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Abstract

We consider the problem of unification modulo an equational theory ACh, which consists of

a function h which is homomorphic over an associative-commutative operator +. Unification

modulo ACh is undecidable, so we define a bounded ACh unification problem. In this bounded

version of ACh unification we essentially bound the number of times h can be recursively applied

to a term, and only allow solutions that satisfy this bound. There is no bound on the number of

occurrences of h in a term, and the + symbol can be applied an unlimited number of times. We

give inference rules for solving bounded ACh unification, and we prove that the rules are sound,

complete and terminating. We have implemented the algorithm in Maude and give experimental

results. We argue that this algorithm is useful in cryptographic protocol analysis.

Keywords and phrases homomorphism, splitting, bounded, unification

1 Introduction

Unification is a method to find a solution for a set of equations. For instance, consider an

equation x + y
?
= a + b, where x and y are variables, and a, and b are constants. If + is

an uninterpreted function symbol then the equation has one solution {x 7→ a, y 7→ b}, and

this unification is called syntactic unification. If the function symbol + has the property

commutativity then the equation has two solutions: {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a};

and this is called unification modulo the commutativity theory.

Unification modulo equational theories plays a significant role in symbolic cryptographic

protocol analysis [7]. An overview and references for some of the algorithms may be seen in

[8, 6]. One such equational theory is the distributive axioms:

x × (y + z) = (x × y) + (x × z)

(y + z) × x = (y × x) + (z × x)

A decision algorithm is presented for unification modulo two-sided distributivity in [12].

A sub-problem of this, unification modulo one-sided distributivity, is in greater interest

since many cryptographic protocol algorithms satisfy the one-sided distributivity. In their

paper [13], Tiden and Arnborg presented an algorithm for unification modulo one-sided

distributivity: x × (y + z) = (x × y) + (x × z), and also it has been shown that it is

undecidable if we add the properties of associativity x + (y + z) = (x + y) + z and a one-

sided unit element x × 1 = x. However, some counterexamples [11] have been presented

showing that the complexity of the algorithm is exponential, although they thought it was

polynomial-time bounded.
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2 Bounded ACh Unification

For practical purposes, one-sided distributivity can be viewed as the homomorphism

theory: h(x + y) = h(x) + h(y), where the unary operator h distributes over the binary

operator +. Homomorphisms are highly used in cryptographic protocol analysis. In fact,

homomorphism is a common property that many election voting protocols satisfy [9].

Our goal is to present a novel construction of an algorithm to solve unification modulo the

homomorphism theory over a binary symbol + that also has the properties the associativity

and the commutativity (ACh), which is an undecidable unification problem [10]. Given

that ACh unification is undecidable but necessary to analyze cryptographic protocols, we

developed an approximation of ACh unification, which we show to be decidable.

In this paper, we present an algorithm to solve a modified general unification problem

modulo the ACh theory, which we call bounded ACh unification. We define the h-height of

a term to be basically the number of h symbols recursively applied to each other. We then

only search for ACh unifiers of a bounded h-height. The number of occurrences of the +

symbol is not bounded. In order to accomplish this we define the h-depth of a variable,

which is the number of h symbols on top of a variable. We develop a set of inference rules

for ACh unification, but we keep track of the h-depth of variables. If the h-Depth of any

term exceeds the bound κ then the algorithm terminates with no solution. Otherwise, it

gives all the unifiers or solutions to the problem.

The remainder of the paper organized as follows. We give preliminary knowledge about

unification modulo equational theories, in particular, the theory of homomorphism, and the

h-Depth Set in section 2, an inference system consists of rules for splitting, decomposition

and so forth in section 3, proofs of correctness in section 4, implementation and experimental

results in section 5, and conclusion and future work in section 6.

2 Preliminaries

The following are some of the standard definitions in unification theory; most of them are

from [3, 4].

2.1 Basic notation

A signature F is a finite or countably infinite set of function symbols with fixed arity. A

constant symbol is a function symbol with arity 0.

◮ Definition 2.1 (Terms). Let F be a signature and V be a countably infinite set of variables.

The set T (F , V) of all terms over V and F is inductively defined as

V ⊆ T (F , V),

for all n ≥ 0, f(t1, . . . , tn) ∈ T (F , V), where f ∈ F with arity n and t1, . . . , tn ∈ T (F , V).

The set of variables occurring in a term t is denoted by V ar(t).

A term u is a subterm of t, denoted by t[u], if either t = u or if t = f(t1, . . . , tn) and

u is a subterm of ti for some i. If t and s are two terms, then we use t[s] to denote that s

occurs in t as a subterm. For example, x is a variable, f(x, y), and h(y) are terms, and the

variable x is a subterm of f(x, y) and y is a subterm of h(y). The top symbol of a term t is

f when t is of the form f(t1, . . . , tn), and x when it is a variable x.

A substitution σ : V → T (F , V) is a mapping such that σ(x) 6= x for only finitely many

xs. For substitution σ, the domain is the set of variables which are not mapped to itself, i.e.,

Dom(σ) = {x | σ(x) 6= x}, the range is defined as, Range(σ) = ∪x∈Dom(σ){σ(x)}. The set

of variables occurring in Range(σ) is represented by V ar(Range(σ)). A substitution σ can
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be represented explicitly as a function by a set of bindings of variables in its domain, i.e.,

{x1 7→ t1, . . . , xn 7→ tn}, where σ maps xi to ti for i = 1, . . . , n, and maps to itself otherwise.

The identity substitution is a substitution that maps every variable to itself and it is

represented by Id. A substitution σ is idempotent if it satisfies σσ = σ. It is easy to show

that σ is idempotent if and only if Dom(σ)∩V ar(Range(σ)) = ∅. Without loss of generality,

we assume that every substitution is idempotent.

Let σ be a substitution and t be a term. The application of σ to t, denoted by tσ, is

defined by

tσ =







σ(x) if t = x

c if t = c

f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn).

The composition of two substitutions σ and θ is written as σθ, and is defined by t(σθ) =

(tσ)θ. Two substitutions σ and θ are equal if xσ = xθ for all variables x, and is denoted as

σ = θ. The restriction of a substitution σ to a set of variables V , denoted by σ|V , is the

substitution which is equal to the identity everywhere except over V ∩ Dom(σ), where it is

equal to σ.

◮ Definition 2.2 (More General Substitution). A substitution σ is more general than substi-

tution θ if there exists a substitution η such that θ = ση, denoted as σ . θ. Note that the

relation . is a quasi-ordering, i.e., reflexive and transitive.

