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Basic Syntactic Mutation�

Christopher Lynch and Barbara Morawska

Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA, {clynch,morawskb}@clarkson.edu

Abstract. We give a set of inference rules for E-unification, similar to
the inference rules for Syntactic Mutation. If the E is finitely saturated by
paramodulation, then we can block certain terms from further inferences.
Therefore, E-unification is decidable in NP , as is also the case for Basic
Narrowing. However, if we further restrict E, then our algorithm runs in
quadratic time, whereas Basic Narrowing does not become polynomial,
since it is still nondeterministic.

1 Introduction

E-unification is the problem of deciding if there are substitutions for variables
which make two terms equal modulo an equational theory E. E-unification oc-
curs in many applications. Unfortunately, it is an undecidable problem in general.
We are interested in finding classes of equational theories where the E-unification
problem is decidable and tractable.

One method of attacking this problem is to examine equational theories which
are finitely saturated under a given set of inference rules. For example, if an
equational theory E is saturated under the Critical Pair rule of Knuth-Bendix
Completion[11], then the word problem is decidable for E, i.e., the problem of
deciding if two terms are equal modulo E. However, the E-unification problem
can still be undecidable for such theories.

The Critical Pair rule allows inferences only into a subterm of the larger side
of an equation. It can be extended to an inference rule called Paramodulation[3],
which allows inferences also into the smaller side of an equation. In [14], it is
shown that if E is saturated by Paramodulation then the E-unification problem
is decidable, and furthermore the decision procedure is in NP . In the Narrowing
procedure used in that paper, whenever Narrowing is performed, the smaller side
of the equation from E is marked in the conclusion and future inferences are not
allowed into the marked positions. Each inference “consumes” a position of the
goal, and therefore each Narrowing sequence halts in a linear number of steps.
Therefore, the procedure is in NP , since it is a non-deterministic procedure.

Here, we also consider equational theories E saturated under Paramodula-
tion. The inference system we use is not Narrowing, but a variant of the Syntactic
Mutation inference rules of [10]. However, our inference rules are Basic, in the
� This work was supported by NSF grant number CCR-0098270 and ONR grant num-
ber N00014-01-1-0435.

A. Voronkov (Ed.): CADE-18, LNAI 2392, pp. 471–485, 2002.
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sense that we can mark terms from the equation from E, and not allow any more
inferences into these terms. Therefore, just like in [14] we get an NP algorithm.

The important part of our paper is what comes next. We show that if E
is further restricted (see section 6), then the algorithm is no longer nondeter-
ministic. In fact, the algorithm runs in a linear number of steps, in O(n2) time.
This is in contrast to Basic Narrowing, where these restrictions do not allow the
procedure to become deterministic, so it does not become polynomial.1

We show an interesting connection to Syntactic Theories[10]. If E′ is sat-
urated by Paramodulation, then we can always quickly perform a few extra
inference rules to E′, yielding E. Then E is a resolvent presentation of a syn-
tactic theory. Our results basically follow from the fact that E is resolvent, and
there is an equivalent subset of E such that all proper subterms in E are reduced
by E.

Most of this paper deals with the set of inference rules yielding the NP
algorithm. The inference rules have been designed so that when we present the
definition of restricted equations, the polynomial time result is almost immediate.

Our full proofs are given in [13].

2 Preliminaries

We assume standard definitions of term rewriting[1].
We assume we are given a set of variables and a set of uninterpreted function

symbols of various arities. Terms are defined recursively in the following way:
each variable is a term, and if t1, · · · , tn are terms, and f is of arity n ≥ 0, then
f(t1, · · · , tn) is a term, and f is the symbol at the root of f(t1, · · · , tn). A term
(or any object) without variables is called ground. We consider equations of the
form s ≈ t, where s and t are terms. Let E be a set of equations, and u ≈ v be
an equation, then we write E |= u ≈ v (or u =E v) if u ≈ v is true in any model
of E. If G is a set of equations, then E |= G if and only if E |= e for all e in G.

A substitution is a mapping from the set of variables to the set of terms,
such that it is almost everywhere the identity. We identify a substitution with
its homomorphic extension. If θ is a substitution then Dom(θ) = {x | xθ �= x}
and Range(θ) = {xθ | x ∈ Dom(θ)}. If RE is a set of rewrite rules, then a
substitution θ is RE-reduced if all terms in Range(θ) are RE-reduced.

A substitution θ is an E-unifier of an equation u ≈ v if E |= uθ ≈ vθ. θ is
an E-unifier of a set of equations G if θ is an E-unifier of all equations in G.

