
Interpolants for Linear Arithmetic in SMT

Christopher Lynch and Yuefeng Tang

Department of Mathematics and Computer Science
Clarkson University

Potsdam, NY, 13676 USA
clynch@clarkson.edu, tangy@clarkson.edu

Abstract. The linear arithmetic solver in Yices was specifically de-
signed for SMT provers, providing fast support for operations like adding
and deleting constraints. We give a procedure for developing interpolants
based on the results of the Yices arithmetic solver. For inequalities over
real numbers, the interpolant is computed directly from the one con-
tradictory equation and associated bounds. For integer inequalities, a
formula is computed from the contradictory equation, the bounds, and
the Gomory cuts. The formula is not exactly an interpolant because it
may contain local variables. But local variables only arise from Gomory
cuts, so there will not be many local variables, and the formula should
thereby be useful for applications like predicate abstraction. For integer
equalities, we designed a new procedure. It accepts equations and con-
gruence equations, and returns an interpolant. We have implemented our
method and give experimental results.

1 Introduction

In 1957 [5] Craig presented the idea of interpolant. But, only recently interpolant
are used as an important part of program verification. Interpolants are especially
useful for finding inductive invariants and for predicate abstraction [1,10,11,12].
Given two sets of logical formulas A and B where A ∪ B is unsatisfiable, a
formula P is an interpolant of (A, B) if A implies P , P contradicts B , and P
only contains variables common to A and B. Informally, an interpolant gives
the reason why A and B contradict, in a language common to both of them.
Invariants are created iteratively, and the common variable restriction keeps the
number of variables from exploding.

In this paper, we are concerned with linear arithmetic (in)equalities, either
over the reals or the integers. Our method, called YAI (Yices Arithmetic Inter-
polants), is based on the linear arithmetic algorithm of Yices[8]. This algorithm
was specially designed to work inside an SMT prover. It is able to quickly add
and remove single constraints. Yices’ linear arithmetic solver reduces sets of
inconsistent constraints into an unsatisfiable equation. Then, our method can
simply construct an interpolant from that unsatisfiable equation. Therefore, the
method is not proof-based, and after detecting unsatisfiability, it can find an
interpolant without much additional work.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 156–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interpolants for Linear Arithmetic in SMT 157

Simplex methods are believed to be faster than Fourier Motzkin methods.
Yices does not use the Simplex method, but it uses essential ideas from that
method, with the idea that incremental changes must be fast. Given a set of con-
straints, Yices will first flatten the constraints using extension variables. What
is left are equations that are pivoted and updated in a Simplex manner, and
bounds on extension variables. The third component of the Yices algorithm is a
set of variable assignments, which is updated as bounds are added. If the con-
straint set is unsatisfiable, then the algorithm will halt with an equation that
conflicts with the bounds on the variables it contains. For real (in)equations, our
method creates the interpolant from that equation and those bounds.

For integer (in)equations, the Yices algorithm needs to apply Gomory cuts,
which introduce new variables. In this case, our formula uses the bounds, the
contradicting equation, and the Gomory cut definitions to create a conditional
formula which satisfies the first two conditions of the definition of interpolant.
However, it is possible that the formula may contain variables that are not
common to both A and B. Therefore, the formula is not exactly an interpolant.
However, these offending variables are only from the Gomory cuts. So, there will
not be many of them. When the purpose of requiring common variables is to
keep the number of variables from exploding when the interpolant construction
is iterated, we believe that these formulas are still useful in practice.

We have developed a special algorithm for interpolants over integer equations.
This algorithm takes as input a set of equations and congruence equations. It is
more of a Fourier Motzkin method, since new equations can be added, but in
a controlled fashion. However, we still use the extensions and bounds from the
Yices algorithm. This will retain the advantages of ease of adding and deleting
equations. When the algorithm determines unsatisfiability, we will again have
an equation which conflicts the bounds on the variables, and we will create a
congruence equation from that information, which will be an interpolant.

We have implemented each of these methods. We created some random con-
straints and compared our implementation, YAI, with Yices. Our algorithm is
the same as Yices except for integer equations, and the fact that we construct an
interpolant. The time to construct the interpolant does not add significantly to
the running time. However, due to clever coding techniques of the Yices program-
mers, YAI is slower than Yices. Our method could be incorporated into Yices
without increasing its running time. For integer equations, our implementation
is faster than Yices on the tested examples.

