
Model Elimination

with Basic Ordered Paramodulation

Max Moser

1?

| Christopher Lynch

2

| Joachim Steinbach

1?

1

Institut f�ur Informatik, Technische Universit�at M�unchen

80290 M�unchen, Germany, Phone: +49-89/521096, Fax: +49-89/526502

[moser,steinbac]@informatik.tu-muenchen.de

2

INRIA Lorraine et CRIN, Campus Scienti�que, BP 101,

54602 Villers-les-Nancy cedex, France, Phone: +33-83/593012, Fax: +33-83/278319

lynch@loria.fr

Keywords. First order logic with equality, matrix methods.

1 Introduction

Essentially based on Paramodulation [14], various re�nements for the e�cient

handling of equality in automated theorem proving have been proposed. The

most successful among them are based on Knuth-Bendix Completion [8] which

achieves a drastic reduction of the search space by restricting the application

of equations by orderings on terms. In particular in [1, 12], re�ned calculi for

equational clausal logic are presented, based on Paramodulation with orderings

and utilizing the Basic strategy [7] which was originally developed forNarrowing .

A commonproperty of all these approaches is that they are inherently bottom-

up, which means that inferences between arbitrary clauses in general cannot be

disallowed. On the other hand, a successful paradigm helping to improve search

for refutations is to proceed goal-directed , i.e. inferences are only allowed if a so-

called goal clause is involved which either leads to a new goal clause or replaces

the old one. For clausal logic without equality, divers goal-directed calculi ex-

ist, one of them being the tableau-based Model Elimination calculus [10] which

allows powerful search pruning techniques and an e�cient implementation [9].

Unfortunately, it turns out that most re�nements of Paramodulation are not

compatible with the goal-directed paradigm. Thus, in order to preserve com-

pleteness, it is necessary to perform inferences into and even below variables

(i.e. the functional re
exive axioms are needed). Since everything uni�es with a

variable, this is a proli�c inference rule and leads to an exploding search space.

This problem has been addressed in [16] by relaxing the uni�cation to Lazy

Paramodulation, but there is currently no such approach for Model Elimination.

Even worse, although Lazy Paramodulation restricts inferences to just non-

variable positions, the pure goal-directed paradigm does not allow to take ad-

vantage of orderings. Thus, search on the clause level can be made goal-directed

by giving up goal-directedness on the term level.

?

Supported by the Deutsche Forschungsgemeinschaft under grant Je 112/3.

In this paper, we introduce a novel approach for goal-directed theorem prov-

ing with equality which integrates Basic Ordered Paramodulation into a Model

Elimination framework. The underlying idea is to relax goal-directedness by com-

bining the proof search with the bottom-up saturation of the original formula.

In order to bene�t from the goal-directedness as much as possible, only certain

inferences are performed in the saturation. Actually, we show that it is enough to

perform only inferences into the larger sides of positive equations. Therefore, the

saturation part of the combined calculus is not complete by itself although the

goal-directed part can be for certain problems. In the case without equality, the

combined calculus thus reduces to pure Model Elimination, and to Completion

and Narrowing in the case of unit equality.

The paper is organized as follows. Following the introduction of our combined

calculus MEP in Section 3, the rest of the paper is devoted to the proof of

completeness, which consists of three steps. First, in Section 4 we present a

new bottom-up calculus | Basic Factored Paramodulation | and prove its

completeness. Based on the saturation under Basic Factored Paramodulation,

we derive in Section 5 abstract representations of speci�c unsatis�able sets of

clauses. Finally, concluding the completeness argument, in Section 6 we show

that the thereby constructed abstract representations of unsatis�able sets of

clauses can be used to derive tableaux of our new calculus.

For complexity reasons, not all details of the proofs could be included in this

paper. An unabridged version however can be found in [11].

2 Preliminaries

We use the standard de�nitions for syntax and semantics of clausal logic with

equality (cf. [10, 6, 1]). For what follows, we consider the subclass of equational

formulae where non-equational atoms A are encoded as A ' > for a new func-

tion symbol > and inferences among non-equality literals can be simulated by

respective equality inference rules.

We also assume familiarity with rewriting (cf. [6]), orderings (cf. [17]), and

constraints (cf. [12]). For what follows, reduction orderings are assumed to be

ground total.

By (ordering and equality) constraints we mean conjunctions of atomic con-

straints over the binary predicate symbols `

:

=' for syntactic equality and `�' for

the underlying reduction ordering. > is the empty constraint which represents

true. Constraints are equivalently considered as sets of atomic constraints and

we write � � � if every atomic constraint in � is also member of �. A constraint

� is satis�able if there exists some ground instance �� which is equivalent to

>. A constrained clause C[[�]] consists of a clause C and a constraint �. When-

ever not indicated otherwise, we rename constrained clauses to new variants

before we apply inferences. When needed, we will denote constrained clauses

as

~

C = C[[�]] in order to be able to distinguish them from the unconstrained

disjuncts of literals C.

3 The Calculus MEP

The Model Elimination calculus with Basic Ordered Paramodulation, for short

MEP, consists of two parts: inference rules for bottom-up saturation MEP

S

and

goal-directed tableau construction MEP

T

.

The saturation part MEP

S

consists of only one inference rule which overlaps

left-hand sides of positive equations in clauses.

