ne a circulant graph G on ½n� through a subset S � ½n� where j is adjacent to
k if and only if k� j 2 S; we denote such a circulant as Circðn;SÞ. Known examples

of circulants include the complete graphs Kn and cycles Cn.

Fig. 2. Summary of results on some graphs with perfect state transfer: n is a positive integer; G denotes

some family of regular graphs; ~G denotes an arbitrary connected graph; Pn is the path on n vertices; Qn is

the n-dimensional cube;Kn is the complete graph on n vertices; ODD-CIRC is the class of circulant graphs
with odd eigenvalues; INT is the class of integral graphs. Asterisks indicate results on weighted graphs.
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LetG andH be two graphs with adjacency matrices AG andAH , respectively. The

complement of G ¼ ðV ;EÞ, denoted G ¼ ðV ;EÞ, is a graph where ðu; vÞ 2 E if and

only if ðu; vÞ 62 E, for u 6¼ v. Some relevant binary graph operations are de¯ned in the

following:

. The Cartesian product G�H is a graph de¯ned on V ðGÞ � V ðHÞ where ðg1;h1Þ is
adjacent to ðg2;h2Þ if either g1 ¼ g2 and ðh1;h2Þ 2 EH , or ðg1; g2Þ 2 EG and

h1 ¼ h2. The adjacency matrix of G�H is AG � I þ I � AH .

. The weak product G�H is a graph de¯ned on V ðGÞ � V ðHÞ where ðg1;h1Þ is

adjacent to ðg2;h2Þ if ðg1; g2Þ 2 EG and ðh1;h2Þ 2 EH . The adjacency matrix of

G�H is AG � AH .

. The lexicographic product G½H� is a graph de¯ned on V ðGÞ � V ðHÞ where ðg1;h1Þ
is adjacent to ðg2;h2Þ if either ðg1; g2Þ 2 EG or g1 ¼ g2 and ðh1;h2Þ 2 EH . The

adjacency matrix of G½H� is AG � J þ I � AH .

. The join GþH is a graph de¯ned on V ðGÞ [ V ðHÞ obtained by taking two dis-

joint copies of G andH and by connecting all vertices of G to all vertices ofH. The

adjacency matrix of GþH is AG J

J AH

h i
.

We assume appropriate dimensions on the identity I and all-one J matrices used

above. The n-dimensional hypercube Qn may be de¯ned recursively as Q1 ¼ K2 and

Qn ¼ K2 �Qn�1, for n � 2. The cone of a graph G is de¯ned as K1 þG. The double

cone of G is K2 þG, whereas the connected double cone is K2 þG.

A partition � of a graph G ¼ ðV ;EÞ given by V ¼ ]m
j¼1Vj is called equitable if the

number of neighbors in Vk of a vertex u in Vj is a constant dj;k, independent of u (see

the monographs by Godsil and Royle9 and by Godsil15). The quotient graph ofG over

�, denoted by G=�, is the directed graph with the m cells of � as its vertices and dj;k
edges from the jth to the kth cells of �. The adjacency matrix of G=� is given by

AG=�½j; k� ¼ dj;k.

A graph G has an equitable distance partition � with respect to a vertex a if

� ¼ ]m
j¼0Vj is such that G=� is a path and Vj ¼ fx 2 V : dðx; aÞ ¼ jg where V0 ¼ fag;

typically, we also require that there is a vertex b, antipodal to a, so that Vm ¼ fbg. We

also call a graph a cylindrical cone (see Fig. 3) if it has an equitable distance partition

and is denoted K1 �G1 �; . . . ; �Gm �K1, where Gj are regular graphs and � denote

(semi-)regular bipartite connections (induced by the equitable partition �).

Fig. 3. A cylindrical cone with an equitable distance partition: K1 þK3 �K 2 �K 2 �K3 þK1.

PST, Graph Products and Partitions 827



Further background on algebraic graph theory may be found in the comprehen-

sive texts by Biggs,16 Godsil and Royle,9 and Godsil.15

Next, we describe the continuous-time quantum walk as de¯ned originally by

Farhi and Gutmann.17 For a graph G ¼ ðV ;EÞ, let j ð0Þi 2 C jV j be an initial

amplitude vector of unit length. Using Schr€odinger's equation, the amplitude vector

of the quantum walk at time t is

j ðtÞi ¼ e�itAG j ð0Þi: ð1Þ
Note that since AG is Hermitian (in our case, symmetric), e�itAG is unitary (hence,

an isometry). More detailed discussion of quantum walks on graphs can be found in

the excellent surveys by Kempe18 and Kendon.19 The instantaneous probability of

vertex a at time t is paðtÞ ¼ jhaj ðtÞij2. We say G has perfect state transfer from

vertex a to vertex b at time t if a continuous-time quantum walk on G from a to b has

unit ¯delity or

jhbje�itAG jaij ¼ 1; ð2Þ
where jai, jbi denote the unit vectors corresponding to the vertices a and b,

respectively. The graph G has perfect state transfer if there exist vertices a and b in G

and time t so that (2) is true.