If σ and θ are substitutions, then we write σ ≤E θ[V ar(G)] if there is a
substitution ρ such that E |= xσρ ≈ xθ for all x appearing in G. If G is a set of
equations, then a substitution θ is a most general E-unifier of G, written θ =
mgu(G) if θ is an E-unifier of G, and for all E-unifiers σ of G, θ ≤E σ[V ar(G)].
A complete set of E-unifiers of G, is a set of E-unifiers Θ of G such that for all
E-unifiers σ of G, there is a θ in Θ such that θ ≤E σ[V ar(G)].

Given a unification problem we can either solve the unification problem or
decide the unification problem. Given a goal G and a set of equations E, to
1 See the example in Section 7.
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solve the unification problem means to find a complete set of E-unifiers of G.
To decide the unification problem simply means to answer true or false as to
whether G has an E-unifier.

If E is a set of equations, then define Gr(E) as the set of all ground instances
of equations in E. We assume a reduction ordering ≺ on E, which is total on
ground terms. In order to extend the ordering to equations, we treat equations
as multisets of terms, i.e. (s ≈ t) ≺ (u ≈ v) iff {s, t} ≺mul {u, v}.

3 Saturation

We will show that if E is a finite set of equations saturated by Paramodulation,
then the E-unification problem is in NP . Paramodulation and saturation are
defined below.

Paramodulation

u[s′] ≈ v s ≈ t

u[t]σ ≈ vσ

where σ = mgu∅(s, s′), sσ �≺ tσ,
and s′ is not a variable.

This inference rule is an extension of the Critical Pair rule, which also allows
inferences into the smaller side of an equation.

In a set E of ground equations, an inference is redundant if its conclusion
follows from equations of E smaller than its largest premise. In a general set
of equations E, an inference is redundant if it is redundant in Gr(E). A set of
equations is saturated if all of the inferences among equations in E are redun-
dant. Automated theorem provers generally saturate a set of equations by some
inference rule.

In this section we will inductively define a set RE of rewrite rules from an
equational theory E. This construction is originally from [2]. RE will be used
in the completeness proof of the inference system we give in the next section.
A rule s → t is reducible by some set of rules T (T -reducible), if there is a rule
u→ v ∈ T different from s→ t such that u is a subterm of s or t.

Definition 1. For each s ≈ t ∈ Gr(E) such that s � t,

– Is≈t =
{∅, if s or t is reducible by R≺s≈t

{s→ t}, otherwise.
– R≺s≈t =

⋃
(u≈v)≺(s≈t) Iu≈v

– RE =
⋃

s≈t∈Gr(E) Is≈t

Proposition 1. The term rewriting system RE is confluent and terminating.
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Lemma 1. If s ≈ t is in Gr(E) and s → t is RE-reducible, then s → t is
R≺s≈t-reducible.

Corollary 1. If s→ t is RE-reducible and s ≈ t ∈ Gr(E), then s→ t �∈ RE.

The corollary follows, because if s → t is RE-reducible, then it is R≺s≈t-
reducible, and hence Is≈t = ∅. Therefore s→ t �∈ RE .

R∗
E denotes a congruence induced by RE .

Theorem 1. If E is saturated under Paramodulation, s ≈ t ∈ E and σ is a
ground substitution, then R∗

E |= sσ ≈ tσ.

4 The BSM Algorithm

In this section we give an algorithm for E-unification. It is based on a set of infer-
ence rules and a selection rule. The algorithm is “don’t know” non-deterministic,
i.e. sometimes more than one inference rule has to be checked. Because we as-
sume that all applicable equations will be used in inference rules, and since RE is
logically equivalent to E, we can assume in our completeness proof in the ground
case that equations used are from RE . Therefore, the proper subterms will be
reduced by RE , hence we can argue that no inferences will need to take place
in those terms. Therefore, we will forbid inferences into them. This will restrict
the search space, and allow us to show that the algorithm will halt. The terms
of which we assume that their ground instances are reduced will be marked with
boxes.

We define the Right-Hand-Side Critical Pair rule:

Right-Hand-Side Critical Pair (at
the root)

s ≈ t u ≈ v

sσ ≈ uσ

where sσ �≺ tσ, uσ �≺ vσ, σ ≈
mgu∅(v, t) and sσ �= uσ.

Define RHS(E) = {e | e is the conclusion of a Right-Hand-Side Critical Pair
inference of two members of E}∪E. This is not a saturation, because conclusions
of these inferences cannot be used in further inferences with Right-Hand-Side
Critical Pair rule . Therefore, RHS(E) can be computed in quadratic time and
only adds a quadratic number of equations to E.