Factored Positive Overlap:

(l

1

' r

1

_ � � � _ l

n

' r

n

_ B)[[�]] (u ' v _ C)[[�]]

(u[r

1

]

p

' v _ � � � _ u[r

n

]

p

' v _ B _ C)[[�]]

where (i) p 2 FPos(u) and (ii) � = (� ^ � ^ u

jp

:

= l

1

^ � � � ^ u

jp

:

= l

n

^

l

1

� r

1

^ � � � ^ l

n

� r

n

^ u � v).

3

The result of the saturation of a formula F under MEP

S

is denoted by

Sat(MEP

S

; F).

The goal-directed proof happens by constructing particular proof objects:

branches and tableaux .

De�nition1. [Branches, Tableaux] A branch hh L

1

; L

2

; : : : ; L

n

ii is a sequence

of literals. For a branch 	 and a literal L

n+1

, hh 	 j L

n+1

ii denotes the new

branch containing all literals from 	 together with the new leaf literal L

n+1

.

For a branch 	 and a clause L

1

_ � � � _L

m

, the expression hh 	 j L

1

_ � � � _L

m

ii

represents the multiset of extended branches fhh 	 j L

1

ii; : : : ; hh 	 j L

m

iig. We

write L 2 	 if 	 contains L. A branch 	 is said to be closed for a constraint �

if 	 contains a literal s 6' t such that s� = t� for all substitutions � satisfying �.

A tableau is a multiset T of branches together with a constraint �. A tableau

T [[�]] is said to be closed if every branch in T is closed for �.

4

The goal-directed construction of the tableau starts with the initial tableau

hhCii[[>]] where C is any

5

clause in Sat (MEP

S

; F), the saturation of the original

formula under MEP

S

, and ends when the closed tableau ;[[�]] is obtained where

� is satis�able. To derive a closed tableau from an initial tableau, the following

inference rules from MEP

T

can be applied.

Re
ection:

(fhh 	 j s 6' t iig [T)[[�]]

T [[� ^ s

:

= t]]

3

FPos(u) is the set of non-variable positions in the term u.

4

For convenience, we always remove closed branches since they no longer contribute

to the search for a proof. Thus, a closed tableau has only an empty set of branches.

5

In particular, we can require that C only contains negative literals. Thus, C is already

contained in F .

Negative Extension/Reduction:

(fhh 	 j s 6' t iig [T)[[�]]

(hh hh 	 j s 6' t ii j s[r]

p

6' t _ C ii [T)[[�]]

where (i) p 2 FPos(s), (ii) (l ' r _C)[[�]] 2 Sat(MEP

S

; F) or l ' r 2 	; C = 2

and � = >, (iii) � = (� ^ � ^ s

jp

:

= l ^ l � r ^ s � t).

Lazy Positive-to-Negative Extension/Reduction:

(fhh 	 j l ' r iig [T)[[�]]

(hh hh 	 j l ' r ii j s

jp

6' l _ s[r]

p

6' t _ C ii [T)[[�]]

where (i) p 2 FPos(s), (ii) (s 6' t_C)[[�]] 2 Sat(MEP

S

; F) or s 6' t 2 	; C = 2

and � = >, (iii) � = (� ^ � ^ l � r).

6

Lazy Positive-to-Positive Extension/Reduction:

(fhh 	 j l ' r iig [T)[[�]]

(hh hh 	 j l ' r ii j v

jq

6' l _ u ' v[r]

q

_ C ii [T)[[�]]

where (i) q 2 FPos(v), (ii) (u ' v_C)[[�]] 2 Sat (MEP

S

; F) or u ' v 2 	; C = 2

and � = >, (iii) � = (� ^ � ^ l � r ^ u � v).

6

Example 2. The following shows a detail of a MEP-tableau for the formula

F = f f(a; b) 6' b; f(b; b) ' g(a; b); a ' b; f(x; x) ' x _ g(y; y) ' y g. Let �

be a ground total reduction ordering such that all equations above are oriented

from left to right. Notice that in this example, Sat(MEP

S

; F) = F .

f(a; b) 6' b

f(b; b) 6' b

(Ext: a'b)

x 6' b

(Ext: f(x;x)'x)

g(y; y) ' y

g(a; b) 6' g(y; y)

g(b; b) 6' g(y; y)

(Ext: a�b)

f(b; b) ' y

(Ext: f(b;b)'g(a;b))

f(a; b) 6' f(b; b)

f(b; b) 6' f(b; b)

(Ext: a�b)

b 6' y

(Red: f(a;b)6'b)

6

We are able to restrict the two lazy inference rules even more e.g. by replacing

s

jp

6' l with s

jp

6' x and adding x

:

= l for a new variable x and `if l 62 Var then

Head(s

jp

)

:

= Head(l)' to �.

The tableau starts with the only negative clause f(a; b) 6' b. After simplifying

this literal to f(b; b) 6' b by using a ' b in a negative extension step, we can ap-

ply a further negative extension step into f(x; x) ' x of f(x; x) ' x_g(y; y) ' y

which, on one hand, leads to the uni�able leaf literal x 6' b, and on the other

hand, the new positive leaf literal g(y; y) ' y. Here, the only inference we

can apply is a lazy positive-to-positive extension step into the right-hand side

of f(b; b) ' g(a; b) which yields two new branches with g(a; b) 6' g(y; y) and

f(b; b) ' y. Although g(a; b) 6' g(y; y) can easily be closed after applying a ' b

again, in order to close the branch with f(b; b) ' y we need to apply a lazy

positive-to-negative reduction step into the literal f(a; b) 6' b. The rest of the

tableau is closed straightforwardly.