3. Graph Products

In this section, we describe constructions of perfect state transfer graphs using the

weak and lexicographic products. These complement the well-known Cartesian

product constructions (see Christandl et al.6,7).

3.1. Weak product

An interesting property of the weak product graph operator is that it can create

graphs with perfect state transfer by combining ones with perfect state transfer and

ones which lack the property. In contrast, the Cartesian graph product can only

create perfect state transfer graphs from ones which have the property. We start with

the following simple observation.

Fact 1. Let G be an n-vertex graph and H be an m-vertex graph whose eigenvalues

and eigenvectors are given by AGjuki ¼ �kjuki, for k 2 ½n�, and AH jv‘i ¼ �‘jv‘i, for
‘ 2 ½m�, respectively. Let g1; g2 2 VG and h1;h2 2 VH . Then, the ¯delity of a quantum

walk on their weak product G�H between ðg1;h1Þ and ðg2;h2Þ is given by

hg2;h2je�itAG�H jg1;h1i

¼ hg2j
X
k

X
‘

hh2jv‘ihv‘jh1ie�it�k�‘

( )
jukihukj

" #
jg1i: ð3Þ
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Proof. Recall that the adjacency matrix of AG�H is AG �AH . Thus, the eigenvalues

and eigenvectors of the weak product G�H are

AG�Hðjuki � jv‘iÞ ¼ �k�‘ðjuki � jv‘iÞ; where k 2 ½n� and ‘ 2 ½m�: ð4Þ
So, the quantum walk on G�H from ðg1;h1Þ to ðg2;h2Þ is given by

hg2;h2je�itAG�H jg1;h1i ¼
X
k;‘

hg2jukihukjg1ihh2jv‘ihv‘jh1ie�it�k�‘ : ð5Þ

After rearranging summations, we obtain the claim.

Proposition 1. Let G be a graph with perfect state transfer at time tG so that

tGSpecðGÞ � Z�: ð6Þ
Then, G�H has perfect state transfer if H is a circulant graph with odd eigenvalues.

Proof. SupposeG is an n-vertex graph whose eigenvalues and eigenvectors are given

by AGjuki ¼ �kjuki, for k 2 ½n�. Assume that G has perfect state transfer at time tG
from vertex g1 to g2. Also, suppose H be an m-vertex graph whose eigenvalues and

eigenvevtors are given by AH jv‘i ¼ �‘jv‘i, for ‘ 2 ½m�. In Eq. (3), if H is circulant on

m vertices, we have h0jv‘ihv‘j0i ¼ 1=m. Moreover, if each eigenvalue of H is odd, say

�‘ ¼ 2m‘ þ 1, with m‘ 2 Z, then

hg2; 0j expð�itGAG�HÞjg1; 0i ¼
1

m

X
k;‘

hg2jukihukjg1ie�itG�k�‘ ð7Þ

¼ 1

m

X
k

hg2jukihukjg1i
X
‘

e�itG�kð2m‘þ1Þ ð8Þ

¼
X
k

hg2jukihukjg1ie�itG�k ; since tG�k 2 Z�: ð9Þ

The last expression equals to hg2je�itGAG jg1i, by the spectral theorem. This proves the

claim.

Remark. NoteQ2n has eigenvalues �k ¼ 2n� 2k, for k ¼ 0; . . . ; 2n, and perfect state

transfer time t ¼ �=2. Also, P �n
3 has eigenvalues from �k 2 Z

ffiffiffi
2

p
and perfect state

Fig. 4. Graph products with perfect state transfer (left to right): (a) the weak product K2 �K4m, for

m � 1 (shown here with m ¼ 1); (b) the lexicographic product (or composition) Km½Qn� (shown here with

m ¼ n ¼ 2).
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transfer time t ¼ �=
ffiffiffi
2

p
. In both cases, we have t�k 2 Z�, for all k. Thus, by

Proposition 1, we ¯nd that fQ2n;P
�n
3 g �H has perfect state transfer for any cir-

culant H with odd eigenvalues. For example, we may let H ¼ Km be the complete

graph of order m, for an even integer m.

3.2. Lexicographic products

The generalized lexicographic product GC ½H� between a graph G and two graphs H

and C, with VH ¼ VC , is a graph on VG � VH where ðg1;h1Þ is adjacent to ðg2;h2Þ if
and only if either ðg1; g2Þ 2 EG and ðh1;h2Þ 2 EC , or, g1 ¼ g2 and ðh1;h2Þ 2 EH . In

terms of adjacency matrices, we have

AGC ½H� ¼ AG �AC þ I � AH : ð10Þ
We describe constructions of perfect state transfer graphs using generalized lexico-

graphic products. Again, we start with the following simple observation.