We are aware of two other implementations which create interpolants for linear
arithmetic: FOCI[11] is which a proof-based method, and CLP-Prover[13] which
is not proof-based. Those methods also handle uninterpreted function symbols
and disjunctions. However, CLP-Prover does not handle integers, and FOCI
only approximates them. Since FOCI is proof-based, it is more complicated to
find an interpolant. The main difference between our implementation and those
other two is that our implementation is designed to work in an SMT theorem
prover which supports fast operations for adding and deleting constraints. Re-
cently, we became aware of MATHSAT-ITP[3] and INT2[9]. For linear arithmetic

158 C. Lynch and Y. Tang

over reals, both MATHSAT-ITP and YAI are based on the simplex method.
MATHSAT-ITP explicitly constructs a proof of unsatisfiability and uses McMil-
lan’s method[11] to build an interpolant from the proof of unsatisfiability. But,
YAI does a similar thing by directly computing an interpolant from the unsat-
isfiable equation with its bounds. MATHSAT-ITP converts an equality into two
inequalities, which creates more constraints. However, YAI can directly handle
equalities. INT2 creates interpolants for equalities over integers, but it does not
use the same method as YAI. INT2 is not designed to work in SMT.

YAI cannot handle uninterpreted function symbols and disjunctions. But,
YAI can easily be extended to handle those problems by using the combination
methods proposed by Yorsh and Musuvathi[14] or McMillan[11]. Notice that a
disequality t �= 0 can be rewritten into t > 0 ∨ t < 0.

Our paper is organized as follows. In Section 2, we introduce the preliminar-
ies. That is followed by a brief introduction to the linear arithmetic solver of
Yices. Next, we introduce YAI for linear equalities and inequalities over ratio-
nal numbers. In this section, the linear arithmetic solver is the same as Yices.
After that, we introduce YAI for linear equalities over integers. In this section,
a new complete linear arithmetic solver is introduced, which is different from
Yices. Following that, we introduce YAI for linear equalities and inequalities
over integers. The linear arithmetic solver of YAI is the same as Yices. Finally,
we conclude and mention future work.

2 Preliminaries

An atom is a single variable. A term is defined as a constant, an atom or cx
where c is a constant and x is a variable. If c is negative, we call cx a negative
term, otherwise cx is a positive term. An expression is a summation of terms.
t1 − t2 is an abbreviation of t1 + (−t2) where t1 and t2 are terms.

In our paper, an equation t1 = t2 is called a standard equation (or simply
equation) where t1 and t2 are expressions. t1 ≡m t2 is a congruence equation
where t1 and t2 are expressions and m is a constant. An inequality is of the form
t1φt2, where φ ∈ {>, <,≥,≤}. A constraint is a standard equation, an inequal-
ity, or a congruence equation. A congruence equation t1 ≡m t2 is satisfiable if
there is an assignment for the variables such that t1 and t2 are congruent modulo
m. Any other constraint is satisfiable if there is an assignment for the variables
which satisfies the constraint. A set of constraints is satisfiable if there is an as-
signment for the variables which satisfies all the constraints. A set of constraints
is unsatisfiable if it is not satisfiable.

We will consider two sets of constraints A and B, and we wish to determine
if A ∪ B is satisfiable. A variable occurring only in A or only in B is called a
local variable. Variables occurring in both A and B are called global variables. If
A ∪ B is unsatisfiable, then P is an (A, B) interpolant if A implies P , P ∪ B is
unsatisfiable, and all variables in P are global.

Interpolants for Linear Arithmetic in SMT 159

3 A Linear Arithmetic Solver for DPLL(T)

Yices is an SMT solver that can efficiently check satisfiability of linear arithmetic.
If the problem is satisfiable, Yices generates an assignment for each variable; else
unsatisfiability is detected. Yices first converts the formula into a conjunction
of equalities and bounds. The new equalities and bounds can be derived by
introducing extension variables. For instance, given an constraint tφc where t is
an expression, c is a constant and φ ∈ {≥,≤, =, >, <}, a new equality s = t and
a bound sφc are generated by introducing an extension variable s. t is called a
definition of s, c is a bound value and φ is a bound operator. This process of
replacing a constraint tφc by an extension equation s = t and a bound sφc is
called flattening. Later on, we will need to replace the extension variables back
by their definitions, so we introduce a substitution σ to do that.

Definition 1. σ is a substitution that replaces extension variables by their def-
initions.

After flattening, a set of new equalities
∑m

i=1 si = ti forms a constraint matrix,
and a set of bounds

∑n
i=1 siφici is generated too. Notice that the conversion

preserves satisfiability. Here is an example. Given two linear arithmetic sets:
A = {x − y = 0, 2y ≥ 1}, B = {x ≤ 0}.

This will be flattened into extension equations {s1 = x − y, s2 = 2y} and
bounds { s1 = 0, s2 ≥ 1, x ≤ 0 } where s1 and s2 are extension variables. Notice
that no extension variable is introduced for the bound x ≤ 0 because x is an
atom. So, we can directly treat x ≤ 0 as a bound. After introducing extension
variables, the new set derived from A is called Ae, and the new set derived from
B is called Be. It is not hard to see that σ(Ae) is A and σ(Be) is B. In this
example, Ae is {s1 = x − y, s2 = 2y, s1 = 0, s2 ≥ 1 }, and Be is {x ≤ 0}.