The following theorem is the main result of this paper.

Theorem3. [Completeness] MEP is refutationally complete.

In the subsequent sections, we will prove this theorem by a simulation ar-

gument, showing that for every refutation by the new bottom-up calculus Basic

Factored Paramodulation BFP, there is a closed MEP-tableau using clauses in

the saturation under MEP

S

.

The simulation is based on the BFP calculus which is proven to be complete

in Theorem 4 of Section 4, using a model construction argument similar to the

one in [1]. Unfortunately, the completeness of BFP depends on the selection of

maximal literals in clauses which might eventually be a negative literal although

there are still other positive literals in the clause which could be overlapped.

The core of the simulation argument for the tableau construction is to `delay'

these inferences on negative literals and `save' them by using the abstract frame-

work of path sets. More precisely, for every step in the saturation under BFP we

perform corresponding operations on the path sets associated with the involved

clauses and thereby derive new sets of clauses with speci�c properties. In partic-

ular, inferences involving only positive literals are immediately performed on the

clauses in the path set while inferences involving a negative literal are abstractly

represented by a path and can thus be delayed until the tableau construction.

Here, the Basic restriction is an important ingredient since the set of positions

to which inferences can be applied is not changed by delaying them. The main

result of Section 5 is Theorem 14 which guarantees the existence of speci�c path

sets for a corresponding refutation under BFP.

Providing abstract and calculi-independent representations of contradictions

of speci�c sets of clauses, we can use the resulting path sets in particular to

derive contradictions under our goal-directed calculus. Thus, in Theorem 18 of

Section 6 we show that for every such path set there is a closed MEP-tableau.

For this, speci�c operations on path sets are de�ned which directly correspond

with the inference rules of MEP

T

.

4 Basic Factored Paramodulation

As the basis of our simulation argument, we now introduce the new Basic Fac-

tored Paramodulation calculus for equational clausal logic, for short BFP. Its

outstanding property is that it does neither require inferences into right-hand

sides of equations nor an additional rule on positive literals (positive or equational

factoring), like most of the existing Basic Paramodulation calculi [1, 12, 15].

Instead, Basic Factored Paramodulation uses a related inference rule, factored

overlap, which applies inferences on positive equations in a very homogeneous

way and thus allows for a straight simulation argument.

The BFP calculus consists of re
ection and factored positive overlap (cf.

Section 3) together with the following inference rule.

Factored Negative Overlap:

(l

1

' r

1

_ � � � _ l

n

' r

n

_ B)[[�]] (s 6' t _ C)[[�]]

(s[r

1

]

p

6' t _ � � � _ s[r

n

]

p

6' t _ B _ C)[[�]]

where (i) p 2 FPos(s) and (ii) � = (� ^ � ^ s

jp

:

= l

1

^ � � � ^ s

jp

:

= l

n

^

l

1

� r

1

^ � � � ^ l

n

� r

n

^ s � t).

In addition to the conditions for re
ection and factored positive and negative

overlap, we require that the literals which are involved in an inference are selected

by an underlying selection function. Here, a selection function Sel is a function

from the set of clauses to the power set of literals such that Sel(C) � C for

every clause C. Any selection function is allowed as long as for every clause C,

Sel(C) contains at least one negative literal or all maximal literals in C.

Theorem4. BFP is refutationally complete.

Proof. We present a sketch of the completeness proof which shows how the

proof in [1] based on model construction needs to be altered. There, it is shown

that if a set of clauses is saturated under a set of inference rules, and it does not

contain the empty clause, then a model of the set can be constructed from ground

instances of the clauses. The model is a canonical set of equations generated

by incrementally adding ordered instances of equations. So for each instance

C = u ' v _ C

0

of a clause in the saturation we add the equation u ' v to

the model if (i) the variables in C are reduced wrt. the equations in the model

from smaller instances of clauses, (ii) C is false wrt. the equations in the model

from smaller instances of clauses, (iii) u ' v is strictly maximal in C, and (iv)

u cannot be reduced by the equations in the model from smaller instances of

clauses. A clause that adds something to the model is called productive.

For our purposes, in order to take care of the missing explicit factoring in-

ference rule, we modify step (iii) to only require that u ' v is maximal in C.

Now we have to show that if the saturated set does not contain the empty

clause, then every instance of a clause in the saturated set whose variables are

reduced by the model, must be true in the model. If they are not all true,

the smallest clause that is not true in the model is called a counterexample. It

remains to show that if there is a counterexample at all, then there must be a

smaller counterexample, which leads to a contradiction. For this, we distinguish

among whether Sel(C) contains negative literals or not. In both cases, it can

be shown that Sel(C) contains a literal L which is either t 6' t and thus allows

for a re
ection step or which is reducible by the model and thus, there is an

factored overlap inference with a productive clause. In both cases, a smaller

clause is obtained which can also be shown to be a counterexample. By the

usual irreducibility arguments, the inference is lifted to the non-ground case and

thus, a contradiction is derived. ut

Although we don't present simpli�cation and deletion rules, it should be

noted that Basic Factored Paramodulation is compatible with rules similar to

the ones presented in [1]. However, since they are not yet compatible with the

path set approach, they will be excluded here.