Fact 2. Let G be an n-vertex graph whose eigenvalues and eigenvectors are given by

AGjuki ¼ �kjuki, for k 2 ½n�. Let H and C be m-vertex graphs whose adjacency

matrices commute, that is ½AH ;AC � ¼ 0, and whose eigenvalues and eigenvectors are

given by AH jv‘i ¼ �‘jv‘i, and AC jv‘i ¼ �‘jv‘i, for ‘ 2 ½m�, respectively. Suppose g1;

g2 2 VG and h1;h2 2 VH . Then, the ¯delity of a quantum walk on the generalized

lexicographic product GC ½H� between ðg1;h1Þ and ðg2;h2Þ is given by

hg2;h2j expð�itAGC ½H�Þjg1;h1i

¼
X
k

hg2jukihukjg1i
X
‘

hh2jv‘ihv‘jh1ie�itð�k�‘þ�‘Þ: ð11Þ

Proof. The eigenvalues and eigenvectors of GC ½H� are given by

AGC ½H�ðjuki � jv‘iÞ ¼ ð�k�‘ þ �‘Þðjuki � jv‘iÞ; k 2 ½n� and ‘ 2 ½m�: ð12Þ
So, the quantum walk on GC ½H� from ðg1;h1Þ to ðg2;h2Þ is given by

hg2;h2je�itAGC ½H� jg1;h1i ¼
X
k;‘

hg2jukihukjg1ihh2jv‘ihv‘jh1ie�itð�k�‘þ�‘Þ; ð13Þ

which proves the claim.

In the following, we show a closure property of perfect state transfer graphs using

a generalized lexicographic product with the complete graph as a connection matrix.

This is similar to the weak product construction from Proposition 1.

Proposition 2. Let G and H be perfect state transfer graphs with a common time t.

Assume that H is a m-vertex graph which commutes with Km. Suppose that

tjVH jSpecðGÞ � 2Z�: ð14Þ
Then, the lexicographic product GKm

½H� has perfect state transfer at time t.
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Proof. Suppose G has perfect state transfer from g1 to g2 at time t, where

g1; g2 2 VG. Let the eigenvalues and eigenvectors of G be given by AGjuki ¼ �kjuki,
for k 2 ½n�. Also, suppose H is a circulant with perfect state transfer from h1 to h2 at

time t, where h1;h2 2 VH . Let the eigenvalues and eigenvectors of H be given by

AH jv‘i ¼ �‘j�‘i, for ‘ 2 ½m�. Thus, Eq. (11) becomes

hg2;h2je�itAGKm
½H� jg1;h1i ð15Þ

¼
X
k

hg2jukihukjg1i ð16Þ

� e�itð�kðm�1Þþ�0Þhh2jv0ihv0jh1i þ
X
‘ 6¼0

e�itð��kþ�‘Þhh2jv‘ihv‘jh1i
" #

ð17Þ

¼ hg2jeitAG jg1ihh2je�itAH jh1i; ð18Þ
since e�itðm�1Þ�k ¼ eit�k , for all k. This shows that GKm

½H� has perfect state transfer

from ðg1;h1Þ to ðg2;h2Þ at time t.

The standard lexicographic product G½H� is obtained when we let C ¼ J in Eq. (10).

In this case, Eq. (11) decouples nicely and we have a similar result to Proposition 2

but without requiring G to have perfect state transfer.

Lemma 1. LetG be an arbitrary graph and letH be a regular graph with perfect state

transfer at time tH from h1 to h2, for h1;h2 2 VH . Then, G½H� has perfect state

transfer from ðg;h1Þ to ðg;h2Þ, for any g 2 VG, if

tH jVH jSpecðGÞ � 2Z�: ð19Þ
Proof. If H is an m-vertex regular graph, then ½AH ; Jm� ¼ 0. The all-one matrix Jm
has eigenvalues m (with multiplicity one) and 0 (with multiplicity m� 1). Thus,

Eq. (11) becomes

hg;h2je�itH AG½H� jg;h1i ð20Þ

¼
X
k

hgjukihukjgi e�itH ð�kmþ�0Þhh2jv0ihv0jh1i þ
X
‘ 6¼0

e�itH �‘hh2jv‘ihv‘jh1i
" #

ð21Þ

¼ hh2je�itH AH jh1i; ð22Þ
since e�itHm�kðGÞ ¼ 1, for all k, and

P
k jukihukj ¼ I. This proves the claim.

Remark.We will adopt the convention of scaling quantum walk time with respect to

the size of the underlying graphs. Moore and Russell20 proved that a continuous-time

quantum walk on the n-cube Qn has a uniform mixing time of ð2Zþ 1Þð�=4Þn (which

shows the time scaling with respect to the dimension of the n-cube). They used

H ¼ ð1=nÞAQn
as their Hamiltonian — which is the probability transition matrix of

the simple random walk on Qn.

Corollary 1. Suppose H is a kH-regular graph with perfect state transfer at

time tH ¼ ð�=2ÞkH and G is an integral graph (all of its eigenvalues are integers).

Then, G½H� has perfect state transfer provided kH jVH jSpecðGÞ � 4Z.
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Proof. Apply Lemma 1 by noting that e�itH jVH j�kðGÞ ¼ 1, since tH ¼ ð�=2ÞkH and

�kðGÞkH jVH j is divisible by 4, for all k.

The n-cube Qn is a n-regular graph on 2n vertices which has perfect state transfer at

time nð�=2Þ (with time scaling) (see Ref. 3). Thus, for any integral graph G, the

composition graph G½Qn� has perfect state transfer if n � 2.