The equations in the constraint matrix always maintain the following form:

xi =
∑

xj∈N
aijxj xi ∈ B

where xi is a basic variable, which only appears on the left side of the equations,
xj are non basic variables, which appears only on the right side of the equations,
B is the set of basic variables, N is the set of non-basic variables, and aij are
the coefficients. Each variable xi has two bounds li(lower bound) and ui(upper
bound). If no constant bound exists, we assume the bound is −∞ or +∞. If
li = −∞ and ui = +∞ then xi is a free variable; else if li = ui then xi is a
fixed variable. We introduce a variable assignment β that maps each variable to
a constant value. Initially β(x) = 0 for all variables x. The procedure continually
updates β, so that all equations and bounds will be true.

The main algorithm of this solver contains two parts. The first part con-
taining two asserting procedures in Figure 3 [8] is to assert bounds. The sec-
ond part is to resolve bound violations using the main procedure check() in
Figure 2[8]. Initially, for each variable x, β(x) = 0. Then, each bound will be
asserted one by one. After asserting a bound, the variable assignment may be

160 C. Lynch and Y. Tang

procedure update(xi, v)
for each xj ∈ B , β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedure pivotAndUpdate(xi, xj ,v)

θ := v−β(xi)
aij

β(xi) := v
β(xj) := β(xj) + θ
for each xk ∈ B \ xi, β(xk) := β(xk) + akjθ
pivot(xi, xj);

Fig. 1. Auxiliary procedures

1. procedure check()
2. loop
3. select the smallest basic variable xi such that β(xi) < li or β(xi) > ui

4. if there is no such xi then return satisfiable
5. if β(xi) < li then
6. select the smallest non-basic variable xj such that
7. (aij > 0 and β(xj) < uj) or (aij < 0 and β(xj) > lj)
8. if there is no such xj then return unsatisfiable
9. pivotAndUpdate(xi, xj , li)
10. if β(xi) > ui then
11. select the smallest non-basic variable xj such that
12. (aij < 0 and β(xj) < uj) or (aij > 0 and β(xj) > lj)
13. if there is no such xj then return unsatisfiable
14. pivotAndUpdate(xi, xj , ui)
15. end loop

Fig. 2. Check procedure

1. procedure AssertUpper(xi ≤ ci)
2. if ci ≥ ui then return satisfiable
3. if ci < li then return unsatisfiable
4. ui := ci

5. if xi is non-basic variable and β(xi) > ci then update(xi, ci)
6. return ok

1. procedure AssertLower(xi ≥ ci)
2. if ci ≤ li then return satisfiable
3. if ci > ui then return unsatisfiable
4. li := ci

5. if xi is non-basic variable and β(xi) < ci then update(xi, ci)
6. return ok

Fig. 3. Assertion procedures

Interpolants for Linear Arithmetic in SMT 161

updated. Then, it is possible that the assignment of some variable could violate
some asserted bound after updating the variable assignment. Thus, the procedure
check() will be immediately called to resolve bound violations after the assign-
ment is updated in the asserting procedures. If a bound violation is resolved by
pivotAndUpdate(xi, xj , v) or no violation is detected, a temporary assignment
satisfies all equations in the constraint matrix and the asserted bounds. So, after
all bounds are asserted, if the original problem is satisfiable then a model is
generated. If the algorithm determines unsatisfiability because an equation e is
unsatisfiable with the bounds of its variables, then we call e an unsat equation.
The termination of the algorithm has been proved in [8].

To handle strict inequalities over reals, Yices converts strict inequalities into
non-strict inequalities by introducing a variable δ representing an infinitely small
positive real number [8]. For instance, x > 2 is converted into x ≥ 2 + δ.

The linear arithmetic solver of Yices is complete to decide satisfiability for lin-
ear arithmetic over real numbers. But, it is incomplete for linear arithmetic over
integers. In the next section we will introduce a method to build an interpolant
when the solver of Yices detects that the problem is unsatisfiable.

4 YAI for Linear Equalities and Inequalities over Reals

In this section, our method to check satisfiability of linear arithmetic is the same
as Yices. Since any disequality t �= 0 can be converted into t > 0 ∨ t < 0 [8],
YAI can be easily extended to handle disequalities. As mentioned in the previous
section, the solver can detect unsatisfiability in the assert and check procedures.
In the assert procedures, unsatisfiability means two asserted bounds contradict
each other. For instance, the bound x ≥ 5 contradicts the bound x ≤ 0. So, in this
case the way to construct an interpolant is simple, and is presented in Figure 4.
The input bi and bj of this procedure represents two inconsistent bounds.