5 Saturating Path Sets

Now we are going to introduce the abstract framework which is used to represent

concrete refutations under Basic Factored Paramodulation: path sets.

5.1 Path Sets and Properties

Clauses and formulae have been de�ned as multisets. In order to be able to

distinguish between the di�erent but syntactically identical literals or clauses, we

consider sets of occurrences of literals or clauses. Considering sets of occurrences

instead of multisets, however, does not change the completeness proof of Basic

Factored Paramodulation in the preceding section.

Based on sets of occurrences, we now de�ne path sets, the origins of which

go back to [13, 3] and have since been the basis for various proof procedures for

clausal logic.

De�nition5. [Paths] Let P be a function from a set of occurrences of clauses

to a set of occurrences of literals such that P (C) 2 C for every occurrence of

a clause C. The homomorphic extension of P to sets of sets of occurrences of

clauses is called a path through a set of occurrences of clauses.

Let P be a path through F . We write L 2 P if P (C) = L for some C 2 F .

In particular, P is said to select L in C. P j

F

0

is called a subpath of P , denoted

as P j

F

0

� P , if P is a path through F and P j

F

0

is a path through a subset F

0

of

F such that P j

F

0

(C) = P (C) for every C 2 F

0

. Two paths P through F

P

and

Q through F

Q

are said to agree on a set F

0

� F

P

\ F

Q

if P j

F

0

= Qj

F

0

.

A path set S for F is a set of paths through subsets of F . S

0

for F

0

is called

a path subset of S for F if S

0

� S and F

0

� F .

If S is a path set for a set F of occurrences of clauses, F is also often called

a matrix [2].

De�nition6. [Operations on Path Sets] For a path set S for F and an

occurrence of a clause C 2 F , we de�ne S �C for F nfCg to be the path subset

of S containing all paths from S except those selecting literals in C.

Let P and Q be paths through disjoint sets F

P

and F

Q

, respectively. By P�Q

we denote the path through F

P

[F

Q

which agrees with P on F

P

and with Q on

F

Q

. For two path sets S

1

and S

2

for disjoint sets F

1

and F

2

, S

1

�S

2

is the path

set f P

1

�P

2

through F

1

[F

2

j P

1

2 S

1

through F

1

and P

2

2 S

2

through F

2

g

for F

1

[F

2

.

In what follows, we introduce particular properties of path sets which are

used to describe properties of the underlying set of clauses.

De�nition7. [Covering Path Sets] A path set S is called covering for F if

for every path P through F , there exists a path P

0

2 S through a subset F

P

0

of

F such that P

0

� P . A covering path set S for F is called minimal if there is no

proper path subset of S for F which is covering for F .

An occurrence of a clause C 2 F is called essential for a covering path set S

if S �C is not covering for F .

De�nition8. [Unitary Derivations/Refutations] Let M be a set of occur-

rences of (eventually constrained) unit literals. A sequence of negative overlap

steps on M where every occurrence of a literal in M is not renamed and used

only once is called a unitary derivation of L[[�]] if it terminates with L[[�]] or

M contains only L[[�]].

For a path P through a set of occurrences of clauses F , a unitary derivation

of s 6' t[[�]] from P is a unitary derivation of s 6' t[[�]] from the set of occurrences

of (eventually constrained) literals selected by P from the clauses in F . We say

that P has a unitary refutation with � if there is a unitary derivation of s 6' t[[�]]

from P such that � = (� ^ s

:

= t) is satis�able. A path set S has a unitary

refutation with � if � is satis�able and is the union of all constraints �

P

for

which there is a P 2 S such that P has a unitary refutation with �

P

. For short,

we also say that S is unitary refutable.

5.2 Generating Path Sets by Bottom-Up Saturation

Based on the framework of path sets, we will now present inference rules on path

sets which allow to derive a covering path set S

2

for a set F

2

of occurrences of

clauses from Sat (MEP

S

; F) such that S

2

is unitary refutable. It will be shown

that these inference rules on the path sets directly correspond with the inference

rules of BFP and thus, if there is a refutation under BFP, then there is a covering

and unitary refutable path set. This correspondence will be described by a pair

of mappings.

De�nition9. [Simulation Mappings] A simulation mapping from a con-

strained clause

~

C to a path set S

~

C

for F

~

C

consists of two functions:

{ �

~

C

assigns to each occurrence of a literal in

~

C a subset of S

~

C

, and

{ �

~

C

assigns to each occurrence of a literal in

~

C a subset of F

~

C

.

In order to show that the �nal path set ful�lls the desired properties, we

require that for each step in the saturation, the following invariance property

holds.

De�nition10. [Conform] Let

~

C = C[[�]] be a constrained clause. A path set

S

~

C

for F

~

C

is said to conform with

~

C if

(A) S

~

C

is covering for F

~

C

,

(B) for every occurrence of a literal L in C and for every path P in �

~

C

(L),

there is a unitary derivation of L[[�]] such that � � �, and

(C) every path P 2 S

~

C

for which there is no literal L 2 C with P 2 �

~

C

(L)

has a unitary refutation with � such that � � �.