4. Cones

In this section, we explore some constructions of perfect state transfer graphs which

generalize the double cones studied by Bose et al.,10 Tsomokos et al.,11 and Angeles-

Canul et al.12,13 The goal behind these constructions is to understand the types of

intermediate graphs which allow perfect state transfer between the two antipodal

vertices. For the double cones fK2;K2g þ Gn;k, the intermediate graphs are n-vertex

k-regular graphs and su±cient conditions for perfect state transfer on n and k were

derived by Angeles-Canul et al.12

Here, we consider more complex cones by allowing irregular graphs (on double

cones), by increasing the number of intermediate layers, and by varying the con-

nectivity structure (using semi-regular bipartite connections). We show new perfect

state transfer graphs for irregular double cones and for double half-cones with cir-

culant connections, and also prove negative results for longer diameter cones on join

connections.

4.1. Irregular double cones

We recall the Perron-Frobenius theory of nonnegative matrices. A matrix is called

nonnegative if it has no negative entries. The spectral radius of a matrix A, denoted

�ðAÞ, is the maximum eigenvalue of A (in absolute value). The Perron-Frobenius

theorem for nonnegative matrices states that if A is a real nonnegative n� n matrix

whose underlying directed graph G is strongly connected, then � ¼ �ðAÞ is a simple

eigenvalue of A; moreover, the unique eigenvector corresponding to � has no zero

entries and all entries have the same sign.

In what follows, we denote Kb
2 as the two-vertex graph which equals K2 if b ¼ 1,

and equals K2 if b ¼ 0.

Theorem 3. LetG be any connected graph whose maximum (simple) eigenvalue is �0
with a corresponding positive (normalized) eigenvector jx0i. Consider the double cone
G ¼ Kb

2 þG, for b 2 f0; 1g, where the edges adjacent to the vertices of Kb
2, say A and

B, are weighted proportional to �jx0i. Then, the ¯delity between A and B is given by

hBje�itAG jAi ¼ 1

2
e�it~�

þ
0 cosðt�Þ þ i

~�
�
0

�
sinðt�Þ

" #
� 1

( )
; ð23Þ

where ~�
�
0 ¼ ð�0 � bÞ=2 and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~��

0 Þ2 þ 2�2

q
. Thus, perfect state transfer is

achieved if ~�
þ
0 =� 2 Q0;1 [Q1;0.
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Proof. Let AG be the adjacency matrix of G. The adjacency matrix of G is

AG ¼
0 b �hx0j
b 0 �hx0j

�jx0i �jx0i AG

2
64

3
75: ð24Þ

For 1 � k � n� 1, let �k and jxki be the other eigenvalues and eigenvectors of AG.

Next, we de¯ne the following quantities:

~�
�
0 ¼ �0 � b

2
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~��

0 Þ2 þ 2�2

q
; �� ¼ ~�

þ
0 ��; �� ¼ ~�

�
0 ��: ð25Þ

The eigenvalues of AG are given by �0 ¼ 0, ��, and �k, 1 � k � n� 1, with

corresponding eigenvectors

jz0i ¼
1ffiffiffi
2

p
þ1

�1

j0ni

2
4

3
5; jz�i ¼

1

L�

�=��
�=��
jx0i

2
64

3
75; jzki ¼

0

0

jxki

2
4

3
5 ð26Þ

where L2
� ¼ 2�2=�2

� þ 1. Note ð��L�Þ2 ¼ 2�2 þ �2
� ¼ 2�ð�� ~�

�
0 Þ. The ¯delity

between A and B, namely hBje�itAG jAi, is given by

X
�

�2e�it��

ð��L�Þ2
� 1

2
¼ 1

2

ð�� ~�
�
0 Þe�itð~� þ

0 þ�Þ þ ð�þ ~�
�
0 Þe�itð~� þ

0 ��Þ

2�
� 1

( )
ð27Þ

¼ 1

2
e�it~�

þ
0 cosðt�Þ þ i

~�
�
0

�
sinðt�Þ

" #
� 1

( )
: ð28Þ

For perfect state transfer to occur, it is su±cient to have ~�
þ
0 =� 2 Q0;1 [Q1;0.

Corollary 2. Let G be any connected graph whose maximum (simple) eigenvalue is

�0 with corresponding positive eigenvector jx0i. Consider the double cone G ¼
K 2 þG where the edges adjacent to the two vertices ofK2, say A and B, are weighted

according to
ffiffiffi
n

p jx0i. Then, perfect state transfer exists from A to B if

�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2
0 þ 8n

p 2 Q0;1 [Q1;0: ð29Þ

Proof. In Theorem 3 with b ¼ 0, let � ¼ ffiffiffi
n

p
and note ~�

�
0 ¼ �0=2. Thus, ~�

þ
0 =� ¼

�0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 þ 8n

p
, which proves the claim.