◮ Definition 2.3 (Unifier, Most General Unifier). A substitution σ is a unifier or solution of

two terms s and t if sσ = tσ; it is a most general unifier if for every unifier θ of s and t,

σ . θ. Moreover, a substitution σ is a solution of set of equations if it is a solution of each

of the equations. If a substitution σ is a solution of a set of equations Γ, then it is denoted

by σ |= Γ.

A set of identities E is a subset of T (F , V) × T (F , V) and are represented in the form

s ≈ t. An equational theory =E is induced by a set of fixed identities E and it is the least

congruence relation that is closed under substitution and contains E.

◮ Definition 2.4 (E -Unification Problem, E -Unifier, E -Unifiable). Let F be a signature and

E be an equational theory. An E-unification problem over F is a finite set of equations

Γ = {s1
?
=E t1, . . . , sn

?
=E tn}

between terms. An E-unifier or E-solution of two terms s and t is a substitution σ such that

sσ =E tσ. An E-unifier of Γ is a substitution σ such that siσ =E tiσ for i = 1, . . . , n. The

set of all E-unifiers is denoted by UE(Γ) and Γ is called E-unifiable if UE(Γ) 6= ∅. If E = ∅

then Γ is a syntactic unification problem.

Let Γ = {s1
?
=E t1, . . . , sn

?
=E tn} be a set of equations, and let θ be a substitution. We say

that θ satisfies Γ modulo equational theory E if θ is an E-solution of each equation in Γ,

that is, siθ =E tiθ for i = 1, . . . , n. We write it as θ |=E Γ. Let σ = {x1 7→ t1, . . . , xn 7→ tn}

and θ be substitutions, and let E be an equational theory. We say that θ satisfies σ in the

equational theory E if xiθ =E tiθ for i = 1, . . . , n. We write it as θ |=E σ.

◮ Definition 2.5 (Complete Set of E -Unifiers). A complete set of E-unifiers of an E-unification

problem Γ is a set S of idempotent E-unifiers of Γ such that for each θ ∈ UE(Γ) in Γ there

exists σ ∈ S with σ .E θ|V ar(Γ), where V ar(Γ) is the set of variables in Γ.
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A complete set S of E-unifiers is minimal if for two distinct unifiers σ and θ, one is not more

general than the other; i.e., if σ .E θ|V ar(Γ) and σ, θ ∈ S then σ = θ. A minimal complete

set of unifiers for a syntactic unification problem Γ has only one element if it is not empty.

It is denoted by mgu(Γ) and can be called most general unifier of unification problem Γ.

2.2 ACh Theory

The equational theory we consider is the theory of a homomorphism over a binary function

symbol +. The symbol + has the properties associativity and commutativity. We abbreviate

this theory as ACh. The signature F includes a unary symbol h, and a binary symbol +,

and other uninterpreted function symbols with fixed-arity. The function symbols h and +

in the signature F satisfy the following identities:

x + (y + z) ≈ (x + y) + z [Associativity, A for short]

x + y ≈ y + x [Commutativity, C for short]

h(x + y) ≈ h(x) + h(y) [Homomorphism, h for short]

2.3 h-Depth Set

For convenience, we assume that our unification problem is in flattened form, i.e., that every

equation in the problem is in one of the following forms: x
?
= y, x

?
= h(y), x

?
= y1 + · · · + yn,

and x
?
= f(x1, . . . , xn), where x, y, yi, and xi are variables, and f is a free symbol with

n ≥ 0. The first kind of equations are called VarVar equations. The second kind are called

h-equations. The third kind are called +-equations. The fourth kind are called free equa-

tions. It is well-known that how to convert a unification problem into flattened form.

◮ Definition 2.6 (Graph G(Γ)). Let Γ be a unification problem. We define a graph G(Γ)

as a graph where each node represents a variable in Γ and each edge represents a function

symbol in Γ. To be exact, if an equation w
?
= f(x1, . . . , xn), where f is a symbol with n ≥ 1,

is in Γ then the graph G(Γ) contains n edges w
f
→ x1, . . . , w

f
→ xn. For a constant symbol

c, if an equation w
?
= c is in Γ then the graph G(Γ) contains a vertex w. Finally, the graph

G(Γ) contains two vertices if an equation w
?
= y is in Γ.

◮ Definition 2.7 (h-Depth). Let Γ be a unification problem and let x be a variable that

occurs in Γ. Let h be a unary symbol and let f be a symbol (distinct from h) with arity

greater than or equal to 1 and occur in Γ. We define h-Depth of a variable x as the maximum

number of h-symbols along a path to x in G(Γ), and it is denoted by hd(x).

In other words, hd(x) = max{hdh, hdf , 0}, where hdh = max{1 + hd(y) | y
h
→ x} and

hdf = max{hd(y) | y
f
→ x}.

◮ Definition 2.8 (h-Height). Let Γ be a unification problem and let t be a term that occurs

in Γ. We define h-height of a term t as the following:

hh(t) =







hh(t) + 1 if t = h(t)

max{hh(t1), . . . , hh(tn)} if t = f(t1, . . . , tn), f 6= h

0 if t = x or c

where f is a function symbol with arity greater than or equal to 1.
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Without loss of generality, we assume that h-Depth and h-height is not defined for a variable

that occurs both sides of the equation. This is because the occur check rule—concludes the

problem with no solution—presented in the next section has higher priority over the h-Depth

updating rules.

◮ Definition 2.9 (h-Depth Set). Let Γ be a set of equations. Let V be a set of variables

occurring in Γ. We define a set h-Depth Set of Γ whose elements are pairs of a variable from

V and a non-negative integer. In other words, the elements in the h-Depth Set are of the

form (x, c), where x is a variable in V and c is a natural number representing the h-Depth

of x.

Maximum value of h-Depth Set △ is the maximum of all c values and it is denoted by

MaxV al(△). In other words, MaxV al(△) = max{c | (x, c) ∈ △}.

◮ Definition 2.10 (Bounded E -Unification Problem, Bounded E -Unifier). A κ bounded E-

unification problem over F is a finite set of equations Γ = {s1
?
=E t1, . . . , sn

?
=E tn}, si, ti ∈

T (F , V), where E is an equational theory, and κ is a positive integer. A κ bounded E-unifier

or κ bounded E-solution of Γ is a substitution σ such that siσ =E tiσ, hh(siσ) ≤ κ, and

hh(tiσ) ≤ κ for all i.

3 Inference System Ih

3.1 Problem Format

An inference system is a set of inference rules that transforms an equational unification

problem into other. In our inference procedure, we use a set triple Γ||△||σ, where Γ is a

unification problem modulo the ACh theory, △ is an h-Depth Set, and σ is a substitution.