Initially, for every clause

~

C = C[[>]] in the input set F , we start with a path

set S

~

C

= f P through f

~

Cg g for F

~

C

= f

~

Cg. Furthermore, the corresponding

simulation mapping consists of the functions

{ �

~

C

(L) = fPg for all occurrences L of literals in

~

C if P is a path through

f

~

Cg such that P selects L in

~

C, and

{ �

~

C

(L) = f

~

Cg for all occurrences L of literals in

~

C.

The following is a straightforward consequence for these initial path sets.

Proposition11. For every clause in the input set, the corresponding initial path

set conforms with the clause itself.

For the following simulation, it is important to recall that for every occurrence

of a positive literal L in a clause

~

C, j�

~

C

(L)j = 1 and j�

~

C

(L)j = 1. Furthermore,

for an occurrence of a negative L, if P;Q 2 �

~

C

(L), then the literals selected by

P and Q are either the same or variants of each other. Also, whenever we use

a new occurrence

~

C of a constrained clause C[[�]] for a new inference, we not

only assume the variables of the constrained clause to be new variables but also

that F

~

C

consists of new occurrences of constrained clauses with new variables

and that S

~

C

, �

~

C

and �

~

C

are changed accordingly.

Based on the de�nitions above, we are now able to de�ne the inference rules

on path sets, each of which corresponds with an inference rule of BFP. After each

de�nition, we will show that if the premises of the inference rules on path sets

conform with respective premises of BFP, then this is also true for the relation

between the conclusions.

Re
ection: We consider a re
ection step on s 6' t in

~

C = (s 6' t _ C

0

)[[�]]

yielding

~

D = C

0

[[�]] with � = (� ^ s

:

= t).

Let S

~

C

be a path set for F

~

C

conforming with

~

C and �

~

C

, �

~

C

the accordingly

adapted simulation mapping.

� For the new path set S

~

D

for F

~

D

we de�ne

{ S

~

D

= S

~

C

, and

{ F

~

D

= F

~

C

.

� Furthermore, for the new clause

~

D, the simulation consists of

{ �

~

D

= �

~

C

j

~

D

, and

{ �

~

D

= �

~

C

j

~

D

.

Lemma12. Let S

~

C

be a path set for F

~

C

which conforms with the clause

~

C

having a satis�able constraint. After applying a re
ection step, the resulting path

set S

~

D

for F

~

D

conforms with the resulting clause

~

D if its constraint is again

satis�able.

Proof. Obvious by construction of S

~

D

, F

~

D

, �

~

D

and �

~

D

. ut

Factored Negative Overlap:We consider a factored negative overlap step

from l

1

' r

1

,...,l

n

' r

n

in

~

B = (l

1

' r

1

_ � � � _ l

n

' r

n

_ B

0

)[[�]] into

s 6' t in

~

C = (s 6' t _ C

0

)[[�]] at p 2 FPos(s) yielding

~

D = (s[r

1

]

p

6' t _

� � �_ s[r

n

]

p

6' t _ B

0

_ C

0

)[[�]] where � = (� ^ � ^ s

jp

:

= l

1

^ � � � ^ s

jp

:

= l

n

^

l

1

� r

1

^ � � � ^ l

n

� r

n

^ s � t).

Let S

~

B

for F

~

B

and S

~

C

for F

~

C

be new variants of path sets (for new oc-

currences of the clauses) conforming with

~

B and

~

C, respectively. Furthermore,

let �

~

B

, �

~

B

and �

~

C

, �

~

C

be the accordingly adapted simulation mappings. Let

S

lr

~

B

= �

~

B

(l

1

' r

1

)[� � �[�

~

B

(l

n

' r

n

) and F

lr

~

B

= �

~

B

(l

1

' r

1

)[� � �[�

~

B

(l

n

' r

n

).

� For the new path set S

~

D

for F

~

D

we de�ne

{ S

~

D

= S

~

B

nS

lr

~

B

[S

~

C

n�

~

C

(s 6' t) [S

lr

~

B

��

~

C

(s 6' t), and

{ F

~

D

= F

~

B

[F

~

C

.

� Furthermore, for the new clause

~

D, the simulation consists of

{ �

~

D

(L) =

8

<

:

�

~

B

(L) if L 2 B

0

�

~

C

(L) if L 2 C

0

�

~

B

(l

i

' r

i

)��

~

C

(s 6' t) if L = s[r

i

]

p

6' t

and

{ �

~

D

(L) =

8

<

:

�

~

B

(L) if L 2 B

0

�

~

C

(L) if L 2 C

0

�

~

B

(l

i

' r

i

) [�

~

C

(s 6' t) if L = s[r

i

]

p

6' t

Factored PositiveOverlap: We consider a factored positive overlap step from

l

1

' r

1

,...,l

n

' r

n

in

~

B = (l

1

' r

1

_ � � � _ l

n

' r

n

_ B

0

)[[�]] into u ' v in

~

C = (u ' v _ C

0

)[[�]]. Similar to factored negative overlap above, a simulation

mapping for the resulting clause

~

D can be de�ned. The major di�erence is that

for factored negative overlap, only modi�cations on paths are applied whereas

for factored positive overlap, also inferences between the clauses in the corre-

sponding sets F

~

B

and F

~

C

are performed. In particular, factored positive overlap

inferences on clauses are done which corresponds to a completion and thus yields

the clauses in Sat(MEP

S

; F). The whole modi�cations on the path set can be

described by two functions and are presented in detail in [11].