Remark. Given n, we may choose �0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
8n=3

p
so the su±cient condition �0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2
0 þ 8n

p
¼ 1=2 is satis¯ed for perfect state transfer. Moreover, we can ¯nd a uni-

form edge weighting for G so that
ffiffiffiffiffiffiffiffiffiffiffi
8n=3

p
is a dominant eigenvalue. Thus, in the

presence of weights, any double cone K2 þG has perfect state transfer.
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4.2. Glued double cones

Analogous to the construction of glued-(binary)trees in Childs et al.,8 we consider

gluing two double cones using a semi-regular bipartite connection to obtain a perfect

state transfer graph. In contrast, gluing two double cones using the join (full

bipartite) connection yields no perfect state transfer (even with weights) as proved by

Angeles-Canul et al.13

Theorem 4. Let G 2 Gn;k and let C be a symmetric Boolean matrix which commutes

with the adjacency matrix of G. Suppose that Cj1ni ¼ �j1ni. Let k� ¼ 1=2ðk� �Þ and
�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k� þ n
p

. Then, the graph G ¼ K1 þG �GþK1, formed by taking two copies

of K1 þG and connecting the copies of G using C, has perfect state transfer if

�þ=�� 2 Q0;1 [Q1;0 and at least one of �=�þ or �=�� is in Q0;1.

Proof. Suppose the eigenvalues and eigenvectors of G are �k and jvki, respectively,
where k ¼ �0 > �1 � 
 
 
 � �n�1. The adjacency matrix of G is given by

AG ¼

0 0 h1nj h0nj
0 0 h0nj h1nj

j1ni j0ni AG C

j0ni j1ni C AG

2
6664

3
7775: ð30Þ

Let k� ¼ 1=2ðk� �Þ and �2
� ¼ k2

� þ n. Let �� ¼ kþ ��þ and �� ¼ k� ���. The
eigenvalues of AG are given by ��, ��, and ��k, for k 6¼ 0, with corresponding

eigenvectors:

j��i ¼
1

L�

1

1

1

n
��j1ni

1

n
��j1ni

2
6666664

3
7777775
; j��i ¼

1

M�

þ1

�1

þ 1

n
��j1ni

� 1

n
��j1ni

2
6666664

3
7777775
; j�ki ¼

1ffiffiffi
2

p
0

0

jvki
�jvki

2
6664

3
7775; ð31Þ

Fig. 5. Irregular weighted double cones have perfect state transfer (left to right): (a) K 2 þ P3; (b)

K 2 þ P5.
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where L2
� ¼ 2

n ðnþ �2
�Þ and M 2

� ¼ 2
n ðnþ � 2

�Þ are the normalization constants. The

quantum walks between involving the cone vertices, say A and B, are given by

hBje�itAG jAi ¼
X
�

e�it��

L2
�

�
X
�

e�it��

M 2
�
; ð32Þ

hAje�itAG jAi ¼
X
�

e�it��

L2
�

þ
X
�

e�it��

M 2
�
: ð33Þ

At time t ¼ 0, the second equation yields 1 ¼ P
� L�2

� þP
� M �2

� . To achieve

perfect state transfer, it su±ces to require

e�it�� ¼ þ1; e�it�� ¼ �1; e�it�=2 ¼ �1: ð34Þ

We may restate these conditions as �þ=�� ¼ Q0;1 [Q1;0 and f�=�þ; �=��g\
Q0;1 6¼ ;.
Remark. In Theorem 4, the result also holds if we replaceG with two distinct graphs

G1 and G2 from the same family Gn:k.

In the following corollary, we describe an explicit family of glued double cones

which exhibit perfect state transfer. The construction uses a pair of circulant families

of graphs (see Fig. 6).

Corollary 3. For a � 2, let n ¼ 15� 22ða�2Þ, k ¼ 3� 2a�1, and � ¼ 4� 2a�1.

Consider two circulant graphs G ¼ Circðn; ½k=2�Þ and C ¼ Circðn; ½�=2�Þ. Then, the
graph G ¼ K1 þG �GþK1 has perfect state transfer, where the connection � is

speci¯ed by C.

Proof. Note we have k� ¼ 1=2ðk� �Þ ¼ 2a�2ð3� 4Þ and �� ¼ 2a�2ðð3� 4Þ2þ
15Þ 2 2a�2f8; 4g. Thus, �þ=�� ¼ 2 2 Q0;1 and �=�� ¼ 2 2 Q0;1, which satisfy the

su±ciency conditions for perfect state transfer in Theorem 4.

4.3. Cylindrical cones

In this section, we consider graphs of the form K1 þG1 þH þG2 þK1, where G1;

G2 2 Gn;k andH 2 Gm;‘. We show a negative result for perfect state transfer whenever

Fig. 6. Glued cones (left to right): (a) K1 þG �GþK1 has perfect state transfer, with (b) G ¼
Circð15; f1; 2; 4gÞ; (c) C ¼ Circð15; f1; 2; 4; 7gÞ. The connection � is de¯ned by C.
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H is the empty graph. This generalizes known negative results on P4 and K1 þGþ
GþK1 (see Christandl et al.7 and Angeles-Canul et al.13).