Let κ ∈ N be a bound on the h-Depth of the variables. A substitution θ satisfies the set

triple Γ||△||σ if θ satisfies every equation in Γ and σ, MaxV al(△) ≤ κ, and we write that

relation as θ |= Γ||△||σ. We also use a special set triple Fail for no solution in the inference

procedure. Generally, the inference procedure is based on priority of rules and also uses don’t

care determinism when there is no priority. i.e., any one rule applied from a set of rules

without priority. Initially, Γ is the non-empty set of equations to solve and the substitution

σ is the identity substitution. The inference rules are applied until either the set of equations

is empty with most general unifier σ or Fail for no solution. Of course, the substitution σ

is a κ bounded E-unifier of Γ.

An inference rule is written in the following form:

Γ||△||σ

Γ′||△′||σ′
.

This means that if something matches the top of this rule, then it is to be replaced with

the bottom of the rule. In the proofs we will write inference rules as follows: Γ||△||σ ⇒Ih

{Γ1||△1||σ1, · · · Γn||△n|σn} meaning to branch and replace the left hand side with one of

the right hand sides in each branch. The only inference rule that has more than one branch

is AC Unification. So we often just write inference rules as follows: Γ||△||σ ⇒Ih
Γ′||△′||σ′.

Let OV be the set of variables occurring in the unification problem Γ and let N V be a

new set of variables such that N V = V \ OV . Unless otherwise stated we assume that

x, x1, . . . , xn, and y, y1, . . . , yn, z are variables in V , v, v1, . . . , vn are in N V , and terms

t, t1, . . . , tn, s, s1, . . . , sn in T (F , V), and f and g are uninterpreted function symbols. Recall

that h is a unary, and the associativity and the commutativity operator +. A Fresh variable

is a variable that is generated by the current inference rule and has never been used before.
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Every equation is assumed to be in flattened form. Flattening inference rules are given

in the appendix. All the other inference rules leave the problem in flattened form, so there

is no need to perform these rules again later. The process of updating the h-depth set is

straightforward, so we also give those inference rules in the appendix. We assume this is

done after each inference rule.

3.2 Inference Rules

This rule takes the homomorphism theory into account. In this theory, we can not solve

equation h(y)
?
= x1 +x2 unless y can be written as the sum of two new variables y = v1 +v2,

where v1 and v2 are in N V . Without loss of generality we generalize it to n variables

x1, . . . , xn.

Splitting Rule

{w
?
= h(y), w

?
= x1 + · · · + xn} ∪ Γ||△||σ

{w
?
= h(y), y

?
= v1 + · · · + vn, x1

?
= h(v1), . . . , xn

?
= h(vn)} ∪ Γ||△′||σ

where n > 1, y 6= w, △′ = {(v1, 0), . . . , (vn, 0)} ∪ △}, and v1, . . . , vn are fresh variables in

N V .

◮ Example 3.1. Solve the unification problem {h(h(x))
?
= y1 + y2 }.

Still we only consider pair Γ||△, since rules modifying σ are not introduced yet.

{h(h(x))
?
= y1 + y2 }||{(x, 0), (y1, 0), (y2, 0)}

(F.B.S)∗

⇒

{v
?
= h(v1), v1

?
= h(x), v

?
= y1 + y2 }||{(x, 0), (y1, 0), (y2, 0), (v, 0), (v1, 0)}

(Update h)∗

⇒

{v
?
= h(v1), v1

?
= h(x), v

?
= y1 + y2 }||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1)}

Splitting
⇒

{v
?
= h(v1), v1

?
= v11 + v12, y1

?
= h(v11), y2

?
= h(v12), v1

?
= h(x) }||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 0), (v12, 0)}
(Update h)∗

⇒

{v
?
= h(v1), v1

?
= v11 + v12, y1

?
= h(v11), y2

?
= h(v12), v1

?
= h(x) }||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1)}
Splitting

⇒

{v
?
= h(v1), y1

?
= h(v11), y2

?
= h(v12), v1

?
= h(x), x

?
= v13 + v14, v11

?
= h(v13),

v12
?
= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 0), (v14, 0)}

(Update h)∗

⇒

{v
?
= h(v1), y1

?
= h(v11), y2

?
= h(v12), v1

?
= h(x), x

?
= v13 + v14, v11

?
= h(v13),

v12
?
= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}.

We pause this until other rules are introduced.

Trivial

The Trivial inference rule is to remove trivial equations in the given problem Γ.

Trivial

{t
?
= t} ∪ Γ||△||σ

Γ||△||σ
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Variable Elimination

The Variable Elimination rule is to convert the equations into assignments. In other words,

it is used to find the most general unifier. The rule V.E-2 is performed last after all other

inference rules have been performed. The rule V.E-1 is performed eagerly.

Variable Elimination(V.E)

1.

{x
?
= y} ∪ Γ||△||σ

Γ{x 7→ y}||△||σ{x 7→ y} ∪ {x 7→ y}

2.

{x
?
= t} ∪ Γ||△||σ

Γ||△||σ{x 7→ t} ∪ {x 7→ t}
if t /∈ V and x does not occur in t

◮ Example 3.2. Solve unification problem {x
?
= y, x

?
= h(z)}.

{x
?
= y, x

?
= h(z)}||{(x, 0), (y, 0), (z, 0)}||∅

Update h
⇒

{x
?
= y, x

?
= h(z)}||{(x, 0), (y, 0), (z, 1)}||∅

V.E−1
⇒

{y
?
= h(z)}||{(x, 0), (y, 0), (z, 1)}||{x 7→ y}

V.E−2
⇒

∅||{(x, 0), (y, 0), (z, 1)}||{x 7→ h(z), y 7→ h(z)}.

The substitution {x 7→ h(z), y 7→ h(z)} is the most general unifier of the given problem

{x
?
= y, x

?
= h(z)}.

Now we can resume the inference procedures for the previous Example 3.1. And also

note that we consider all the set triple from now onwards.

Example 3.1.