1. procedure bound interpolant(bi, bj)
2. if(both bounds are from Ae) then return FALSE;
3. if(both bounds are from Be) then return TRUE;
4. if(bi is from Ae) then return σ(bi);
5. if(bj is from Ae) then return σ(bj);

Fig. 4. Bound Interpolant procedure

If the algorithm returns unsatisfiable in the checking procedure, that means
that a bound violation is detected in an equation and the solver is not able
to resolve the bound violation. Thus, in this case an unsat equation is de-
tected. Notice that in an unsat equation there are no free variables because
if a free variable exists then the bound violation can always be resolved by call-
ing pivotAndUpdate(xi, xj ,v). We can rewrite the unsat equation in the form
t = 0. Since that equation contradicts the bounds, there must exist a minimal
set of bounds K such that K implies t > 0 or K implies t < 0. Let ax be a term

162 C. Lynch and Y. Tang

Table 1.

φ inverse(φ)

≥ ≤
> <

≤ ≥
< >

= =

in t, and let xφd ∈ K. If ax is a positive term, then axφa ∗ d is called an active
bound. The function inverse maps an operator to an operator and is defined in
Table 1. If ax is a negative term, then ax inverse(φ)a ∗ d is called an active
bound. We say that a set of bounds has the same direction if all bound operators
of active bounds exist only in the set {>,≥, =} or the set{<,≤, =}. Since K
implies t > 0 or K implies t < 0, then all active bounds in the unsat equation
must have the same direction.

1. procedure real interpolant(i)
2. move the basic variable xi to the right side of the equation
3. for each variable xj in the equation
4. if the active bound of xj is from Ae then
5. s := s + aijxj

6. c+ = aij * b value(xj)
7. if aij <0 then op = inverse(b operator(xj))
8. else op = b operator(xj)
9. if op � φ then φ =op
10. return σ(s φ c)

Fig. 5. Interpolant procedure over reals

Our method collects all active bounds from Ae in that equation to build an
interpolant. Later on we will prove that the summation of all active bounds from
Ae is an interpolant. The procedure real interpolant(xi) to build an interpolant
over the reals is shown in Figure 5.

real interpolant(i) will be immediately called after the linear arithmetic
solver of Yices fails to find an assignment for the basic variable xi in the unsat
equation. The procedure takes as input an index i indicating the ith equation(xi

is a basic variable). We move basic variable xi to the right hand side of the
equation to express it in the form 0 = t. The variable s, initialized to the empty
string, is the sum of the left hand sides of active bounds from Ae, c, initialized to
zero, is the sum of corresponding bound values and φ is the active bound opera-
tor. b value(xj) returns the active bound value of xj , and b operator(xj) returns
the bound operator of xj . In the procedure an ordering is placed on operators
′ >′ � ′ ≥′ � ′ =′, and ′ <′ � ′ ≤′ ′ =′. When adding active bounds
together, the procedure selects the biggest operator among bound operators.

Example 1. Let’s construct an interpolant from the example introduced in Sec-
tion 3. The solver detects an unsat equation 2x = 2s1 +s2 with its active bounds

Interpolants for Linear Arithmetic in SMT 163

{x ≤ 0, s1 = 0, s2 ≥ 1}. Running real interpolant(i), we can derive s = 2s1+s2,
c = 1 and φ =′≥′ because ′ ≥′ � ′ =′. So, sφc will be 2s1 + s2 ≥ 1. Then, the
interpolant σ(2s1 + s2 ≥ 1) is 2x ≥ 1 because s1 = x − y and s2 = 2y .

Lemma 1. σ(sφc) derived in real interpolant(i) is an (A, B)-interpolant.

5 YAI for Linear Equalities over Integers

Our method to check satisfiability of linear equations over integers is different
from Yices. Yices employs the branch-and-bound and Gomory cut strategies to
handle linear arithmetic over integers after a real assignment of variables is gen-
erated. Since in this section we only focus on integer equalities, then the Gomory
cut strategy is not applicable. So, Yices only can use the branch-bound strategy.
However, the branch-bound strategy is not suitable for generating interpolants
because it repeatedly splits the problem into subproblems. Thus, this strategy
not only increases the difficulty of constructing the interpolant, but it also makes
the format of the interpolant complex involving the composition of disjunction
and conjunction formulas. Therefore, we present a new linear arithmetic solver
for linear equalities over integers and a simple method to construct interpolants.

Our Interpolants are standard equations or congruence equations because in
some cases standard equations are not powerful to express the interpolant. For
example, A = {2x = y} and B = {2z = y + 1}. In this example, it is difficult
to express the interpolant as standard equations because the interpolant could
be a disjunction of infinitely many standard equations. But, if we introduce con-
gruence equations, we can simply represent the interpolant as y ≡2 0. Another
nice feature is that our method can treat congruence equations as inputs. This
will be useful to find inductive invariants, when the interpolant may be an input
to another call of the theorem prover.