Theorem 5. For any integers n; k;m where n � 1, 0 � k < n, and m � 1, the graph

K1 þG1 þKm þG2 þK1 has no perfect state transfer, whenever G1;G2 2 Gn;k.

Proof. Let G be the graph K1 þG1 þH þG2 þK1, where G1;G2 2 Gn;k and

H 2 Gm;‘. Let AG1
be the adjacency matrix of G1 with eigenvalues �r and

eigenvectors juri; similarly, let AG2
be the adjacency matrix of G2 with eigenvalues

�r and eigenvectors jvri, for r 2 ½n�. Note k ¼ �0 ¼ �0 are the simple maximum

eigenvalues of bothG1 andG2. Let AH be the adjacency matrix ofH with eigenvalues

�s and eigenvectors jwsi, where ‘ ¼ �0 is the simple maximum eigenvalue ofH. Thus,

the adjacency matrix of G is given by

AG ¼

0 0 h1nj h0nj h0nj
0 0 h0nj h0nj h1nj

j1ni j0ni AG1
Jn;m On;n

j0mi j0mi Jm;n AH Jm;n

j0ni j1ni On;n Jn;m AG2

2
666664

3
777775: ð35Þ

In our case, we have AH ¼ Om;m is the zero m�m matrix and ‘ ¼ 0.

Let �� be the roots of quadratic polynomial �2 � k�� n ¼ 0; thus �� ¼ ~k ��,

where ~k ¼ k=2 and �2 ¼ ~k
2 þ n. Consider roots of the cubic polynomial ð�� ‘Þ

ð�2 � k�� ð2mþ 1ÞnÞ � 2‘mn ¼ 0. For ‘ ¼ 0, zero is a root of this cubic along with

the two roots of the quadratic equation �2 � k�� ð2mþ 1Þn ¼ 0. Let �� ¼ ~k � �,

where �2 ¼ ~k
2 þ ð2mþ 1Þn. The eigenvalues of AG are given by ��, ��, 0, and �

ð1Þ
r ,

�
ð3Þ
r , for r 6¼ 0, and �

ð2Þ
s , for s 6¼ 0, with corresponding eigenvectors:

j��i ¼
1

L�

þ1

�1

þ 1

n
��j1ni
j0ni

� 1

n
��j1ni

2
66666666664

3
77777777775
; j��i ¼

1

M�

1

1

1

n
��j1ni
2j1ni

1

n
��j1ni

2
66666666664

3
77777777775
; jv0i ¼

1

N

1

1

j0ni
�1=mj1ni

j0ni

2
666666664

3
777777775
;

ð36Þ
and

j� ð1Þ
r i ¼

0

0

juri
j0mi
j0ni

2
666664

3
777775; j� ð2Þ

s i ¼

0

0

j0ni
jwsi
j0ni

2
666664

3
777775; j� ð3Þ

r i ¼

0

0

j0ni
j0mi
jvri

2
666664

3
777775; ð37Þ
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where 1 � r < n and 1 � s < m. Here L�, M� and N are normalization factors.

We have the following ¯delities:

hBje�itAG jAi ¼ �
X
�

e�it��

L2
�

þ
X
�

e�it��

M 2
�

þ 1

N 2
; ð38Þ

hAje�itAG jAi ¼
X
�

e�it��

L2
�

þ
X
�

e�it��

M 2
�

þ 1

N 2
: ð39Þ

At time t ¼ 0, Eq. (39) yields

1 ¼
X
�

1

L2
�
þ
X
�

1

M 2
�
þ 1

N 2
: ð40Þ

So, to achieve perfect state transfer in Eq. (38), we require that

e�it�� ¼ �1; e�it�� ¼ þ1: ð41Þ
This implies tð ~k ��Þ 2 ð2Zþ 1Þ� and tð ~k � �Þ 2 ð2ZÞ�. We restate these conditions

as

~k ��
~k � �

2 Q1;0;
~k ��
~k � �

2 Q1;0: ð42Þ

Clearly it is necessary to have �;� 2 Z, else the above quotients are not even

rational.

Observe that if both ~k and n are odd, both quotients lie inQ1;1. If ~k is even and n is

odd, the same is true. If ~k is odd and n is even, then the numerator and denominator

of at least one of the quotients must be congruent to 2 modulo 4, and so one lies in

Q1;1. If both ~k and n are even, then we can divide the numerator and denominator of

each quotient by 2 (clearly, then, 4 divides n as well), rewriting the conditions as:

~k 0 �� 0
~k
0 � � 0 2 Q1;0;

~k 0 �� 0
~k
0 � � 0 2 Q1;0; ð43Þ

where ~k
0 ¼ ~k=2, � 0 ¼ �=2, and � 0 ¼ �=2. Since this is in essence the same set of

conditions as before, we argue by in¯nite descent that there can be no solutions of this

form. Since we have ruled out all parity combinations for ~k and n, there can be no

solutions and no perfect state transfer in this case.