{v
?
= h(v1), y1

?
= h(v11), y2

?
= h(v12), v1

?
= h(x), x

?
= v13+v14, v11

?
= h(v13), v12

?
= h(v14)}||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||∅}
V.E−2

⇒

{y1
?
= h(v11), y2

?
= h(v12), v1

?
= h(x), x

?
= v13 + v14, v11

?
= h(v13), v12

?
= h(v14)}||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(v1)}
V.E−2

⇒

{y1
?
= h(v11), y2

?
= h(v12), x

?
= v13+v14, v11

?
= h(v13), v12

?
= h(v14)}||{(x, 2), (y1, 0), (y2, 0),

(v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(x)), v1 7→ h(x)}
V.E−2

⇒

{y1
?
= h(v11), y2

?
= h(v12), v11

?
= h(v13), v12

?
= h(v14)}||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1),

(v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(v13 + v14)), v1 7→ h(v13 + v14),

x 7→ v13 + v14}
V.E−2

⇒ {y2
?
= h(v12), v11

?
= h(v13), v12

?
= h(v14) }||{(x, 2), (y1, 0), (y2, 0),

(v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(v13 + v14)), v1 7→ h(v13 + v14),

x 7→ v13+v14, y1 7→ h(v11)}
V.E−2

⇒ {v11
?
= h(v13), v12

?
= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0),

(v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(v13 + v14)), v1 7→ h(v13 + v14),

x 7→ v13+v14, y1 7→ h(v11), y2 7→ h(v12)}
V.E−2

⇒ {v12
?
= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0),

(v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(v13 + v14)), v1 7→ h(v13 + v14),

x 7→ v13+v14, y1 7→ h(h(v13)), y2 7→ h(v12), v11 7→ h(v13)}
V.E−2

⇒ ∅||{(x, 2), (y1, 0), (y2, 0), (v, 0),

(v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}||{v 7→ h(h(v13 + v14)), v1 7→ h(v13 + v14),

x 7→ v13 + v14, y1 7→ h(h(v13)), y2 7→ h(h(v14)), v11 7→ h(h(v14)), v12 7→ h(v14)}.

So, the problem {h(h(x))
?
= y1 + y2} has the most general unifier{x 7→ v13 + v14,

y1 7→ h(h(v13)), y2 7→ h(h(v14))}.
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Decomposition

The Decomposition rule decomposes an equation into several sub-equations if both sides top

symbol matches.

Decomposition(Decomp)

{x
?
= f(s1, . . . , sn), x

?
= f(t1, . . . , tn)} ∪ Γ||△||σ

{x
?
= f(t1, . . . , tn), s1

?
= t1, . . . , sn

?
= tn} ∪ Γ||△||σ

if f 6= +

◮ Example 3.3. Solve the unification problem {h(h(x))
?
= h(h(y))}.

{h(h(x))
?
= h(h(y))}||{(x, 0), (y, 0)}||∅

(F latten)∗

⇒

{v
?
= h(v1), v1

?
= h(x), v

?
= h(v2), v2

?
= h(y)}||{(x, 0), (y, 0), (v, 0), (v1, 0), (v2, 0)}||∅

(Update h)∗

⇒

{v
?
= h(v1), v1

?
= h(x), v

?
= h(v2), v2

?
= h(y)}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||∅

Dcomp
⇒

{v
?
= h(v1), v1

?
= v2, v1

?
= h(x), v2

?
= h(y)}||{(x, 0), (y, 0), (v, 2), (v1, 1), (v2, 1)}||∅

V.E−1
⇒

{v
?
= h(v2), v2

?
= h(x), v2

?
= h(y)}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 7→ v2}

Dcomp
⇒

{v
?
= h(v2), v2

?
= h(x), x

?
= y}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 7→ v2}

(V.E−2)∗

⇒

∅||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 7→ h(y), x 7→ y, v 7→ h(h(y)), v2 7→ h(y)},

where {x 7→ y} is the most general unifier of the problem {h(h(x))
?
= h(h(y))}.

AC Unification

The AC Unification rule calls an AC unification algorithm to unify the AC part of the prob-

lem. Notice that we apply AC unification only once when no other rule can apply. In this

inference rule Ψ represents the set of all equations with the + symbol on the right hand side.

Γ represents the set of equations not containing a + symbol. Unify is a function that returns

one of the complete set of unifiers returned by the AC unification algorithm. GETEqs is a

function that takes a substitution and returns the equational form of that substitution. In

other words, GET Eqs([x1 7→ t1, . . . , xn 7→ tn]) = {x1
?
= t1, . . . , xn

?
= tn}.

AC Unification

Ψ ∪ Γ||△||σ

GET Eqs(unify Ψ) ∪ Γ||△||σ

Note that we have written the rule for one member of the complete set of AC unifiers

of Ψ. This will branch on every member of the complete set of AC unifiers of Ψ.

Occur Check

It is to determine if a variable on the left hand side of an equation occurs on the other side

of the equation. If it does, then there is no solution to the unification problem. This rule

has the highest priority.
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Occur Check(O.C)

{x
?
= f(t1, . . . , tn)} ∪ Γ||△||σ

Fail
If x ∈ Var(f(t1, . . . , tn)σ)

◮ Example 3.4. Solve the following unification problem: { x
?
= y, y

?
= z + x }.

{ x
?
= y, y

?
= z + x }||{(x, 0), (y, 0), (z, 0)}||∅

V.E−1
⇒ {y

?
= z + y }||{(x, 0), (y, 0), (z, 0)}||

{x 7→ y}
O.C−I

⇒ Fail. So, the problem { x
?
= y, y

?
= z + x } has no solution.

Clash

This rule checks if the top symbol on both sides of an equation is the same. If not, then

there is no solution to the problem, unless one of them is h and the other +.

Clash

{x
?
= f(s1, . . . , sm), x

?
= g(t1, . . . , tn)} ∪ Γ||△||σ

Fail
If f /∈ {h, +} or g /∈ {h, +}

◮ Example 3.5. Solve the unification problem: {f(x, y)
?
= g(h(z)) }.

{f(x, y)
?
= g(h(z)) }||{(x, 0), (y, 0), (z, 0)}||∅

(F latten)∗

⇒

{v
?
= f(x, y), v

?
= g(v1), v1

?
= h(z) }||{(x, 0), (y, 0), (z, 0), (v, 0), (v1, 0)}||∅

(Update h)∗

⇒

{v
?
= f(x, y), v

?
= h(v1), v1

?
= h(z) }||{(x, 0), (y, 0), (z, 1), (v, 0), (v1, 0)}||∅

Clash
⇒ Fail.

Hence, the problem {f(x, y)
?
= g(h(z)) } has no solution.

Bound Check

The Bound Check is to determine if a solution exists within the bound κ, a given maximum

h-Depth of any variable in Γ. If one of the h-Depths in the h-Depth Set △ exceeds the

bound κ, then the problem has no solution.

Bound Check (B.C)

Γ||△||σ

Fail
If MaxV al(△) > κ

◮ Example 3.6. Solve the following unification problem {h(y)
?
= y + x }.

Let the bound be κ = 2.