Note that, if sσγ → tσγ and uσγ → vσγ, for some ground substitution γ,
are in RE , then all proper subterms in the equation sσγ ≈ uσγ are RE-reduced.
We will show that if E is saturated under Paramodulation, then RHS(E) is a
Syntactic Theory. This allow us to design a decision procedure for E-unification.
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Theorem 2. Let E = RHS(E′), where E′ is finite and saturated by Paramod-
ulation. Then, for each ground RE-reduced equation u ≈ v, such that E |= u ≈ v
one of the following is true:

1. u = f(u1, . . . , un), v = f(v1, . . . , vn) and E |= ⋃n
i ui ≈ vi

2. u = f(u1, . . . , un), v = g(v1, . . . , vm) and there is f(s1, . . . , sn) ≈ t ∈ E
and an RE-reduced substitution σ, such that E |= ⋃n

i ui ≈ siσ and E |=
g(v1, . . . , vm) ≈ tσ, and if t = g(t1, . . . , tm), then E |= ⋃m

j vj ≈ tjσ. All siσ,
tjσ are RE-reduced.

Proof. E |= u ≈ v and u ≈ v is a ground equation, hence also R∗
E |= u ≈ v (by

Theorem 1). Consider the rewrite proof in RE of u ≈ v. All RHS of the rules in
RE are RE-reduced, so in a rewrite proof of t

∗→ t′ in RE , for ground terms t and
t′, where t′ is the normal form of t, there may be some steps reducing subterms
of t and then at most one step at the root at the end, reducing the whole term
to t′.

t = f(t1, . . . , tn) ∗→ f(t′
1, . . . , t′n)

root-step→ t′

Hence we have 3 cases here:

i. No step at the root of either side in the proof of u ≈ v:

u = f(u1, . . . , un) ∗→ f(u′
1, . . . , u′

n) ∗← f(v1, . . . , vn) = v

Then RE |= ui
∗→ u′

i for all i = 1, . . . , n. Hence also E |= ui ≈ u′
i. vj

∗→ u′
j ∈

R for all j = 1, . . . , n. Hence also E |= vj ≈ u′
j . Hence E |= uj ≈ vj , for all

j = 1, . . . , n and the first statement of the theorem is true.
ii. One step at the root in the proof of u ≈ v. Then u = f(u1, . . . , un) and

v = g(v1, . . . , vm). Suppose that there is a step at the root in the proof:

f(u1, . . . , un) ∗→ f(u′
1, . . . , u′

n)
root-step→ u′

where u′ is an RE-normal form of u, and there is no step at the root in the
proof:

g(v1, . . . , vm) ∗→ u′

Hence u′ = g(v′
1, . . . , v′

m) and the step at the root has the form: f(u′
1, . . . , u′

n)
→ g(v′

1, . . . , v′
m). Hence this must be a rule in RE . Therefore there are two

possibilities:
a) f(s1, . . . , sn) ≈ g(t1, . . . , tm) ∈ E and there is a RE-reduced substitution

σ, such that siσ = u′
i, for all i = 1, . . . , n, and tjσ = v′

j , for all j =
1, . . . , m. Since ui

∗→ u′
i, for all i = 1, . . . , n, E |= ⋃n

i ui ≈ siσ.
Since RE |= g(v1, . . . , vm) ∗→ g(v′

1, . . . , v′
m), then E |= g(v1, . . . , vm) ≈

g(t1, . . . , tm)σ and since vj
∗→ v′

j for all j = 1, . . . , m, E |= ⋃m
j vj ≈ tjσ,

b) f(s1, . . . , sn) ≈ x ∈ E, and there is a RE-reduced substitution σ, such
that siσ = u′

i, for all i = 1, . . . , n, and xσ = g(v′
1, . . . , v′

m).
Since ui

∗→ u′
i, for all i = 1, . . . , n, E |= ⋃n

i ui ≈ siσ. Since RE |=
g(v1, . . . , vm) ∗→ g(v′

1, . . . , v′
m), then E |= g(v1, . . . , vm) ≈ xσ.
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Since f(u′
1, . . . , u′

n) → g(v′
1, . . . , v′

m) is in RE , all subterms u′
i and v′

j are
RE-reduced. Hence the second statement of the theorem is true.

iii. Two steps at the root in the proof of u ≈ v. Then u = f(u1, . . . , un) and
v = g(v1, . . . , vm). The rewrite proof has the following form:

f(u1, . . . , un) ∗→ f(u′
1, . . . , u′

n)

root-
step→ w

root-
step← g(v′

1, . . . , v′
m) ∗← g(v1, . . . , vm)

where w is a normal form for both terms and f(u′
1, . . . , u′

n) �= g(v′
1, . . . , v′

m).
(The case where f(u′

1, . . . , u′
n) = g(v′

1, . . . , v′
m) reduces to the first case,

since there is a proof of u ≈ v with no step at the root on either side.)
Since RE |= ui

∗→ u′
i for each i = 1, . . . , n, E |= ⋃n

i ui ≈ u′
i and since

RE |= g(v1, . . . , vm) ∗→ g(v′
1, . . . , v′

m), E |= g(v1, . . . , vm) ≈ g(v′
1, . . . , v′

m).
The subterms u′

i and v′
j are all RE-reduced.