Fig. 7. Cylindrical cones of diameter ¯ve with no perfect state transfer (left to right): (a)

K1 þK3 þK1 þK3 þK1; (b) K1 þK3 þK 2 þK3 þK1.
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5. Equitable Partitions

The path-collapsing argument was used by Christandl et al.7 to show that weighted

paths have perfect state transfer. This follows because the (unweighted) n-dimen-

sional hypercube Qn has perfect state transfer and it can be collapsed to a weighted

path. On the other hand, this argument was used in the opposite direction by Childs

et al.8 to show that a continuous-time quantum walk on an unweighted layered graph

has polynomial hitting time by observing its behavior on a corresponding weighted

path.

A natural way to view this reduction is by using equitable distance partitions and

their quotient graphs (for example, see Godsil15 as well as Krovi and Brun21).

However, most quotient graphs derived this way are directed and hence not suitable

for quantum walks. The path-collapsing reduction o®ers a way to symmetrize these

directed quotient graphs into undirected graphs. In what follows, we formalize and

generalize this argument using the theory of equitable partitions (see Godsil15).

Lemma 2. Let G ¼ ðV ;EÞ be a graph with an equitable distance partition � ¼
]m�1
j¼0 Vj with respect to vertices a and b. Then, the ¯delity of a quantum walk on G

between vertices a and b is equivalent to the ¯delity of a quantum walk on a

symmetrized quotient graph G=� between �ðaÞ ¼ V0 and �ðbÞ ¼ Vm�1; namely, if

BG=�½j; k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj;kdk;j

p
, for all j; k 2 ½m�, then

jhbje�itAG jaij ¼ jh�ðbÞje�itBG=� j�ðaÞij: ð44Þ
Proof. For j; k 2 ½m�, let dj;k be the number of vertices in Vk adjacent to each vertex

x in Vj. Let P be the characteristic partition n�m matrix of �; namely, P ½j; ‘� ¼ 1 if

vertex j belongs to partition V‘, and 0 otherwise. Let Q be the matrix P after we

normalize each column; so QTQ ¼ In. Then, we have

AGQ ¼ QBG=�; ð45Þ
where

BG=�½j; k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj;kdk;j

q
: ð46Þ

The matrix BG=� is de¯ned implicitly in Ref. 7 through the columns of Q (viewed as

basis states in a new graph).a The following spectral correspondences between AG

and BG=� can be shown:

. If AGjyi ¼ �jyi, then BG=�jxi ¼ �jxi, where jxi ¼ QT jyi, provided QT jyi 6¼ 0.

. If BG=�jxi ¼ �jxi, then AGjyi ¼ �jyi, where jyi ¼ Qjxi.
Suppose that EðAGÞ ¼ fjyki : k 2 ½n�g is the (orthonormal) set of eigenvectors of AG;

similarly, let EðBG=�Þ ¼ fjxki : k 2 ½m�g be the (orthonormal) set of eigenvectors of

BG=�. Since �ðaÞ ¼ fag and �ðbÞ ¼ fbg are singleton partitions, we have QT jai ¼
aNote BG=� is di®erent from AG=� (as de¯ned in Ref. 15), since BG=� is symmetric and represents an

undirected weighted graph whereas AG=� represents a directed graph.
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j�ðaÞi and QT jbi ¼ j�ðbÞi. Thus, we have

h�ðbÞje�itBG=� j�ðaÞi ¼ h�ðbÞj
Xm�1

k¼0

ðe�it�k jxkihxkjÞj�ðaÞi ð47Þ

¼ hbj
Xm�1

k¼0

ðe�it�kQjxkihxkjQT Þjai ð48Þ

¼ hbje�itAG jai: ð49Þ

The last step holds since the orthonormal eigenvectors of AG can be divided into two

types: those that are constant on cells of � (the ones of the form jyki ¼ Qjxki, for
some eigenvector jxki of BG=�) and those that sum to zero on each cell of �. The

eigenvectors of the latter type do not contribute to the quantum walk between the

antipodal vertices a and b.

Remark. Lemma 2 shows that the double cones K2 þG, for regular graphs

G 2 Gn;k, which have diameter two, are equivalent (in the sense of the ¯delity of

quantum walks between the antipodal vertices) to a weighted P3 with adjacency

matrix ~A1 (shown below).

~A1 ¼
0

ffiffiffi
n

p
0ffiffiffi

n
p

k
ffiffiffi
n

p

0
ffiffiffi
n

p
0

2
64

3
75; ~A2 ¼

0
ffiffiffi
n

p
1ffiffiffi

n
p

k
ffiffiffi
n

p

1
ffiffiffi
n

p
0

2
64

3
75: ð50Þ

The case of the connected double cone K2 þG, where G 2 Gn;k, can also be shown to

be equivalent to the weighted graph with adjacency matrix ~A2 (shown above). This

simpli¯es the analyses on values of n and k which allows perfect state transfer (see

Angeles-Canul et al.12).

In what follows, we use the generalized path-collapsing argument above to revisit

(unweighted) graphs of diameter three and compare them to (weighted) paths of

length four. Then, we compare a family of symmetrically weighted paths P4 (without

self-loops) with a construction based on weak products. This symmetry restriction on

the weights can be made without loss of generality (see Kay14).