We still use Yices’ method to build the constraint matrix and bounds. In
the constraint matrix we specify that all the coefficients of variables are inte-
gers. Basically, our method consists of two main procedures reduce matrix()
and reduce congruence matrix(). In those procedures some equations are re-
moved from the matrices, and some equations are added into the matrices. If no
equation is left After running those two procedures , then the original problem
is satisfiable; else, the problem is unsatisfiable and an interpolant is constructed.

In our paper, we assume every congruence equation is simplified. The algo-
rithm to simplify congruence equations is based on the Euclidian algorithm [4].
The definition of simplification of a congruence equation is given as follows.

Definition 2. A congruence equation ax ≡m t is simplified if a is a factor of
m, x is a variable, t is an expression, and a and m are constants.

The gcd test[4] is employed to check if an individual equation has an integer
solution. The algorithm of the gcd test is presented in Figure 6. Notice that in
the procedure, if equation i is a congruence equation, we consider the modulo as
the coefficient of a free variable. Thus, mod(i) returns the modulo of Equation

164 C. Lynch and Y. Tang

1. procedure gcd test(i)
2. if(all variables in Equation i are fixed) then g = 0
3. else g = gcd of coefficients of free variables in Equation i
4. if (Equation i is a congruence equation) then g = gcd(g,mod(i))
5. c is the summation of bound values of fixed variables
6. if (c is not a multiple of g) then return fail
7. if (all variables in Equation i are fixed) then remove Equation i
8. return success

Fig. 6. gcd test procedure

i. In certain cases, it is possible that there is no free variable in equation i. In
this case Equation i could be removed if c is a multiple of g. It is straightforward
that removing Equation i preserves satisfiability.

1. procedure reduce matrix()
2. assert all the bounds at once
3. if(bound violation exists during assert) then return bound interpolant(b1, b2)
4. if(Equation p fails gcd test) then return integer interpolant(p)
5. while(the matrix is not empty)
6. select a free variable xj from Equation i
7. build a set M of equations containing a variable xj

8. if(for each m ∈ M |gcd(coef(xj , i), coef(xj , m))| > 1) then
9. add

�n
k=1 aikxk ≡aij 0 into the congruence matrix

11. apply Superposition Rule to replace xj in each equation in M by Equation i
12. if(Equation p fails gcd test) then return integer interpolant(p)
13. apply Congruence Superposition Rule to replace xj by Equation i
14. if(Congruence Equation p fails gcd test) then return integer interpolant(p)
15. remove Equation i from the matrix
16. if(the congruence matrix is empty) then return satisfiable
17. return reduce congruence matrix();

Fig. 7. Reduce matrix procedure

Yices asserts bounds one by one. But, in our procedure reduce matrix(), we
assert all the bounds at once. If a bound violation occurs while asserting bounds,
bound interpolant (b1, b2) is called to construct an interpolant where b1 and b2

are two inconsistent bounds. Notice that the element of the set M could be a
standard equation or a congruence equation. coef(xj , i) is a function that returns
the coefficient of xj in equation i. Thus, gcd(coef(xj , i), coef(xj , m)) returns the
gcd of coefficients of xj in Equation i and Equation m. To preserve satisfiability,
a congruence equation

∑n
k=1 aikxk ≡aij 0 may be added into the congruence

matrix where
∑n

k=1 aikxk is the summation of all the terms in equation i and
aij is the coefficient of xj in equation i. Then, the procedure replaces xj in the
other equations by Equation i. In the following inference rules, we treat the left
premise as Equation i and the right premise as a updated equation.

Interpolants for Linear Arithmetic in SMT 165

The way to replace xj in a standard equation by Equation i is given in Su-
perposition Rule.

axj = t1 bxj = t2
bt1 = at2

where xj is a free variable, t1 and t2 are expressions, and a and b are integers.
The idea to replace xj in a congruence equation by a standard equation is

given in Congruence Superposition Rule:

axj = t1 bxj ≡c t2
bt1 ≡ac at2

where xj is a free variable, t1 and t2 are expressions, and a, b, and c are integers.
The above two inference rules represent updates, meaning that the right

premise is replaced by the conclusion in the presence of the left premise. The
left premise will not be removed from the matrix until all the other equations
are updated. Thus, for each iteration in the while loop, an equation is removed
from the constraint matrix in reduce matrix(). Thus, in general our method is
efficient because the number of constraints in the matrix is reduced and the cost
to update standard equations is dramatically decreased.