Since f(u′
1, . . . , u′

n) → w and g(v′
1, . . . , v′

m) → w are in RE , hence there
must be an equation f(s1, . . . , sn) ≈ t in E and also g(t1, . . . , tm) ≈ t′ in E,
and an RE-reduced substitution σ, such that siσ = u′

i, for all i = 1, . . . , n,
and also tjσ = v′

j , for all j = 1, . . . , m, and tσ = w and t′σ = w. By the
saturation with the Right-Hand-Side Critical Pair rule, also f(s1, . . . , sn)θ ≈
g(t1, . . . , tm)θ is in E, where θ = mgu∅(t, t′). Obviously, θ ≤ σ, and hence for
some τ , siθτ = siσ for any i = 1, . . . , n and tjθτ = tjσ for each j = 1, . . . , m.
The second statement of the theorem is therefore true.

Our inference rules are presented in Figures 1 and 2. They use a selection rule
which is defined after the inference rules. We call the set of inference rules BSM
(Basic Syntactic Mutation). We also define a procedure called BSM , which is
the result of closing a set of equations under the inference rules BSM .

We treat the equations in the inference rules as symmetric, i.e., an equation
s ≈ t can also be viewed as t ≈ s.

The boxed elements in the assumptions of the rules are boxed also in the
conclusion. The subterms of boxed terms are treated as also boxed. In the in-
ference rules, if we do not box a term then it can be either boxed or unboxed,
unless we explicitly say that it is not boxed.

The rule Imitation is allowed only when there are multiple equations with
variable x on one side and terms with the same function symbol on the other
side, as in the example:

{x ≈ f(a), x ≈ f(b), x ≈ f(c)} ∪G

{x ≈ f(y) , y ≈ a, y ≈ b, y ≈ c} ∪G

In the case where all function symbols are different, Imitation is not applica-
ble, instead we must use Mutate&Imitate in a successful proof, as in the example:

{x ≈ f(a), x ≈ g(b)} ∪G

{x ≈ g(y), b ≈ b, y ≈ b , a ≈ a} ∪G

where f(a) ≈ g(b) is in E.
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Decomposition:

{f(u1, · · · , un) ≈ f(v1, · · · , vn)} ∪ G

{u1 ≈ v1, · · · , un ≈ vn} ∪ G

where f(u1, · · · , un) ≈ f(v1, · · · , vn) is selected. Mutate:

{f(u1, · · · , un) ≈ g(v1, · · · , vm)} ∪ G⋃
i
{ui ≈ si } ∪ ⋃

i
{ ti ≈ vi} ∪ G

where f(u1, · · · , un) ≈ g(v1, · · · , vm) is selected, f(u1, · · · , un) is not
boxed and f(s1, · · · , sn) ≈ g(t1, · · · , tm) ∈ E. Imitation:

⋃
i
{x ≈ f(vi1 , · · · , vin)} ∪ G

{x ≈ f(y1, · · · , yn) ,
⋃

i
{y1 ≈ vi1}, · · · ,⋃

i
{yn ≈ vin}} ∪ G

where i > 1 and at least two of
⋃

i
{x ≈ f(vi1 , · · · , vin)} are selected,

and there are no more equations of the form x ≈ f(u1, · · · , un) in G.
Mutate&Imitate:

{x ≈ f(u1, · · · , un), x ≈ g(v1, · · · , vm)} ∪ G

{x ≈ f(y1, · · · , ym), y1 ≈ s1 , . . . , yn ≈ sn , s1 ≈ u1, · · · , sn ≈ un,
t1 ≈ v1, · · · , tm ≈ vm} ∪ G

where f(s1, · · · , sn) ≈ g(t1, · · · , tm) is in E, x ≈ f(u1, · · · , un) and
x ≈ g(v1, · · · , vm) are selected in the goal and

1. f(u1, · · · , un) is boxed , g(v1, · · · , vm) is unboxed in the premise
and f(y1, · · · , ym) is boxed in the conclusion, or

2. both f(u1, · · · , un) and g(v1, · · · , vm) are not boxed in the premise
and f(y1, · · · , ym) is not boxed in the conclusion.

Variable Elimination:

if x �≈ y: otherwise:

x ≈ y, G
x ≈ y, G[x �→ y]

x ≈ x ∪ G
G

where both x and y appear in G.