Lemma 3. Let P4ð�;�Þ denote a weighted path whose middle edge has weight � while

the other two edges have unit weights and whose two internal vertices have self-loops

with weight � each. Let �� ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� �Þ2 þ 4

p
. Then, P4ð�;�Þ has perfect state

transfer if :

(1) Case � 6¼ 0: �þ=�� 2 Q0;1 [Q1;0 and f�=�þ; �=��g \ ðQ0;1 [Q1;1Þ 6¼ ;; or
(2) Case � ¼ 0: f�=�þ; �=��g � Q1;1 or f�=�þ; �=��g � Q1;0.

Proof. Let k� ¼ ð�� �Þ=2, � 2þ ¼ k2þ þ 1, and �2� ¼ k2� þ 1. The adjacency matrix

A of P4ð�;�Þ, whose eigenvalues are �� ¼ kþ ��þ and �� ¼ k� ���, and its
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corresponding eigenvectors j��i and j��i are given by:

A ¼
0 1 0 0

1 � � 0

0 � � 1

0 0 1 0

2
664

3
775; j��i ¼

1

L�

1

1
��
��

2
664

3
775; j��i ¼

1

M�

þ1

�1

þ��
���

2
6664

3
7775; ð51Þ

where L2
� ¼ 4�þð�þ � kþÞ and M 2

� ¼ 4��ð�� � k�Þ. The end-to-end ¯delity of

the quantum walk on P4ð�;�Þ is given by

h3je�itP4ð�;�Þj0i ¼
X
�

e�it��

L2
�

�
X
�

e�it��

M 2
�
: ð52Þ

At time t ¼ 0, h0je�itP4ð�;�Þj0i equals
P

� 1=L2
� þP

� 1=M 2
� ¼ 1. Thus, to achieve

unit ¯delity when � 6¼ 0, it su±ces to have e�it�=2 ¼ �1, cosðt�þÞ ¼ �1, and cosðt
��Þ ¼ �1 where t�þ and t�� di®er in their parities (as a multiple of �) while t� is of

even parity. But, when � ¼ 0, and thus �þ ¼ ��, it su±ces to simply have t� be of

odd parity.

Note Theorem 4 forms a special case of Lemma 3 when � 6¼ 0. The fact that the

analyses are equivalent follows from Lemma 2.

Remark. Let P4ð�Þ denote P4ð�; 0Þ; that is, a weighted path with no self-loops. In

this case, �þ ¼ �� and a su±cient perfect state transfer condition is

�þ=� 2 Q1;1 [Q0;1. So, P4ð�Þ has end-to-end perfect state transfer if either:

. for odd integerK and even integer L, with L > K, we have � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2=ðL2 �K 2Þp

;

or

. for odd integers K and L, with 2L > K, we have � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2=ð4L2 �K 2Þp

.

The weak product K2 �K4k, for k � 1, has perfect state transfer by Proposition 1

(see Fig. 4(a)). The path collapsing argument shows K2 �K4k is equivalent to P4ð	Þ
where 	 ¼ ð4k� 2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k� 1
p

> 1. Thus, for perfect state transfer, the weak product

construction K2 �K4k yields edge weights greater than unity, whereas P4ð�Þ can

yield edge weights smaller than unity (with longer PST times). We are not aware of

unweighted constructions which can emulate the latter property.

6. Conclusion

Using the Cartesian graph product, Christandl et al.7 constructed two families of

perfect state transfer graphs with large diameter, namely, Qn and P �n
3 . They also

showed that weighted paths have perfect state transfer by a path-collapsing

reduction from Qn. This argument was used speci¯cally on graphs with equitable

distance partitions whose cells are empty graphs. Our original motivation was to

generalize the Cartesian product construction and extend the path-collapsing argu-

ment to larger classes of graphs.
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In this work, we described new families of graphs with perfect state transfer using

the weak graph product and a generalized lexicographic product (which includes the

Cartesian graph product as a special case). We also considered constructions invol-

ving double cones, which allow the cell partitions to be non-empty graphs (unlike the

Cartesian product graphs). Here, we prove perfect state transfer on double cones of

irregular graphs and on double half-cones connected by circulants. These generalized

results by Bose et al.,10 Tsomokos,11 and Angeles-Canul et al.12 on double cones of

regular graphs and complement the negative result on double half-cones given by

Angeles-Canul et al.13 Although these cone constructions involve small diameter

graphs, they provided insights into which intermediate graphs allow antipodal per-

fect state transfer. Non-antipodal perfect state transfer can also be derived from

certain cones (as shown in Angeles-Canul et al.12).

We also generalized the path-collapsing argument using the theory of equitable

partitions. This can be used to show that certain weighted paths with self-loops have

perfect state transfer. A possible interesting direction is to study random graphs with

equitable distance partitions (as in the Anderson model22). A weighted path-collapsing

argument would also be interesting since it can be used to analyze graphs produced in

Feder's intriguing construction.23 The most elusive graph not covered by this fra-

mework is P �n
3 since none of the path-collapsing arguments apply. This is because the

connections are irregular (see Fig. 1(b)). We leave these as open questions.
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