Example 2. Given A = {2x = y} and B = {y = 2z + 1}, this is flattened into
equations {s1 = 2x− y, s2 = y − 2z} and bounds {s1 = 0, s2 = 1}. Suppose that
the ordering of the selected free variables in reduce matrix() is x from s1 = 2x−y
and y from s2 = y−2z. For the first pass of the while loop, y ≡2 s1 is added into
the congruence matrix. For the second pass of the while loop, the congruence
superposition rule is applied for s2 = y − 2z and y ≡2 s1. The inference result is
s2 + 2z ≡2 s1 which can be simplified to s2 ≡2 s1. The equation s2 ≡2 s1 fails
gcd test because s1 = 0 and s2 = 1. Thus, unsatisfiability is detected.

1. procedure reduce congruence matrix()
2. while(the congruence matrix is not empty)
3. select a free variable xj from Congruence equation i
4. build a set M of congruence equations containing xj

5. for an equation m ∈ M if |coef(xj , m)| > 1 then
6. add congruence Equation

�n
k=1 amkxk ≡amj 0

7. apply CC Superposition Rule replacing xj for each pair of equations in M
8. remove all the equations in M
9. if(an equation m fails the gcd test) then return integer interpolant(p)
10. return satisfiable

Fig. 8. Reduce congruence matrix procedure

Next, we will study the procedure reduce congruence matrix() which is shown
in Figure 8. In the procedure, a set M is built in which each congruence equa-
tion contains xj . For an equation j ∈ M , if the absolute value of the coefficient
of xj is greater than 1 then

∑n
k=1 amkxk ≡amj 0 is added where

∑n
k=1 amkxk

166 C. Lynch and Y. Tang

is a summation of all terms in Congruence Equation m and amj is the coefficient
of xj in congruence Equation m. Then CC Superposition Rule is applied for
each pair of equations in M to replace xj .

axj ≡c t1 bxj ≡d t2
bt1 ≡gcd(b∗c,a∗d) at2

After applying the CC Superposition Rule, all the equations containing xj are
removed. Next, gcd test is applied on those new generated equations. An inter-
polant is constructed if unsatisfiability is detected. This procedure is terminated
when an interpolant is constructed or the congruence matrix is empty.

Since for each equation aix ≡mi ti in M , ai|ti(ti is divisible by ai) because
a congruence equation may be added. Thus, in some sense our method is the
successive substitution method which is a method of solving problems of simul-
taneous congruences by using the definition of the congruence equation. Usually,
the successive substitution method is applied in cases where the conditions of
the Chinese Remainder Theorem are not satisfied.

Example 3. Given A = {6m = 3x − y, 4n = 3x− z} and B = {3z = y + 1}, this
is flattened into extension equations {s1 = 6m − 3x + y, s2 = 4n − 3x + z, s3 =
3z − y} and bounds {s1 = 0, s2 = 0, s3 = 1}. Suppose the ordering of the
selected variables in reduce matrix() is m from s1 = 6m − 3x + y, n from
s2 = 4n − 3x + z and z from s3 = 3z − y. After running reduce matrix(), all
those standard equations are removed and {3x − y + s1 ≡6 0, 3x − z + s2 ≡4

0, y + s3 ≡3 0} is added into the congruence matrix. So, the next step is to call
reduce congruence matrix(). In this procedure, let’s assume that x is selected.
First, 3x − y + s1 ≡6 0 and 3x − z + s2 ≡4 0 can be rewritten to 3x ≡6 y − s1

and 3x ≡4 z − s2. Second, since the coefficient of x in those two congruence
equations is 3, y ≡3 s1 and z ≡3 s2 are generated. Third, after applying the CC
Superposition Rule for 3x ≡6 y − s1 and 3x ≡4 z − s2, the inference result is
y − s1 ≡2 z − s2. So, at this point the congruence matrix contains y + s3 ≡3 0,
y ≡3 s1 , z ≡3 s2 and y − s1 ≡2 z − s2. Suppose, the next selected variable is y.
Then, applying the CC Superposition Rule for y + s3 ≡3 0 and y ≡3 s1, we can
derive s1 + s3 ≡3 0 which is unsatisfiable because s1 = 0 and s3 = 1.

So far, we have introduced a new linear arithmetic solver different from Yices
for linear equations over integers. Next is to show a procedure to construct an
interpolant. In integer interpolant(i), we consider that the modulo of Equation
i is a coefficient of a free variable. s is a sum of the left hand sides of active
bounds and c is a sum of corresponding bound values.

Example 4. In example 2, our method detects that s2 ≡2 s1 with s2 = 1 and
s1 = 0 is unsatisfiable. Running integer interpolant(i), we can derive s = s1,
g = 2 and c = 0 because s1 is from Ae. Since s1 = 2x − y then an interpolant
σ(s1 ≡2 0) could be y ≡2 0 which is simplified from 2x − y ≡2 0. Similarly, in
example 3, running integer interpolant(i), we can derive an interpolant y ≡3 0.