Lemma13. Let S

~

B

for F

~

B

and S

~

C

for F

~

C

be path sets which conform with the

clauses

~

B and

~

C, respectively and the constraints of which are satis�able. After

applying a factored negative or positive overlap step, the resulting path set S

~

D

for F

~

D

conforms with the resulting clause

~

D if its constraint is again satis�able.

Proof. We only present the proof for the factored negative overlap.

(A): By construction, F

~

D

= F

~

B

[F

~

C

where F

~

B

and F

~

C

are disjoint sets of

occurrences of constrained clauses. Let P be any path through F

~

D

. If P has a

subpath in S

~

B

nS

lr

~

B

or S

~

C

n�

~

C

(s 6' t) then there is still a subpath of it also in

S

~

D

, by de�nition of S

~

D

. Else, there is a subpath of it in S

lr

~

B

and a subpath of it

in �

~

C

(s 6' t), i.e. there is a subpath in S

lr

~

B

��

~

C

(s 6' t). Thus, by de�nition of

S

~

D

, there is again a subpath of P in S

~

D

. Therefore, S

~

D

is covering for F

~

D

.

(B): Obvious for L 2 B

0

and L 2 C

0

since the corresponding paths are not

changed. Let L = s[r

i

]

p

6' t, i 2 [1; n]. By assumption, for Q 2 �

~

C

(s 6' t) there

is a unitary derivation of s 6' t[[]] such that 	 � �. Since j�

~

B

(l

i

' r

i

)j = 1,

obviously every path in �

~

B

(l

i

' r

i

)��

~

C

(s 6' t) allows a unitary derivation of

s[r

i

]

p

6' t[[

0

]] such that 	

0

� �.

(C): Obvious since no new path P has been generated for which no literal in

L 2

~

D exists with P 2 �

~

D

(L). ut

Having shown now that the inference rules on path sets preserve the property

of conforming with a clause in the saturation under Basic Factored Paramod-

ulation, we are now able, together with the proposition concerning initial path

sets, to prove the main result of this section.

Theorem14. For every Basic Factored Paramodulation refutation of a set F

there is a covering path set S

2

for a set F

2

of occurrences of variants of clauses

from Sat(MEP

S

; F) such that S

2

is unitary refutable.

Proof. By Proposition 11, for every clause

~

C in F , the corresponding initial

path set conforms with

~

C. Since we have a BFP refutation, all constraints of

the clauses used are satis�able and, in particular, also the constraint of the

�nal empty clause. By Lemmata 12 and 13, for every clause

~

C derived in the

saturation under BFP, there is a corresponding path set in the saturation under

the inference rules on path sets which conforms with

~

C. Thus, if the saturation

under BFP contains the empty clause 2[[�]], then there is a path set S

2

for

a set F

2

which conforms with 2[[�]]. By property (A), S

2

is covering for F

2

.

Furthermore, since 2[[�]] contains no literals and S

2

for F

2

conforms with 2[[�]],

we get by property (C) that every path P 2 S

2

has a unitary refutation. Thus,

S

2

is unitary refutable. Finally, by de�nition of the inference rules on path sets,

F

2

contains only occurrences of variants of clauses from Sat(MEP

S

; F). ut

We want to point to the fact that if S

2

is a covering and unitary refutable

path set for F

2

which conforms with 2[[�]] and � is a substituion satisfying �,

the � can be seen as a simultaneous rigid E-uni�er of the paths in S

2

. For details

about recent results on simultaneous rigid E-uni�cation, cf. [5].

6 From Path Sets to MEP-Tableaux

In the preceding section, we have proven the existence of unitary refutable path

sets S

2

which are covering for certain sets F

2

of occurrences of clauses. Let � be

a substitution such that F

2

� is ground and � satis�es the constraints of all paths

in S

2

. Based on the �-instance of S

2

for F

2

, we �nally show how to construct

closed MEP-tableaux.

For this, with each branch of a tableau, we associate a particular path set

which contains the leaf literal of the branch as an essential unit clause. Then,

for each branch, applying speci�c operations to the associated path set leads to

other path sets and therefore re
ects the inference on the branch of the tableau.

There are two basic kinds of operations which we apply to path sets. On

one hand, there are operations which apply inferences to literals in a path and

are meant to `solve' a path. With respect to the associated leaf literals of the

branches, we have to supply this extension operation starting from a negative

leaf literal and from a positive leaf literal. Due to the required laziness, in the

case of a positive leaf literal, the operation is more complex than in the negative

case. Furthermore, the lazy positive extension operation nondeterministically

guarantees that at least a lazy extension step into a negative or a positive literal

is possible.

On the other hand, whenever an extension step into a non-unit clause is

performed, then the remaining literals in the clause need to become leaf literals

of branches in the new tableau. For this, the focusing operation allows us to

derive a corresponding path set where a whole clause in a path set is replaced

by one of its literals. In particular, focusing also tells us how to obtain the path

sets associated with the branches of the initial tableau.