{h(y)
?
= y + x }||{(x, 0), (y, 0)}||∅

F.B.S
⇒

{v
?
= h(y), v

?
= y + x }||{(x, 0), (y, 0), (v, 0)}||∅

Update h
⇒

{v
?
= h(y), v

?
= y + x }||{(x, 0), (y, 1), (v, 0)}||∅

Splitting
⇒

{v
?
= h(y), y

?
= v11+v12, y

?
= h(v11), x

?
= h(v12)||{(x, 0), (y, 1), (v, 0), (v11, 0), (v12, 0)}||∅

(Update h)∗

⇒

{v
?
= h(y), y

?
= v11+v12, y

?
= h(v11), x

?
= h(v12)||{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1)}||∅

Splitting
⇒

{v
?
= h(y), v11

?
= v13 + v14, v11

?
= h(v13), v12

?
= h(v14), y

?
= h(v11), x

?
= h(v12)||

{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1), (v13, 0), (v14, 0)}||∅
(Update h)∗

⇒

{v
?
= h(y), v11

?
= v13 + v14, v11

?
= h(v13), v12

?
= h(v14), y

?
= h(v11), x

?
= h(v12)||
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{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1), (v13, 3), (v14, 2)}||∅
B.C
⇒ Fail.

Since MaxV al(△) = 3 > κ, the problem {h(y)
?
= y + x } has no solution within the given

bound.

4 Proof of Correctness

We give proof details for the termination, soundness, and completeness of our inference

system.

4.1 Termination

We need to show that this process will eventually halt.

◮ Lemma 4.1. There is no infinite sequence of inference rules

Proof. First notice that at some point all the Decomp rules not involving h will eventually

be performed. That is because when we perform Decomp on top symbol f one occurrence

of f disappear, and no rule can make them come back. So from now on we assume that all

such rules have been performed.

Let us call x
?
= h(y) an h-rule of depth i if hd(x) = i. A splitting rule involving x

?
= h(y)

and x
?
= v1 + v2 is called a splitting rule of depth i. We say that the variable x is split. A

Decomp rule involving x
?
= h(y) and x

?
= h(z) is called an h-Decomp rule of depth i. We say

that x is h-decomposed.

We first show that at some point all splitting rules of depth 0 and h-Decomp rules of

depth 0 will have been performed. We notice that after AC Unification is called for the first

time, any variable appearing in a VarVar equation or a +-equation will either appear exactly

once in the left hand side of one of those equations and never on the right hand side, or

else it will never appear on the left hand side of one of those equations. This is because the

AC unification rule creates equations from substitutions, which have this property. Also,

the AC unification rule, the V.E-1 rule and the Trivial rule will not change this property.

Therefore when a variable x is split, all of the occurrences of x in + equations and VarVar

equations disappear. If x has depth 0 then it cannot occur on the right hand side of an

h-equation. So after this split, variable x cannot be split anymore. Also, h can then only be

h-decomposed a finite number of times, because each time eliminates an h-equation with x

on the left hand side, and no new ones of depth 0 can be created.

We want to show by induction that all splits and h-decomps will eventually be performed.

Suppose that all of them at depth i have been performed at some point. We will show that

at some point all of them at depth i + 1 will be performed. Again we notice that after

AC Unification is called for the first time, any variable appearing in a VarVar equation or a

+-equation will either appear exactly once in the left hand side of one of those equations and

never on the right hand side, or else it will never appear on the left hand side of one of those

equations. This is because the AC unification rule creates equations from substitutions,

which have this property. Also, the AC unification rule, the V.E-1 rule and the Trivial rule

will not change this property. Therefore when a variable x is split, all of the occurrences of

x in + equations and VarVar equations disappear. If x has depth i + 1 then it cannot occur

on the right hand side of an h-equation that can possibly be split again. This is a result of

our induction hypothesis. So after this split, variable x cannot be split anymore. Also, h

can then only be h-decomposed a finite number of times, because each time eliminates an

h-equation with x on the left hand side, and no new ones of depth i + 1 can be created.
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Because of our Bound Check rule, all splits and h-Decomp rules will eventually be per-

formed. From now on we assume that they have all been performed. Assume all V.E-1 rules

and Trivial rules that currently exist have been performed. Then suppose we perform AC

Unification. This will not create any applications of Trivial or V.E-1. Therefore the process

will be finished here. The only thing left is the performance of V.E-2 rules at the end, which

trivially halts because they reduce the number of equations. ◭

4.2 Soundness

We prove that our inference system is truth-preserving.

◮ Lemma 4.2. Let Γ||△||σ ⇒Ih
{Γ1||△1||σ1, · · · Γn||△n|σn} be an inference rule. Let θ be

a substitution such that θ |= Γi||△i||σi. Then θ |= Γ||△||σ.

Proof. We prove this for each rule. Trivial: It is trivially true.

Splitting:

{w
?
= h(y), w

?
= x1 + x2} ∪ Γ||△||σ

{w
?
= h(y), y

?
= v1 + v2, x1

?
= h(v1), x2

?
= h(v2)} ∪ Γ||△′||σ

Let θ be a substitution. Assume that θ satisfies {w
?
= h(y), y

?
= v1 + v2, x1

?
= h(v1), x2

?
=

h(v2)}∪Γ. Then we have that wθ
?
= h(y)θ, yθ

?
= (v1 +v2)θ, x1θ

?
= h(v1)θ and x2θ

?
= h(v2)θ.

This implies that wθ
?
= h(yθ), yθ

?
= v1θ + v2θ, x1θ

?
= h(v1θ) and x2θ

?
= h(v2θ). In order to

prove that θ satisfies {w
?
= h(y), w

?
= x1 + x2}, it is enough to prove θ satisfies the equation

w
?
= x1 + x2. By considering the right side term x1 + x2 and after applying the substitution,

we get (x1 + x2)θ
?
= x1θ + x2θ

?
= h(v1θ) + h(v2θ). By the homomorphism theory, we write

that h(v1θ) + h(v2θ)
?
= h(v1θ + v2θ). Then h(v1θ + v2θ)

?
= h(yθ)

?
= wθ. Hence, θ satisfies

w
?
= x1 + x2.

Variable Elimination:

1.

{x
?
= y} ∪ Γ||△||σ

Γ[x 7→ y]||△||σ[x 7→ y] ∪ {x 7→ y}

Assume that θ |= Γ[x 7→ y]||△||σ[x 7→ y]∪{x 7→ y}. This means that θ satisfies Γ[x 7→ y]

and σ[x 7→ y] ∪ {x 7→ y}. Now, we have to prove that θ satisfies {x
?
= y}, Γ, and σ. But

θ satisfies x 7→ y means that xθ
?
= yθ. Γ is Γ[x 7→ y] but without replacing x with y.

Since yθ
?
= xθ, the substitution θ satisfies y 7→ x. Hence, we conclude that θ satisfies Γ

and σ .

2.