Fig. 1. The BSM inference rules
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VariableMutate:

{f(u1, · · · , un) ≈ v} ∪ G

{u1 ≈ s1 , · · · , un ≈ sn , x ≈ v} ∪ G

where f(u1, · · · , un) ≈ v is selected, f(u1, · · · , un) is not boxed
and there is an equation of the form f(s1, · · · , sn) ≈ x ∈ E.
Mutate&Imitate-cycle:

{x ≈ f(v1, . . . , vn)} ∪ G

{x ≈ g(t1, . . . , tk) ,
⋃n

i
si ≈ vi} ∪ G

where g(t1, . . . , tk) ≈ f(s1, . . . , sn) ∈ E, x ≈ f(v1, . . . , vn) only is se-
lected. Imitation-cycle:

{x ≈ f(v1, · · · , vn)} ∪ G

{x ≈ f(y1, · · · , yn) , y1 ≈ v1, · · · , yn ≈ vn} ∪ G

where x ≈ f(v1, · · · , vn) only is selected.

Fig. 2. BSM inference rules continued

Definition 2. We recursively define an equation x ≈ t in G to be solved if the
variable x does not appear in G\{x ≈ t} or the variable x does not appear in an
unsolved equation in G. The variable x is then called solved.

We use a notion of cycle in the definition of our selection rule. By cycle,
we understand a set of equations of the type x ≈ t, where x is a variable, t
is a term, that can be ordered as {x1 = t1, . . . , xn = tn}, in such a way that
{xi+1} ∩ V ar(ti) �= ∅, where at least one ti is not variable and x1 ∈ V ar(tn).

The following selection rule is used in the inference rules. Conditions imposed
by the definition deal with “don’t care” nondeterminism in the procedure.

Definition 3. A selection rule is a function from a multiset of equations S to
a nonempty subset T of S, such that if x ≈ t1 ∈ T , x ∈ V ars and t1 �∈ V ars,
then either there is another member of T , x ≈ t2, or x ≈ t1 is in a cycle and t1
is not boxed. Every equation in T is considered selected.

Notice that if x ≈ t is in a solved form, it cannot be selected.
We will prove that BSM always halts on a goal G, and if G is E-unifiable

then a normal form will be found.

Definition 4. A goal G is in normal form if the equations of G are all solved
and they can be arranged in the form {x1 ≈ t1, · · · , xn ≈ tn} such that for all
i ≤ j, xi is not in tj.
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Then we define θG to be the substitution [x1 �→ t1][x2 �→ t2] · · · [xn �→ tn]. θG

is a most general E-unifier of G.
One application of any inference rule to the goal G with the resulting goal

G′, is denoted by G→ G′.

5 Completeness and Termination

In this section we prove that if E = RHS(E′) where E′ is finite and saturated
under Paramodulation, then the BSM procedure always terminates in nonde-
terministic polynomial time, and it finds a normal form if the goal is E-unifiable.

Definition 5. Let G be a goal and σ be a ground substitution. Then (G, σ) is
reduced if xσ is reduced wrt RE for all variables x ∈ G, and tσ is reduced wrt
RE whenver t is boxed.

Lemma 2. Let E = RHS(E′), where E′ is finite and saturated by Paramodu-
lation. If (G, σ) is reduced, E |= Gσ, G is not in normal form, then there is G′

and σ′ such that G→ G′, (G′, σ′) is reduced, E |= G′σ′ and σ′ ≤E σ[V ar(G)].

Proof. If G is not in a normal form, some equation or equations will be selected
and we have several cases to consider. We give the proof of one case, and the
others can be found in [13].

1. u ≈ v is selected and u and v are variables
2. u ≈ v is selected and u, v are not variables

Since E |= uσ ≈ vσ, there are two possibilities according to Theorem 2:
a) Th.2(1) holds for uσ ≈ vσ

u = f(u1, · · · , un), v = f(v1, · · · , vn), and E |= ⋃n
i=1 uiσ ≈ viσ. Thus

G→ G′ by Decomposition and E |= G′σ. (G′, σ) is reduced with respect
to the variables (we have not changed anything about the variables in
this case).
As for the other terms in G′, if f(u1, · · · , un) was boxed in G,then
we assume that f(u1, · · · , un)σ is RE-reduced. Hence the same can
be said about all subterms of f(u1, · · · , un)σ. Hence u1, . . . , un, which
will be boxed in the result of Decomposition, preserve the property:
each uiσ, which will be boxed in the conclusion, will also be RE-reduced.

b) Th.2(2) holds for uσ ≈ vσ
u = f(u1, . . . , un) and v = g(v1, . . . , vm), f(s1, . . . , sn) ≈ t ∈ E, E |=⋃n

i=1 uiσ ≈ siσ
′ and E |= g(v1, . . . , vm)σ ≈ tσ′, where σ′ is an extension

of σ for new variables in the terms from E.
There are two possibilities depending on the form of t:

i. If t = g(t1, . . . , tm), E |= ⋃m
j=1 vjσ ≈ tjσ′, where σ = σ′[V ar(G)].