Interpolants for Linear Arithmetic in SMT 167

1. procedure integer interpolant(i)
2. g = gcd of coefficients of free variables in Equation i
4. if (Equation i is a congruence equation) then g = gcd(mod(i), g)
5. for each variable xj in the equation
6. if the active bound of xj is from Ae then
7. s := s + aijxj

8. c+ = aij ∗ b value(xj)
9. σ(s ≡g c)
10. return satisfiable

Fig. 9. Interpolant over integer equations

Notice that our arithmetic solver of YAI is different from Yices. However, our
solver uses the same flattening procedure as Yices does to separate constraints
and bounds. Thus, our solver is also able to quickly add and delete a single
constraint. To delete a constraint, we can simply delete its bound. To add a con-
straint, first we assert its bound. Then, we re-run gcd test(i) on the equations,
including the deleted equations which contain the corresponding extension vari-
able for that constraint. Actually, our method saves those deleted constraints for
adding and deleting operations.

In our implementation, YAI does not construct a model for a satisfiable prob-
lem because our interest is to construct interpolants. However, theoretically our
method is able to construct a model. We can build a model from the reverse
order of the deleted constraints using the successive substitution method [7].

Lemma 2. σ(s ≡g c) derived in integer interpolant(i) is an (A, B)-interpolant.

Lemma 3. Each pass of the while loop in reduce matrix() preserves satisfia-
bility.

Lemma 4. Each pass of the while loop in reduce congruence matrix() pre-
serves satisfiability.

6 YAI for Linear Equalities and Inequalities over Integers

The linear arithmetic procedure of Yices tries to find an assignment for each
variable and if an assignment is not an integer then branch-bound and Gomory
cut strategies are employed. In this section we use the linear arithmetic solver
in Yices to check satisfiability for linear arithmetic over integers. But, in our
implementation only the Gomory cut strategy is employed and the reason is
explained in the previous section. Notice that the linear arithmetic solver in Yices
is incomplete for integer problems. So, our method to construct interpolants
based on Yices is also incomplete.

Given an equation xi =
∑

xj∈N aijxj where the assignment of the basic vari-
able xi is a rational number, then a Gomory cut [8] is generated to restrict the
solution of xi. Gomory cut implied by constraints is an inequality. A Gomory
cut is a pure cut when the equation used to generate the cut is from Ae or Be.

168 C. Lynch and Y. Tang

Otherwise, it is a mixed cut. We treat all pure Gomory cuts as constraints from
Ae or Be. For a mixed Gomory cut, a conjunction of constraints from Be, which
are used to generate the cut, will be stored with the corresponding cut.

If unsatisfiability is detected in the asserting procedure, then we can use
bound interpolant(bi, bj) to construct the interpolant; else cut interpolant(i)
is called to construct the interpolant.

1. procedure cut interpolant(i)
2. move the basic variable xi to the left side of the equation
3. for each variable xj in the equation
4. if the active bound of xj is mixed cut or from Ae then
5. s += aijxj

6. c += (aij ∗ b value(xj)
7. if aij <0 then op = inverse(b operator(xj)
8. else op = b operator(xj)
9. if op � φ then φ =op
10. if the active bound of xj is a mixed cut then b = b ∧ cut info(xj)
11. return σ (b ⇒ (s φ c))

Fig. 10. Interpolant for linear arithmetic over integers

cut interpolant(i) is quite similar to real inerpolant(i). cut info(xj) is a set
of constraints from Be which are used to generate the cut of xj . However, the
strategy of Gomory cut is employed. So, if a mixed cut is involved in the un-
satisfiability proof, then extracting information of Ae from the mixed cut is not
enough because the mixed cut is derived from a combination of constraints from
Ae and Be. Thus, in the procedure we use b to collect some constraints from Be

which are used to generate corresponding cuts. We use ⇒ as implication. Thus,
we treat b as a condition to conclude sφc.

Since b is a set of some constraints from Be, then b may contains some variables
local to Be. Thus, σ (b ⇒ (s φ c)) is not an interpolant. But, it does satisfy the
other two properties of (A, B)-interpolant.