{x
?
= t} ∪ Γ||△||σ

Γ||△||σ[x 7→ t] ∪ {x 7→ t}

We have that θ satisfies Γ and σ[x 7→ t]∪{x 7→ t}. Now, we have to prove that θ satisfies

{x
?
= t} and σ. By the definition of θ |= Γ, we have xθ

?
= tθ and it is enough to prove

that θ satisfies σ. Let w 7→ s[x] be an assignment in σ. After applying x 7→ t on σ, the

assignment w 7→ s[x] becomes w 7→ s[t]. We also know that θ satisfies σ[x 7→ t] implies

that θ also satisfies w 7→ s[t]. Then by the definition, we write that wθ
?
= s[tθ]

?
= s[xθ].

This means that θ satisfies the assignment w 7→ s[x]. Hence, θ satisfies σ.
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Decomposition:

{x
?
= f(s1, s2, ..., sn), x

?
= f(t1, t2, ..., tn)} ∪ Γ||△||σ

{x
?
= f(t1, t2, ..., tn), s1

?
= t1, ..., sn

?
= tn} ∪ Γ||△||σ

Assume that θ |= {x
?
= f(t1, t2, ..., tn), s1

?
= t1, ..., sn

?
= tn} ∪ Γ||△||σ. This means that θ

satisfies {x
?
= f(t1, t2, ..., tn), s1

?
= t1, ..., sn

?
= tn} ∪ Γ. Now we have to prove that θ satisfies

{x
?
= f(s1, s2, ..., sn), x

?
= f(t1, t2, ..., tn)} ∪Γ. Given that θ satisfies x

?
= f(t1, t2, ...tn) and it

is enough to show that θ also satisfies x
?
= f(s1, s2, ...sn). We write xθ

?
= f(t1, t2, ...tn)θ

?
=

f(t1θ, t2θ, ...tnθ)
?
= f(s1θ, s2θ, ...snθ) since s1θ

?
= t1θ, ...., snθ

?
= tnθ. So, θ satisfies x

?
=

f(t1, t2, ...tn) and x
?
= f(s1, s2, ...sn). Hence, θ |= {x

?
= f(s1, s2, ...sn), x

?
= f(t1, t2, ...tn)}.

AC Unification:

Ψ ∪ Γ||△||σ

GET Eqs(unify Ψ) ∪ Γ||△||σ

Given that θ |= GET Eqs(unify Ψ)∪Γ||△||σ. This means that θ satisfies GET Eqs(unify Ψ)∪

Γ. Which implies that θ also satisfies Ψ.

◭

4.3 Completeness

Here we prove that our inference system never loses any solution. We recall formal definition

of rewrite system from [3].

◮ Definition 4.3. A rewrite rule is an oriented pair l → r, where l /∈ V and l, r ∈ T (F , V). A

rewrite system R is a set of rewrite rules. We consider the two convergent rewrite systems R1

and R2 modulo AC where R1 = {h(x+y) → h(x)+h(y)} and R2 = {h(x)+h(y) → h(x+y)}.

◮ Lemma 4.4. Let Γ||△||σ be a set triple. Let Γ||△||σ ⇒Ih
{Γ1||△1||σ1, · · · Γn||△n|σn}

be an inference rule. If θ |= Γ||△||σ, then there exists an i and a θ′, whose domain is the

variables in V ar(Γi) \ V ar(Γ), such that θθ′ |= Γi||△i||σi.

Proof. Trivial: It is trivially true.

Occur Check: In the homomorphism theory, no term can be equal to a subterm of itself.

This is because the number of + symbols and h-Depth of each variable stay the same with

the application of the homomorphism equation h(x+y)
?
= h(x)+h(y). So, the given problem

has no solution in the homomorphism theory.

Bound Check: We see that there exists a variable y with the h-Depth κ + 1 in the graph,

that is, there is a variable x above y with κ + 1 h-symbols below it. Let θ be a solution

of the unification problem Γ. Then the term xθ has the h-height κ + 1, but the term xθ is

also a subterm of some siθ or tiθ in the original unification problem. Hence, the unification

problem Γ has no solution within the given bound κ.

Variable Elimination: It is trivially true.

Clash: We don’t have a rewrite rule that deals with the uninterpreted function symbols, i.e.

the function symbols which are not in {h, +}. So the given problem has to have no solution.

Splitting: We have to make sure that we never lose any solution with this rule. Here we

consider the rewrite system R1 which has the rewrite rule h(x + y) → h(x) + h(y). In order

to apply this rule the term under the h should be the sum of two variables. The prob-

lem {h(y)
?
= x1 + x2} is replaced by the set {h(v1 + v2)

?
= x1 + x2} with the substitution



Ajay K. Eeralla et. al. 13

{y 7→ v1 + v2}. Then we have the equation with the reduced term in R1 is the equation

h(v1) + h(v2)
?
= x1 + x2, and the substitution {y 7→ v1 + v2, x1 7→ h(v1), x2 7→ h(v2)}.

Hence, we never lose any solution here.

Decomposition: If f is the top symbol on both sides of an equation then there is no other

rule to solve it except the Decomposition rule, where f 6= h and f 6= +. So, we never lose

any solution.

AC Unification: Assume that there are equations in Ψ that contains both h and + sym-

bols. Then the built-in unification algorithm on Ψ may loose solutions since h is considered

as an uninterpreted symbol. However, the missing solutions are regained on the other branch

of the unification problem.

To cover the case where the top symbol is h for the terms on both sides of an equation,

we consider the rewrite system R2 which has the rewrite rule h(x) + h(y) → h(x+ y). In the

homomorphism theory with the rewrite system R2, we cannot reduce the term h(t). So, we

solve the equation of the form h(t1)
?
= h(t2) only with the Decomposition rule. Hence, we

never lose any solution here too.

◭

5 Implementation

We have implemented the algorithm in Maude [5]. We chose the Maude language because

the inference rules are very similar to the rules of Maude and an implementation will be

integrated into the Maude-NPA tool at some time. The Maude-NPA tool is written in

Maude. The system specifications are Ubuntu 14.04 LTS, Intel Core i5 3.20 GHz, and 8

GiB RAM with Maude 2.6.

We give a table to show some of our results. In the given table, we use five columns: Uni-

fication problem, Real Time, time to terminate the program in ms(milli seconds), Solution

either Fail for no solution or Yes for solutions, # Sol. for number of solutions, and Bound

κ. It makes sense that the real time keeps increasing as the given h-Depth κ increases for

the first problem where the other problems give solutions, but in either case the program

terminates.

6 Conclusion

We introduced a set of inference rules to solve the unification problem modulo the homo-

morphism theory h over an AC symbol +, by enforcing bound k on the h-Depth of any

term. We proved that these inference rules are sound, complete, and terminating. Our

algorithm finds all the solutions or unifiers within the given h-Depth k. We implemented

the algorithm in Maude because the inference rules are easy to write in Maude and also we

hope to incorporate them in the Maude-NPA tool, a protocol analyzer written in Maude.