Hence Mutate is applicable. Either the first case applies, where e.g.
f(u1, . . . , un) is boxed, i.e. f(u1, . . . , un)σ is RE-reduced, and this
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allows to box f(y1, . . . , yn) in the conclusion of the rule, or the sec-
ond case applies, where both f(u1, . . . , un) and g(v1, . . . , vm) are un-
boxed, hence their ground instances are not necessarily RE-reduced,
and f(y1, . . . , yn) cannot be boxed in the conclusion of the rule.
Therefore G→ G′ and E |= G′σ′. New terms in G′ introduced from
E are boxed, because by theorem 2, they are RE-reduced. Hence
(G′, σ′) is reduced.

ii. If t = x, where x is a variable. Then f(s1, . . . , sn) ≈ x ∈ E and
E |= ⋃n

i=1 uiσ ≈ siσ
′ and E |= xσ ≈ g(v1, . . . , vm)σ. The rule

VariableMutate is then applicable, and G → G′ by this rule, E |=
G′σ′. By Theorem 2, all siσ are RE-reduced, hence all si can be
boxed in the conclusion of the rule. (G′, σ′) is reduced, where σ =
σ′[V ar(G)], because of the only new variable x, by theorem 2, we
know that xσ is RE-reduced.

3. x ≈ v is selected, where x is a variable, v is not a variable and x ≈ v
is part of a cycle

4. x ≈ v1 and x ≈ v2 are selected, where x is a variable, and v1 and v2
are not variables

In order to prove that BSM always halts, we define a measure:

Definition 6. Let M be a measure function from a unification problem G to
a triple (m, n, p) of natural numbers, where m is the number of unboxed, non-
variable symbols in G, n is the number of non-variable symbols in G, and p is
the number of unsolved variables in G.

Theorem 3. Let E = RHS(E′) where E′ is finite and saturated by Paramodu-
lation. Then BSM solves the E-unification problem G in nondeterministic poly-
nomial time.

Proof. The following table shows how M(G) decreases with the application of
each rule, and hence can be compared wrt lexicographic order. For example,
Decomposition preserves or decreases the number m of unboxed, non-variable
symbols in G, but always decreases the number n of non-variable symbols in G.

m n p
Decomposition ≥ >
Mutate >
Imitation ≥ >
Mutate&Imitate >
Variable Elimination = = >
VariableMutate >
Mutate&Imitate-cycle >
Imitation-cycle >
Let a be the greatest arity in the signature of E ∪G. To prove the claim, we

show that the number, µ(G) = (a + 2)|E| ∗m + (a + 1)n + p is decreased with
the application of every rule. Hence the run of the algorithm will take no longer
than O(|G|), since a and |E| are constant, and m, n and p are bounded by |G|.
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In the following, G′ is the goal obtained by an application of one inference rule,
G→ G′, M(G) = (m, n, p), and M(G′) = (m′, n′, p′). Missing cases are in [13].

– Decomposition: m′ ≤ m, n′ = n− 2 and p′ ≤ p.
µ(G′) ≤ (a + 2)|E| ∗m + (a + 1)(n− 2) + p < (a + 2)|E| ∗m + (a + 1)n + p.

– Mutate: m′ ≤ m− 1, n′ ≤ n + |E| − 2, p′ ≤ p + |E|.
µ(G′) ≤ (a + 2)|E| ∗ (m− 1) + (a + 1)(n + |E| − 2) + p + |E| = (a + 2)|E| ∗
m + (a + 1)n + p− 2a− 2 < (a + 2)|E| ∗m + (a + 1)n + p.

– Imitation: m′ ≤ m, n′ ≤ n− 1, p′ ≤ p + a.
µ(G′) ≤ (a+2)|E|∗m+(a+1)(n−1)+p+a = (a+2)|E|∗m+(a+1)n+p−1 <
(a + 2)|E| ∗m + (a + 1)n + p.

– Mutate&Imitate: m′ = m− 1, n′ ≤ n + |E| − 1, p′ ≤ p + |E|.
µ(G′) ≤ (a + 2)|E| ∗ (m− 1) + (a + 1)(n + |E| − 1) + p + |E| = (a + 2)|E| ∗
m + (a + 1)n + p− a− 1 < (a + 2)|E| ∗m + (a + 1)n + p.

– Variable Elimination: m′ = m, n′ = n, p′ = p− 1.
µ(G′) = (a + 2)|E| ∗m + (a + 1)n + p− 1 < (a + 2)|E| ∗m + (a + 1)n + p.