Since the operations based on path sets in this section are performed on

ground instances of clauses, positions in literals are called basic if they were

non-variable positions before the instantiations. By applying only inferences to

basic positions, we are able to lift the corresponding steps to the variable case.

Furthermore, for convenience, whenever a set of units or a path has a unit refu-

tation with some constraint, we will simply omit the reference to the constraint

since we assume it to be satis�ed under the current ground substitution.

Lemma15. [Negative Path Set Extension] Let F be a set of ground in-

stances of occurrences of clauses containing the essential unit clause s 6' t and

D = l ' r_D

0

such that s

jp

= l for a basic position p in s. Let S be a covering and

unitary refutable path set for F and P 2 S a path through some F

P

� fs 6' t; Dg

such that P (D) = l ' r. Let P

0

be the path through F

P

nfs 6' t; Dg[fs[r]

p

6' tg

such that P

0

agrees with P on F

P

nfs 6' t; Dg and P

0

(s[r]

p

6' t) = s[r]

p

6' t.

Then S

0

= S nfPg [fP

0

g for F [fs[r]

p

6' tg, the path set resulting from

the negative extension from s 6' t into l ' r of D on P is again covering and

unitary refutable, where s[r]

p

6' t is essential for S

0

.

For complexity reasons, we don't present the lemma for the lazy positive

extension. The complete version can be found in [11].

Lemma16. [Focusing] Let F be a set of ground instances of occurrences of

clauses and S a covering and unitary refutable path set for F . Let L be an

occurrence of a literal in an essential clause C in F and

S

1

: the set of all paths Q 2 S through F

Q

where C 62 F

Q

, and

S

2

: the set of all paths Q

0

through F

Q

nfCg [fLg for which there is a path

Q 2 S through F

Q

such that Q(C) = L, and then Q

0

(L) = L and Q

0

and

Q agree on F

Q

nfCg.

Then S

0

= S

1

[S

2

for FnfCg[fLg, the path set resulting from the focusing

on L in C, is again covering and unitary refutable, where L is essential for S

0

.

Based on the previous lemmata, we are now able to bring the completeness

proof for our MEP calculus to a close. This will be done by inductively construct-

ing a closed MEP-tableau where the inferences on the tableau are repesented by

corresponding inferences on path sets.

Lemma17. [Ground Completeness] For every covering and unitary refut-

able path set S

2

for a set F

2

of ground instances of occurrences of clauses there

exists a closed MEP-tableau.

Proof. W.l.o.g. assume that S

2

is minimally covering for F

2

and F

2

only con-

tains clauses being essential for S

2

. By induction, we will show how to incremen-

tally construct a MEP-tableau. With each branch in the tableau we will associate

a covering and unitary refutable path set such that the leaf literal in the branch

is essential for it. By applying negative extension, lazy positive-to-negative and

positive-to-positive extension and focusing on path sets, we will show how to de-

rive new covering and unitary refutable path sets corresponding to an extended

branch such that the new leaf nodes are essential in the corresponding path sets.

Let C be any occurrence of a clause in F

2

which, by assumption, is essential

for S

2

. By Lemma 16, for every literal in C, focusing on it yields a new covering

path set where the literal focused upon is essential. Furthermore, every literal

focused upon corresponds to a branch in the initial tableau.

Let T be any tableau containing a branch B. By induction hypothesis, there

is an associated path set S

B

for a set of clauses F

B

which is covering and unitary

refutable. Furthermore, the leaf literal L of B is essential for S

B

. Since every

literal in B occurs as a unit clause in F

B

also L is a unit clause in F

B

. We have

to distinguish between whether L is (i) a negative literal or (ii) a positive literal.

(i) L is a negative literal s 6' t: If s = t then the branch is closed. Else,

s 6= t. By Lemma 15 there is a clause C in F

B

and a path P in S

B

through a

set containing s 6' t and C such that P (C) = l ' r with l � r and s

jp

= l at

some basic position p in s such that there is a path set S

B

0

which is covering and

unitary refutable for F

B

[fs[r]

p

6' tg. Furthermore, the new unit clause s[r]

p

6' t

is essential for S

B

0

. If C = l ' r_C

0

is not a unit clause, then focusing applied to

S

B

for F

B

on each literal in C

0

yields by Lemma 16 again covering and unitary

refutable path sets where the literal focused upon is essential. Thus, for both

negative extension and reduction, we obtain covering and unitary refutable path

sets for the new derived branches for which the leaf literals are essential.

(ii) L is a positive literal l ' r with l � r. According to the lemma on

the positive path set extension, there is a clause D in F

B

and a path P in S

B

through a set containing l ' r and D such that P selects either (a) a negative

equation s 6' t in D with Head (s

jp

) = Head (l) at some basic position p in s, or

(b) a positive equation u ' v in D with u � v and Head (v

jq

) = Head (l) at some

basic position q in v. The remaining part of the proof is analogous with (i).