Example 5. Given A = {5x = y + z, y ≥ 0, y ≤ 1} and B = {z ≥ 1, z ≤ 2},
this can be flattened into extension equations {s1 = 5x − y − z} and bounds
{s1 = 0, y ≥ 0, y ≤ 1, z ≥ 1, z ≤ 2}. Running the linear arithmetic procedure in
Yices, an assignment is generated but the value of x is 1/5 which can be derived
from 5x = y+z+s1 with y ≥ 0, z ≥ 1 and s1 = 0. Then, a Gomory cut y+z ≥ 5
is generated from that equation with its bounds. Notice that the constraint from
Be used to construct the Gomory cut is z ≥ 1. That Gomory cut is flattened into
an extension equation s2 = y + z and a bound s2 ≥ 5. The extension equation is
added into matrix and the bound is asserted. Finally, unsatisfiability is detected
in z = −y + s2 with z ≤ 2, y ≤ 1 and s ≥ 5. Thus, running cut interpolant(i),
we derive that an interpolant σ(z ≥ 1 ⇒ −y + s2 ≥ 4) is z ≥ 1 ⇒ z ≥ 4
because s2 = y + z. The left side of the conditional formula is the conjunction
of constraints from Be used to construct Gomory cuts and the right side of the
conditional formula is the sum of constraints from Ae and Gomory cuts.

Interpolants for Linear Arithmetic in SMT 169

Lemma 5. σ(b ⇒ sφc) in cut interpoant(i) is implied by A and contradicts B.

7 Experimental Results

We implemented YAI using Microsoft Visual Studio 2008 C++ on the Windows
XP operating system. All experiments are conducted on a Lenovo Think Pad
T60 with the configuration of Intel 2.0GHz CPU and 2.0GB memory. YAI is
available on http://people.clarkson .edu/∼tangy/.

Since YAI for linear real inequalities and integer inequalities is based on the
linear arithmetic solver in Yices and constructing interpolants does not add too
much additional cost to Yices, we only compared the running time of YAI with
Yices for linear integer equalities.

Most SMT benchmarks contain disjunctions and function symbols. Thus, we
wrote a C program to randomly generate sample examples without contain-
ing disjunctions and function symbols. Each sample example set contains 100
examples. Let P (e1, e2) be a pair of integers and let e1 be the number of con-
straints and e2 be the number of variables in an example. In each example of
equality set 1, equality set 2, and equality set 3, the corresponding pairs are
P (10, 5), P (50, 25) and P (100, 50). For each constraint in the example the oper-
ator is ′ =′, the number of terms is randomly selected from [1, 10], the coefficient
for each term is randomly selected from [1, 100], the variable name is randomly
generated, and a constant is randomly selected from [1, 100]. The results in the
table are the total runtime of 100 examples. The running time of YAI for linear
integer equalities mainly depends on the number of congruence equations gen-
erated from the examples because the expensive operation of YAI is to reduce
congruence equations using the successive substitution method.

Number of Examples YAI (seconds) Yices(seconds)

equality set 1 100 4 5

equality set 2 100 8 10

equality set 3 100 6 67

Fig. 11. Comparison between YAI and Yices for linear equalities over integers

8 Conclusion and Future Work

We have shown how interpolant construction fits easily into the SMT framework
in the theory of linear arithmetic. In particular, we produce an interpolant di-
rectly from the single contradictory equation. Therefore, an interpolant can be
generated at no additional cost to the satisfiability procedure. We have imple-
mented YAI and compared our results against Yices.

We have several directions to work on. First, we plan to extend our method
to handle uninterpreted function symbols and disjunctions using the methods
proposed by Yorsh and Musuvathi[8] and McMillan [11]. Second, We would like

170 C. Lynch and Y. Tang

to compare against FOCI, CLP-prover, MATHSAT-ITP and INT2 in the size
of interpolants and the efficiency of solvers. Finally, we would like to apply our
method to generate invariants.

References

1. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast: Applications to Software Engineering. International Journal on Software
Tools for Technology Transfer (STTT) 9(5-6), 505–525 (2007)

2. Chvatal, V.: Linear Programming. W. H. Freeman, New York (1983)
3. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satis-

fiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963. Springer, Heidelberg (2008)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn., pp. 856–862. MIT Press and McGraw-Hill (2001)

5. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

6. Dantzig, G.B., Curtis, B.: Fourier-Motzkin elimination and its dual. Journal of
Combinatorial Theory, 288–297 (1973)

7. Dickson, L.E.: History of the Theory of Numbers, vol. 2. Chelsea, New York (1957)
8. Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). CSL Technical

Report SRI-CSL-06-01 (2006)
9. Jain, H., Clarke, E.M., Grumberg, O.: Efficient Craig Interpolation for Linear Dio-

phantine (Dis)Equations and Linear Modular Equations. In: Proc. CAV (2008)
10. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

11. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

12. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

13. Rybalchenko, A., Stokkermans, V.S.: Constraint Solving for Interpolation. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer,
Heidelberg (2007)

14. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer,
Heidelberg (2005)

	Interpolants for Linear Arithmetic in SMT
	Introduction
	Preliminaries
	A Linear Arithmetic Solver for DPLL(T)
	YAI for Linear Equalities and Inequalities over Reals
	YAI for Linear Equalities over Integers
	YAI for Linear Equalities and Inequalities over Integers
	Experimental Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