– Imitation-cycle: m′ = m− 1, n′ = n, p′ = p.
µ(G′) = (a + 2)|E| ∗ (m − 1) + (a + 1)n + p = (a + 2)|E| ∗m + (a + 1)n +
p− (a + 2)|E| < (a + 2)|E| ∗m + (a + 1)n + p.

By Lemma 2, the algorithm must halt with a normal form if the goal is
E-unifiable, therefore the algorithm runs in nondeterministic polynomial time.

There are several sources of “don’t know” non-determinism here:

1. We don’t know which equation from E to use for a given form of Mutate rule
(Mutate, Mutate&Imitate, VariableMutate or Mutate&Imitate-cycle each
taken alone), if several equations are applicable.

2. There may be conflicts between VariableMutate and any of the following
Mutate rules: Mutate, Mutate&Imitate, Mutate&Imitate-cycle.

3. Decomposition may be in conflict with Mutate or with VariableMutate.
4. Imitation-cycle may conflict with Mutate&Imitate-cycle or VariableMutate.

6 Achieving Determinism

There are 4 sources of non-determinism in the BSM procedure, as explained
above. Here further restrictions will be put on E in order to make the algorithm
deterministic. The first of these restrictions will address the problem of the choice
of equations to use with a form of Mutate, and the second and third will deal with
the choice of the inference rules that could be applied to a unification problem.

A set of equations E is subterm-collapsing if there are terms t and u such
that, t is a proper subterm of u and t =E u.

Definition 7. We call E deterministic if E is not subterm-collapsing and:

1. No two equations in E have the same root symbols at their sides. For exam-
ple, we can’t have both f(a) ≈ g(b) and f(c) ≈ g(d) in E.
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2. If s ≈ t ∈ E, then neither t nor s is a variable
3. If s ≈ t ∈ E, then root(s) �= root(t).

We will show that if E = RHS(E′) where E′ is saturated under Paramod-
ulation and E is deterministic, then BSM can be turned into a deterministic
algorithm, which will mean that the algorithm halts deterministically in a lin-
ear number of inference steps. Each step takes no more than linear time, so the
algorithm is O(n2). It will also show that the theory is unitary[1], because we
get a most general unifier from the algorithm.

Lemma 3. Let E = RHS(E′), such that E′ is finite and saturated by Paramod-
ulation, and E is deterministic. Then in the BSM algorithm for theory E, the
rule VariableMutate is not applicable.

Notice that the elimination of VariableMutate rule removes source 2 and part
of source 1 and 3 of non-determinism in the BSM algorithm.

Lemma 4. Let E = RHS(E′), where E′ is finite and saturated by Paramodu-
lation, and E is deterministic. Then in the BSM algorithm for the theory E,
if Imitation-cycle or Mutate&Imitate-cycle is applicable to a goal G, then G has
no solution.

We define algorithm BSMd the same as algorithm BSM , only without
rules VariableMutate, Imitation-cycle and Mutate&Imitate-cycle. Notice that
the elimination of cycle-rules completely removes the 4th source and partially
the 1st and 2nd source of non-determinism in the BSM algorithm.

Theorem 4. Let E = RHS(E′), where E′ is finite and saturated under
Paramodulation, and E is deterministic. Then the algorithm BSMd for the the-
ory E solves the E-unification problem G deterministically in O(|G|) inference
steps, so in time O(|G|2). Also, E is unitary.

Proof. By the completeness argument, the algorithm BSM solves the E-
unification problem. By Lemmas 3 and 4, the algorithm BSMd also solves the
problem. But there are no sources of non-determinism in the algorithm BSMd.
Recall the possible sources of non-determinism given at the end of the last sec-
tion. After the removal of the VariableMutate rule and cycle-rules, we have to
consider the following, remaining cases:

1. As for the first source of non-determinism, we are left with a possible con-
flict of various equations from E used with Mutate or Mutate&Imitate. But
Restriction 1 on E in an obvious way rules out these cases. Hence this source
of non-determinism disappears. The conflicts with VariableMutate or Mu-
tate&Imitate cycle are no longer there, because the inference rules are no
longer there.

2. We got rid of the second source of non-determinism by removing Variable-
Mutate from the BSMd algorithm.

3. As for the third source of non-determinism, we are left with a possible con-
flict between Decomposition and Mutate. But notice that Restriction 3 on
E precludes any such conflict, since Decomposition is used only when an
equation in the goal has both sides with the same root symbol.
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4. The fourth source of non-determinism disappeared with the removal of the
cycle-rules from the BSMd algorithm.

There are no other sources of possible non-determinism in BSMd. Hence the
algorithm BSMd is deterministic and will only take O(|G|) inference steps.
Each step can be done in linear time, so the algorithm is O(|G|2). Since it is
deterministic, it computes a most general unifier.