Our work on this topic actually came out of work on the Maude-NPA tool. Homomorphism

is a property which is very common in cryptographic algorithms. So, it is important to

analyze cryptographic protocols in the homomorphism theory. Some of the algorithms and

details in this direction can be seen in [2, 6, 1]. However none of those results perform

ACh unification because that is undecidable. One way around this is to assume that an

identity and an inverse exist, but because of the way the Maude-NPA works it would still

be necessary to unify modulo ACh. So an unification algorithm there becomes crucial. We
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Table 1 Tested results with ACh-unification algorithm

Unification Problem Real Time Solution # Sol. Bound

{h(y)
?
= y + x} 674ms Fail 0 10

{h(y)
?

= y + x} 15880ms Fail 0 20

{h(y)
?
= x1 + x2} 5m Yes 1 10

{h(h(x))
?
= h(h(y))} 2ms Yes 1 10

{x + y1

?

= x + y2} 3ms Yes 1 10

{v
?

= x + y, v
?

= w + z, s
?

= h(t)} 46ms Yes 10 10

{v
?
= x1 + x2, v

?
= x3 + x4, x1

?
= h(y), x2

?
= h(y)} 100ms Yes 6 10

{h(h(x))
?
= v + w + y + z} 224ms Yes 1 10

{v
?

= (h(x) + y), v
?

= w + z} 55ms Yes 7 10

{f(x, y)
?
= h(x1)} 0ms Fail 0 10

{f(x1, y1)
?
= f(x2, y2)} 1ms Yes 1 10

{v
?

= x1 + x2, v
?

= x3 + x4} 17ms Yes 7 10

{f(x1, y1)
?
= g(x2, y2)} 0ms Fail 0 10

{h(y)
?
= x, y

?
= h(x)} 0ms Fail 0 10

believe our approximation is a good way to deal with it. We also tested some problems and

the results are shown in Table 1.
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Appendices

A Flattening

Here we present a set of inference rules for flattening.

Flatten Both Sides(F.B.S)

{t1
?
= t2} ∪ Γ||△||σ

{v
?
= t1, v

?
= t2} ∪ Γ||{(v, 0)} ∪ △||σ

if t1 and t2 /∈ V

where v is a fresh variable from N V

Flatten Left +(L.+)

{t
?
= t1 + t2} ∪ Γ||△||σ

{t
?
= v + t2, v

?
= t1} ∪ Γ||{(v, 0)} ∪ △||σ

if t1 /∈ V

where v is a fresh variable from N V

Flatten Right +(R.+)

{t
?
= t1 + t2} ∪ Γ||△||σ

{t
?
= t1 + v, v

?
= t2} ∪ Γ||{(v, 0)} ∪ △||σ

if t2 /∈ V

where v is a fresh variable from N V

Flatten Under h(F.h)

{t1
?
= h(t)} ∪ Γ||△||σ

{t1
?
= h(v), v

?
= t} ∪ Γ||{(v, 0)} ∪ △||σ

if t /∈ V

where v is a fresh variable from N V

◮ Example 1.1. Solve the unification problem:{h(h(x))
?
= (s + w) + (y + z)}.

We only consider the set of equations Γ here, not the full triple.

{h(h(x))
?
= (s + w) + (y + z)}

F.B.S
⇒

{v
?
= h(h(x)), v

?
= (s + w) + (y + z)}

L.+
⇒

{v
?
= h(h(x)), v

?
= v1 + (y + z), v1

?
= s + w}

R.+
⇒
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{v
?
= h(h(x)), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}

F.h
⇒

{v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}.

We see that each equation in the set {v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w,

v2
?
= y + z} is in the flattened form.

B Update h-Depth Set

We also present a set of inference rules to update the h-Depth Set.

Update h

{x
?
= h(y)} ∪ Γ||{(x, c1), (y, c2)} ∪ △||σ

{x
?
= h(y)} ∪ Γ||{(x, c1), (y, c1 + 1)} ∪ △||σ

If c2 < (c1 + 1)

◮ Example 2.1. Solve the unification problem: {x
?
= h(h(h(y)))}.

We only consider the pair Γ||△ since σ does not change at this step.

{x
?
= h(h(h(y)))}||{(x, 0), (y, 0)}

(F.h)∗

⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 0), (v, 0), (v1, 0)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 1), (v, 0), (v1, 0)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 1), (v, 0), (v1, 1)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 2), (v, 0), (v1, 1)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 2), (v, 1), (v1, 1)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 2), (v, 1), (v1, 2)}

Update h
⇒

{x
?
= h(v), v

?
= h(v1), v1

?
= h(y)}||{(x, 0), (y, 3), (v, 1), (v1, 2)}.

It is true that the h-Depth of y is 3 since there are three edges labeled h from x to y, in the

graph G(Γ).

Update +

1.

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c3)} ∪ △||σ

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c1), (y2, c3)} ∪ △||σ

If c2 < c1

2.

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c3)} ∪ △||σ

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c1)} ∪ △||σ

If c3 < c1

◮ Example 2.2. Solve the unification problem: { z
?
= x + y, x1

?
= h(h(z))}.

Similar to the last example, we only consider the pair Γ||△,

{ z
?
= x + y, x1

?
= h(h(z))}||{(x, 0), (y, 0), (z, 0), (x1, 0)}

F.h
⇒

{ z
?
= x + y, x1

?
= h(v), v

?
= h(z)}||{(x, 0), (y, 0), (z, 0), (x1, 0), (v, 0)}

(Update h)∗

⇒

{ z
?
= x + y, x1

?
= h(v), v

?
= h(z)}||{(x, 0), (y, 0), (z, 2), (x1, 0), (v, 1)}

Update +
⇒

{ z
?
= x + y, x1

?
= h(v), v

?
= h(z)}||{(x, 2), (y, 0), (z, 2), (x1, 0), (v, 1)}

Update +
⇒
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{ z
?
= x + y, x1

?
= h(v), v

?
= h(z)}||{(x, 2), (y, 2), (z, 2), (x1, 0), (v, 1)}.

Since there are two edges labeled h from x1 to z in the graph G(Γ), the h-Depth of z is 2.

The h-Depths of x and y are also updated accordingly.

Now, we resume the inference procedure for Example 1.1(Appendix A) and also we consider

△ because it will be updated at this step.

{v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}||

{(x, 0), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 0)}
Update h

⇒

{v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}||

{(x, 1), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 0)}
Update h

⇒

{v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}||

{(x, 1), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 1)}
Update h

⇒

{v
?
= h(v3), v3

?
= h(x), v

?
= v1 + v2, v1

?
= s + w, v2

?
= y + z}||

{(x, 2), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 1)}.