Termination: By assumption, S

2

and F

2

are �nite. In order to show that we

obtain a �nite tableau we show that every branch generated must be �nite by

a measure on path sets. Let the size of a path set be the multiset of multisets

of literals occurring in each path. Two sizes of path sets are compared wrt.

the usual threefold reduction ordering on literals. Let S

B

for F

B

the path set

corresponding to a branch. If we apply a negative, positive-to-positive or positive-

to-negative extension step then the resulting path set(s) is (are) smaller than S

B

for F

B

since one path in S

B

is replaced by smaller paths. Furthermore, focusing

is only applied to non-unit clauses, i.e. since the paths through the neighbour

literals of the focused clause are removed, the measure also decreases.

Since each branch is proven to close �nitely and the tableau is only �nitely

branching, the tableau closes �nitely. ut

Theorem18. For every covering and unitary refutable �nite path set there ex-

ists a closed MEP-tableau.

Proof. Let � be a substitution satisfying all the constraints of the paths in a

covering and unitary refutable path set S

2

for F

2

such that F

2

� is ground.

Thus, by Lemma 17 there is a closed MEP-tableau based on the �-instance of

F

2

. Since in the construction of the tableau, only steps to basic positions were

applied there is also a closed MEP-tableau for F

2

. ut

7 Conclusion

We have presented a new calculus for equational clausal logic which integrates

Basic Ordered Paramodulation into a goal-directed Model Elimination frame-

work. In order to allow the ordered application of equations in the goal-directed

tableau construction, an additional bottom-up saturation phase is needed where

only left-hand sides of positive equations have to be overlapped. In addition to

being compatible with orderings, the calculus allows the restriction of applica-

tion of equations to non-variable (in fact, basic) positions. For the completeness

of the tableau part, lazy inferences are necessary for solving positive goals in the

tableau, but only in a restricted form. The combined calculus can be seen as an

attempt to keep the best properties of completion while only giving up part of

the goal-directedness of Model Elimination. For a practical realization, of course,

saturation and tableau construction are to be intertwined because saturation in

general does not terminate.

The completeness of the new calculus is proven by a simulation argument

which shows that for every refutation with the new saturation-based calculus

Basic Factored Paramodulation there is a closed MEP-tableau. For this, path sets

are used as intermediate representations of sets of clauses with speci�c properties.

Due to being independent of the �nal calculus, the existence of such path sets

can also be used to obtain completeness results for other goal-directed calculi.

Although for a long time, equality techniques based on orderings were re-

quested, just recently in [4] the probably �rst tableau-based approach was pre-

sented. There, also an additional saturation phase is combined with the goal-

directed tableau construction. The di�erence is, however, that in the saturation,

inferences also to negative literals are allowed which might solve the underlying

problem already during saturation and could be seen to be less goal-directed.

For the future, it is planned to show that the calculus is compatible with

simpli�cation and deletion rules in saturation which cannot be achieved in the

current setting. Therefore, a separate model construction argument is planned

which is meant to replace the simulation argument and is more
exible.

References

1. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. Information

and Computation, 121(2):172{192, 1995.

2. W. Bibel. Automated Theorem Proving. Vieweg Verlag, second edition, 1987.

3. M. Davis. Eliminating the Irrelevant from Mechanical Proofs. In Symposia of Applied Mathe-

matics, volume 15, pages 15{30, 1963.

4. A. Degtyarev and A. Voronkow. Equality Elimination for the Inverse Method and Extension

Procedures. In IJCAI'95, volume 1, pages 342{347, Montreal, 1995.

5. A. Degtyarev and A. Voronkow. Simultaneous Rigid e-Uni�cation is Undecidable. Technical

Report 105, Uppsala University, 1995.

6. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical Computer

Science, pages 245{321. Elsevier Science Publishers, 1990.

7. J.-M. Hullot. Canonical Forms and Uni�cation. In CADE'80, number 87 in LNCS, pages

318{334. Springer, 1980.

8. D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebras. In Computational

Problems in Abstract Algebra, pages 263{297. Pergamon Press, 1970.

9. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance Theorem

Prover. Journal of Automated Reasoning, 8:183{212, 1992.

10. D. W. Loveland. Automated Theorem Proving: A Logical Basis. North Holland, 1978.

11. M. Moser, C. Lynch, and J. Steinbach. Model Elimination with Basic Ordered

Paramodulation. Technical Report AR-95-11, Technische Universit�at M�unchen, 1995.

http://wwwjessen.informatik.tu-muenchen.de/ftp/Automated Reasoning/Reports/AR-95-11.ps.gz.

12. R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality Constrained

Clauses. Journal of Symbolic Computation, 19(4):321{352, 1995.

13. D. Prawitz. An Improved Proof Procedure. Theoria, 26, 1960.

14. G. Robinson and L. Wos. Paramodulation and Theorem Proving in First-Order Theories with

Equality. In Machine Intelligence 4, pages 135{150. Edinburgh University Press, 1969.

15. M. Rusinowitch. Theorem-Proving with Resolution and Superposition. Journal of Symbolic

Computation, 11(1-2):21{50, 1991.

16. W. Snyder and C. Lynch. Goal Directed Strategies for Paramodulation. In RTA'91, number

448 in LNCS, pages 150{161. Springer, 1991.

17. J. Steinbach. Simpli�cation Orderings - History of Results. Fundamenta Informaticae, Special

Issue on Term Rewriting Systems, 1&2(24):207{247, 1995.