For subterm-collapsing theories, it is possible to show that all those properties
are necessary. For example, [14] exhibits a ground theory that satisfies the second
and third properties, but whose unification problem is NP -complete. The theory
E = {f(x, x) ≈ x} satisfies the first and third property, but its unification
problem is NP -complete[9]. Also, consider the theory E′ = {f(x, x) ≈ 0}. In
this case E = RHS(E′) = {f(x, x) ≈ 0, f(x, x) ≈ f(x′, x′)}, which satisfies the
first two properties, but its unification problem is NP -complete[5]. All of those
are subterm-collapsing theories, and we don’t know if it is possible to show
that a subterm-collapsing theory with the above three properties always has a
polynomial time procedure to decide the unification problem. However, we know
that it cannot be solved in polynomial time. Consider the theory E = {fa ≈
a, fb ≈ b}. This is subterm-collapsing and it satisfies all three properties above,
but the goal fx1 ≈ x1, · · · , fxn ≈ xn has a complete set of unifiers of size 2n.

7 Comparison with Basic Narrowing

We will show some advantages of BSMd over Basic Narrowing, which is defined
in Figure 7. The Basic Narrowing rules[6] are presented here in the formalism
of constraints. To the right of the bar, we put constraints in the form of substi-
tutions, that composed together give the possible solution. Substitutions from
the constraints part are never applied to the goal, hence we prevent any infer-
ences into the substituted terms. This is exactly the same as boxing the terms
in BSMd. Also, any term into which an inference is made, cannot be a variable,
and in BSMd we treat variables as boxed.

As an example, we take E = {fa ≈ b} and the goal g(fx1, . . . , fxn) ≈
g(fy1, . . . , fyn)}.

In this case, BSMd gives us the most general unifier our algorithm in a
deterministic way, in polynomial time gives us the most general unifier [x1 �→
y1, . . . , xn �→ yn]. The only possible rule to apply is Decomposition.

Basic Narrowing is non-deterministic in this case and will search for the
solution in exponential time, applying the Narrowing rule to each fxi and fyi.
It will find all solutions of the form {xi �→ a, yi �→ a | i ∈ N}∪{xi �→ yi | i ∈ N}.
for all N ⊆ {1, · · · , n}. Therefore, it will find 2n different unifiers, all of which
are subsumed by the one unifier generated by BSMd.

On the other hand, if we change E to contain fa ≈ fb instead of fa ≈ b,
we need to use BSM . There will be exponentially many solutions, but E is not
deterministic in this case.
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Basic Narrowing:

s[u] ≈ t, G | τ

s[x] ≈ t, G | τ [x �→ r]σ

where l ≈ r is in E, l �� r, s �� t, σ = mgu∅(l, uτ) and u is not a
variable.

Equality Resolution:

u ≈ v, G | τ
G | τσ

where σ = mgu∅(uτ, vτ).

8 Conclusion

This paper gives an algorithm which solves E-unification for a certain class of
equational theories in NP , and for a more restricted class of theories in quadratic
time. There have been other decidability and complexity results shown for classes
of equational theories such as [4,7,14,8,12]. The classes defined in those other
papers are not related to ours, except that [14] shows NP -completeness for
theories saturated under Paramodulation.

We have defined an inference system for E-unification called Basic Syntac-
tic Mutation (BSM). We apply BSM to solve E-unification for sets of equa-
tions finitely saturated by Paramodulation. BSM resembles the Syntactic Mu-
tation inference rules of [10], but after an inference, the terms introduced by
the inference are blocked from further inferences, as in Basic Paramodulation[3,
15]. Therefore, our inference rules will halt on equational theories saturated by
Paramodulation in nondeterministic polynomial time, as in [14], giving a decision
procedure for E-unification in such theories.

A main interest of our inference system was to find equational theories where
E-unification can be solved in polynomial time, and our inference rules were de-
signed with that in mind. We give further restrictions on the equational theory,
and we show that with those restrictions, our algorithm will halt in deterministic
quadratic time, with a linear number of inference steps, and that such theories
are unitary. We call such theories deterministic. This means unification in these
theories is not much harder than in the empty theory. We conjecture that the
complexity of our procedure could be reduced to O(nlg(n)) or O(n), as in syn-
tactic unification.

The idea behind our reults on deterministic theories is to deal with equational
theories which express non-recursive definitions. For example, the definition of
adding elements to a list looks like this:

add(x, cons(y, z)) = cons(x, cons(y, z))
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This theory is deterministic, as would be similar theories consisting of adds and
inserts. Many natural theories contain axioms such as these. They may contain
other axioms, which destroy the deterministic property, however they may still
meet many of the conditions for a deterministic theory. Therefore, it is still
possible to use the results in this paper to analyze the determinism in the BSM
E-unification algorithm and understand how efficient the algorithm will be.
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