C Termination

Here we prove the termination of Flattening rules.

Consider a multi-set F(Γ) where each element of it is the number of function symbols

of an equation in Γ. In other words, for every equation E in the unification problem Γ,

there is a number k: total number of function symbols in E; in the multi-set F(Γ). We

define a measure of Γ||△||σ as the multi-set ordering F(Γ)mul on F(Γ). Note that F(Γ)mul

is well-founded since F(Γ) is a well-ordered set.

◮ Lemma 3.1. Let Γ||△||σ and Γ′||△′||σ′ be two triple sets such that

Γ||△||σ
F lattening

⇒ Γ′||△′||σ′. Then, F(Γ)mul > F(Γ′)mul.

Proof. We have to prove that F(Γ)mul is reducing in all the cases.

Flatten Both sides: Here the equation {t1
?
= t2} is replaced by {v

?
= t1, v

?
= t2}, where t1 and

t2 are terms but not variables. Let k1 ≥ 0 be the number of function symbols in t1 and let

k2 ≥ 0 be the number of function symbols in t2. Now, the multi-set F({t1
?
= t2}) = {k1 +k2}

and the multi-set F({v
?
= t1, v

?
= t2}) = {k1, k2}. Hence, F(Γ)mul is reduced since the

number (k1 + k2) is replaced by two smaller numbers k1, and k2.

Flatten Left +: The equation {t
?
= t1+t2} is replaced by {t

?
= v+t2, v

?
= t1}, where t1 is not a

variable. Let k1 be the number of function symbols in t, k2 be the number of function symbols

in t1, and k3 be the number of function symbols in t2. Then k2 ≥ 1 as t1 is not a variable.

The set F({t
?
= t1+t2}) = k1+k2+k3+1. But the set F({t

?
= v+t2, v

?
= t1}) = {k1+k3, k2}.

Hence, F(Γ)mul > F(Γ′)mul.

Flatten Right +: In this case, the equation {t
?
= t1 + t2} is replaced by {t

?
= t1 + v, v

?
= t2},

where t2 is not a variable. The argument is same as above except t2 is not a variable instead

of t1.

Flatten Under h: The equation {t
?
= h(t1)} is replaced by {t

?
= h(v), v

?
= t1}, where t1 is

not a variable. Let k1 be the number of function symbols in t and let k2 ≥ 1 be the number

of number of function symbols in t1. Then the multi-set F({t
?
= h(t1)}) = k1 + k2 + 1 since

there is h symbol on top of t1, where the multi-set F({t
?
= h(v), v

?
= t1}) = {k1 + 1, k2}.

Hence, F({t
?
= h(t1)})mul > F({t

?
= h(v), v

?
= t1})mul. ◭
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D Soundness

Here we give soundness proof for the Flattening rules.

◮ Lemma 4.1. Let Γ||△||σ
F lattening

⇒ {Γ1||△1||σ1, · · · Γn||△n|σn} be an inference rule. Let

θ be a substitution such that θ |= Γi||△i||σi. Then θ |= Γ||△||σ.

Proof. We have to prove that each of the Flattening rules are truth-preserving.

Flatten Both Sides:

{t1
?
= t2} ∪ Γ||△||σ

{v
?
= t1, v

?
= t2} ∪ Γ||{(v, 0)} ∪ △||σ

Let θ be a substitution, such that θ |= {v
?
= t1, v

?
= t2} ∪ Γ||{(v, 0)}∪△||σ. Now we have to

prove that θ also satisfies {t1
?
= t2} ∪ Γ||△||σ. In other words, θ |= {t1

?
= t2} ∪ Γ||△||σ. To

prove this it is enough to prove that θ |= {t1
?
= t2}. Given that θ satisfies {v

?
= t1, v

?
= t2}

implies that vθ
?
= t1θ and vθ

?
= t2θ . We can write from the above that t1θ

?
= vθ

?
= t2θ.

Then t1θ
?
= t2θ. Hence, θ |= {t1

?
= t2}.

Flatten Left + :

{t
?
= t1 + t2} ∪ Γ||△||σ

{t
?
= v + t2, v

?
= t1} ∪ Γ||{(v, 0)} ∪ △||σ

Assume that θ |= {t
?
= v + t2, v

?
= t1} ∪ Γ||{(v, 0)} ∪ △||σ. We have to prove that

θ |= {t
?
= t1 + t2}. We have that tθ

?
= (v + t2)θ ⇒ tθ

?
= vθ + t2θ and vθ

?
= t1θ. From

vθ
?
= t1θ, we can write tθ

?
= vθ + t2θ as tθ

?
= t1θ + t2θ. Hence, θ |= {t

?
= t1 + t2}.

Flatten Right + :

{t
?
= t1 + t2} ∪ Γ||△||σ

{t
?
= t1 + v, v

?
= t2} ∪ Γ||{(v, 0)} ∪ △||σ

This proof is very similar to Flatten Left +.

Flatten Under h :

{t1
?
= h(t)} ∪ Γ||△||σ

{t1
?
= h(v), v

?
= t} ∪ Γ||{(v, 0)} ∪ △||σ

Assume that θ |= {t1
?
= h(v), v

?
= t} ∪ Γ||{(v, 0)} ∪ △||σ. Now, we have to prove that

θ |= {t1
?
= h(t)} ∪ Γ. By the definition of θ |= {t1

?
= h(v), v

?
= t}, we have that t1θ

?
= h(v)θ

and vθ
?
= tθ. From the above two equations we can write that t1θ

?
= h(v)θ

?
= h(vθ)

?
=

h(tθ) ⇒ t1θ
?
= h(tθ). Hence, θ |= {t1

?
= h(t)}. ◭

E Completeness

Here we make sure that the Flattening rules never lose any equation.

◮ Lemma 5.1. Let Γ||△||σ be a set triple. Let Γ||△||σ
F lattening

⇒ {Γ1||△1||σ1, · · · Γn||△n|σn}

be an inference rule. If θ |= Γ||△||σ, then there exists an i and a θ′, whose domain is the

variables in V ar(Γi) \ V ar(Γ), such that θθ′ |= Γi||△i||σi.
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Proof. We have to prove that it is true in each of the Flattening rules.

Flatten Both Sides: If we have θ |= {t1
?
= t2}, we prove that θ can be extended to θ′ such

that θ′ |= {v
?
= t1, v

?
= t2}. We extend θ to θ′ with the addition of an assignment v 7→ t1.

Flatten Left +: We add v 7→ t1 to θ, and we get θ′.

Flatten Right +: It can be seen that we get θ′ when we add v 7→ t2 to θ.

Flatten under h: Similarly, here we add v 7→ t to θ. ◭
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